
 1

Facial Animation and Speech Synthesis

BY

Tunde Adegbola

B.S. Computer Science, Saint Louis University, 2003

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science

in the graduate studies program

of DigiPen Institute Of Technology

Redmond, Washington

United States of America

Summer

2008

Thesis Advisor: Xin Li

DIGIPEN INSTITUTE OF TECHNOLOGY

 2

GRADUATE STUDY PROGRAM

DEFENSE OF THESIS

THE UNDERSIGNED VERIFY THAT THE FINAL ORAL DEFENSE OF THE

MASTER OF SCIENCE THESIS OF TUNDE ADEGBOLA

HAS BEEN SUCCESSFULLY COMPLETED ON JULY 16, 2008

TITLE OF THESIS: FACIAL ANIMATION AND SPEECH SYNTHESIS

MAJOR FIELD OF STUDY: COMPUTER SCIENCE.

COMMITTEE:

Xin Li, Chair Gary Herron

Suzanne Kauffman Dmitri Volper

APPROVED :

Graduate Program Director date Dean of Science Division date

Chair of Computer Science date President date

The material presented within this document does not necessarily reflect the opinion of

the Committee, the Graduate Study Program, or DigiPen Institute Of Technology.

 3

INSTITUTE OF DIGIPEN INSTITUTE OF TECHNOLOGY

PROGRAM OF MASTER’S DEGREE

THESIS APPROVAL

DATE: JULY 16, 2008

BASED ON THE CANDIDATE’S SUCCESSFUL ORAL DEFENSE, IT IS

RECOMMENDED THAT THE THESIS PREPARED BY

TUNDE ADEGBOLA

ENTITLED

 FACIAL ANIMATION AND SPEECH SYNTHESIS

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF COMPUTER SCIENCE FROM THE PROGRAM OF

MASTER’S DEGREE AT DIGIPEN INSTITUTE OF TECHNOLOGY.

Dr. Xin Li

Thesis Advisory Committee Chair

Dr. Xin Li

Director of Graduate Study Program

Dr. Xin Li

Dean of Science Division

The material presented within this document does not necessarily reflect the opinion of

the Committee, the Graduate Study Program, or DigiPen Institute Of Technology.

 4

Table of Contents

Abstract .. 6

1 Introduction ... 7

2 A Little History ... 7

2.1 Lip Sync: The Early Days ... 7

2.1.1 Development of Animation Shortcuts ... 7

2.2 Lip Sync: The Last Few Decades .. 8

2.3 What is a Phoneme?... 8

2.4 What is a Viseme? .. 9

2.5 Putting things together for Speech animation .. 9

2.6 Phoneme reduction ... 11

2.6.1 Full Animation .. 11

2.6.2 Visemes according to Flemming and Dobbs .. 12

2.7 First Reduction .. 13

2.8 Second Reduction .. 15

2.9 Third Reduction .. 15

2.10 Fourth Reduction .. 16

2.11 Results and Analysis ... 16

3 Animation of Facial features .. 17

3.1 Previous Approaches for Personalized Facial Animation 17

3.1.1 Parametric Conformation models ... 18

3.1.2 Plaster Model and interactive deformation method 18

3.1.3 Image based method ... 18

Approaches (mid to late 90s) .. 19

3.1.4 Direct3D digitization method .. 19

4 Yu Zhang, Terence Sim and Chew Lim Tan .. 19

4.1 The Generic Control Model ... 20

4.2 Adapting the Control Model .. 22

4.3 Landmark Location .. 23

4.4 Global Shape Adaptation .. 25

4.5 Local Shape Adaptation ... 29

4.6 Muscle Layer Adaptation ... 31

4.6.1 Linear Muscles ... 31

4.7 Interpolation Computations ... 32

4.8 Sphincter Muscles ... 33

4.9 Results and Analysis ... 33

5 Kolja Kähler, Jorg Haber and Hans-Peter Seidel ... 34

5.1 Approach Model.. 34

5.2 Skull and Jaw .. 35

5.3 Muscles ... 36

5.5 Quick Verlet Integration Review: ... 38

5.6 Muscle Model Calculations .. 39

 5

5.7.1 Contraction .. 39

5.7.2 Bulge ... 41

5.8 Building Muscles from Geometry.. 41

5.9.1 Initializing the grid:.. 42

5.9.2 Refining the grid: .. 42

5.9.3 Creating the muscle: ... 43

5.9.4 Attaching the muscle: ... 43

5.10 Results and Analysis ... 43

6 Yuencheng Lee, Demetri Terzopoulos, and Keith Waters 44

6.1 Image Processing ... 44

6.2 Generic Face Mesh and Mesh Adaptation.. 45

6.2.1 Mesh Adaptation Procedure ... 45

6.3 The Dynamic Skin and Muscle Model .. 46

6.5 Discrete Deformable Models (DDMs) ... 47

6.6 Tissue Model Spring Forces (TMSFs)... 48

6.7 Linear Muscle Forces ... 48

6.8 Applying muscle forces to the fascia nodes... 48

6.9 Piecewise Linear Muscles ... 50

6.11 Skull Penetration Constraint Forces ... 51

6.12 Equations of Motion for Tissue model .. 51

6.13 Eyes, Teeth and Other artifacts ... 52

7.2 General Approach ... 53

7.3 Tools ... 54

7.3.1 FaceGen Modeller (3.1) .. 55

7.3.2 3ds Max / Panda Exporter ... 58

7.3.3 Microsft SAPI (5.1) .. 58

7.3.3 Microsoft DirectX / Visual Studio .. 58

7.4 Overview ... 58

7.5 Facial Animation Engine .. 59

7.6 Skin Manager .. 60

7.6.1 Defining Generic Model Vertex Data ... 60

7.6.2 Determining vertex offsets of the Specific Model .. 63

7.6.1 ISpVoice ... 64

7.6.2 ISpRecognizer & ISpRecoContext ... 66

7.6.3 Recognition Accuracy ... 66

8 Summary .. 68

9 Future Work .. 69

References .. 70

 6

Abstract

The purpose of this research is to investigate and determine effective ways to simulate

facial animation for a specific person. It should introduce the reader to the world of facial

animation, highlighting its history and origins. Existing techniques that have been

devised for computer based facial animation will be explored, identifying the positive and

negative aspects of each in the process. New physically based approaches will also be

examined and compared to previous techniques to highlight improvements that have been

made. Applicability of these relatively new algorithms to video games and similar

entertainment outlets will also be examined.

 7

1 Introduction

Facial animation is a heavily researched area of computer science and has been so for

decades. Even before then, it was a major part of feature film production for companies

such as Disney. This dates as far back as 1928.

 Animation of human faces is a difficult task, above all other forms of animation. When

one factors in the range of expressions and emotions of individuals, it becomes evident

how vast an area of research facial animation is.

 Facial animation consists of two parts: animation of emotions, and speech animation,

both which complement each other. How so? Well, speech animation alone would seem

robotic without some form of accompanying fine tuned by adding emotional expressions.

2 A Little History

This section not only offers information on the history of facial animation, but it also

highlights a non muscle-based implementation approach with a focus on speech

animation

2.1 Lip Sync: The Early Days

Lip syncing has been explored since the release of Disney’s Steamboat Willie in 1928.

This was the first time sound and animation had been joined. Shortly thereafter, the first

techniques were developed in the early 30’s for timing facial expressions with

accompanying dialogue.

2.1.1 Development of Animation Shortcuts
Disney played a major part. Their artists’ concern was on how the mouth looks while

making the sounds. They later on discovered that several sounds can be made with the

same mouth position.

 8

Figure 2.1 is an example of a lip sync template. Animators relied on a chart consisting of

a number of archetypal mouth positions to represent speech.

Fig. 2.1: Lip Sync template

2.2 Lip Sync: The Last Few Decades

In the early 70s, Frederik Parke presented the polygonal representation of a head with

animation of eyes and mouth opening and closing [Parke 1972].

Various approaches and techniques were introduced:

1. concatenative [Lee et al. 1995]

2. parameterized [Parke 1982]

3. muscle based approach [Parke and Waters1996].

One major problem with most if not all techniques and was accomplishing accurate,

realistic speech animation with minimal effort. In order to get a better grasp of the sub

task at hand, one must be familiar with the concept of definition of a phoneme set and

viseme creation.

2.3 What is a Phoneme?

A phoneme can be described as the smallest contrastive unit in the sound system of a

language. Just as one or more syllables make up a word, one or more phonemes make up

a syllable. They are the individual sounds that make up speech, the number of which vary

depending on the language.

 9

2.4 What is a Viseme?

A viseme is described as a generic facial image that can be used to describe a particular

phoneme. They are sometimes referred to as visual phonemes, though one should note

that they do not have a 1-to-1 viseme/phoneme relationship. This will become more

evident later on in the phoneme reduction description.

2.5 Putting things together for Speech animation

In order to simulate speech animation, visemes will need to be synced with each

phoneme uttered by a given character, the naive approach to such animation would be to

attempt to create a separate facial position for each phoneme, but this is a wasteful

approach. In order to achieve realistic lip synching, the following general steps are taken

by the Authors in [1], using 3ds Max and Maxscript:

1. Viseme creation

2. Assigning visemes to morpher modifier channels

3. Animating the percentage of viseme appearance in key frames of animation.

Step 1: Viseme Creation

This consists of creating a particular number of copies of the basic head model. Every

copy represents one of the visemes with facial vertices moved to achieve the look of

the face during pronunciation of the corresponding phoneme. The number of these

copies(visemes) created and stored depends on depends on reduction level.

Step 2: Assigning visemes to Morpher modifier channels

A Morpher modifier is a data structure designed to handle particular number of

channels and their parameters. Basically, the idea is to gradually transform from one

copy of the head model into another. Recall from step one that each copy stores a

unique viseme. After visemes are created, they are then assigned to morpher modifier

channels as morph targets. These channels allow for animators to interpolate between

 10

the different visemes, via repositioning of vertices, taking note of their position in

both copies of the original object. For this to work, these copies must possess the

same number of vertices.

Step 3: Animation, Key frames etc

At this stage, the animator determines key frames for every phoneme. The Animation

is created by assigning corresponding percentages to adequate visemes in Morpher

modifier channels in key frames of time. Software calculates interpolation between

key frames and generates the final animation that could be rendered and recorded to

the tape and later edited/formatted into a final movie sequence.

Since step 3 can be a very tedious step, Rizvic and Avdagic, created a script to

automatically generate these key frames. The algorithm to achieve this will not be

discussed in great detail, but it is still important to highlight the algorithm used:

Phases of the algorithm:

 initialization, file opening

 viseme check

 key frame creation in corresponding Morpher modifier channel

 end of file check

 final animation rendering

MaxScript, being native to the 3ds environment was used. For information on how the

scripting was performed, refer to [1] for more information on how this was performed.

 11

2.6 Phoneme reduction

In the early days of animation the basic principle was simplicity, as attempts at accuracy

seemed too unnatural [Madsen 1969]. Because of this, animators decided to create visual

shorthand that passes unchallenged by the viewer, similar to dropping frames per second

in a game, yet maintaining fluidity at the same time.

Reduction to a small set of visemes was feasible in the past was more feasible since

characters were not as realistic, but due to increased realism of characters in games and

feature films, When level of detail becomes a factor. Rizvic and Avdagic propose the use

of phoneme reduction to facilitate all levels of detail.

2.6.1 Full Animation

According to Flemming and Dobbs [3] there are 40 phonemes in the American English

language. They also describe a unit of speech being considered a phoneme if replacing it

in a word results in a change of meaning. Based on this information, they developed the

following list of phonemes in the table below:

 12

Fig 2.2: Phoneme Table

2.6.2 Visemes according to Flemming and Dobbs

The following visemes are according to the rules of reduction. Recall that the naïve

approach would result in a 1-to-1 phoneme/viseme relationship (i.e. 40 visemes would be

required)

 13

Fig 2.3. Visemes for First Reduction

One thing to be considered is when creating visemes is whether the model has or will

have a visible tongue or not. Animating the tongue further complicates things, like the

requirement of probably twice the number of visemes displayed above. For simplicity,

the tongue will not be considered in the viseme creation.

2.7 First Reduction

The classification of phonemes plays a very important role in lip synch animation.

Flemming and Dobbs have phonemes of the English language divided in the following

groups:

Consonants:

Fricative (F, V, TH, DH, S, Z, SH ZH and H) – formed by forcing air

through a narrow gap, creating a hissing sound.

Plosives (P, B, T, D, K, G) – involve the same restriction of the speech

canal as fricatives, but the speech organs are substantially less tense during

the articulation of a spirant

 14

Affricative (CH, J) – these are a plosives immediately followed by a

fricative in the same place of articulation

Nasal (M, N, AN) – consonants in which air escapes only through the

nose

Vowels:

Unitary (IY, EY, EH, AE, AA, AO, OW, UH, UW, AH, ER, AX) – a

single syllable sound with no change in articular position

Diphtong (AY, OY, AW, YU) – a gliding, single syllable vowel sound

that starts at or near one articulator position and moves toward the position

of another

Glide (Y, W) – subclass of diphtongs, but even slower

Liquids (L, R) – another subclass of diphtongs tending to be more like a

rolling or thrill sound

Guidelines for animation [Flemming and Dobbs 1999]

1. Unitary phonemes are the strong vowel sounds and should be emphasized with

visemes. They should never be dropped.

2. Diphtongs tend to take longer to express. That’s why they should be given a

higher frame count. They should never be dropped.

3. Glides are slow diphtongs and they have to be given even more frames.

4. Liquids are strong phonemes and they are needed to be accentuated.

5. Fricatives can be accentuated or passed over completely depending on the

word. For example, in the word “vice”, the V is uttered quickly, so it probably can

be dropped completely since it’s followed by a strong vowel. On the other hand,

in the word “voluptuous” the V is spoken slowly and we need to accentuate it.

6. Plosives are the stop consonants, so they are never emphasized in lip synch

animation. They can be completely dropped.

7. Affricatives may never be dropped since they are the strong accent of the word

and feature two consonants combined.

 15

Guidelines for Dropping Phonemes (Based on their position)

1. Never drop a phoneme in the beginning of a word

2. Drop nasal visemes between two vowels to smooth transitions

2.8 Second Reduction

From the viseme table in figure 2.3, there are negligible differences between some of the

visemes (phoneme groups). This being the case, further reduction can be carried out by

merging similar phoneme groups. As a result, the 16 visemes from the first reduction

drop to 10:

Fig 2.4: Visemes for second Reduction

2.9 Third Reduction

This follows the guidelines, for dropping phonemes, and is merely for reducing the

number of key frames to transition among. The number of visemes remains at 10.

 16

It is important to note that further reduction beyond the third level would probably only

work well with characters without tongue animation. They would otherwise begin to look

non-realistic, with the tongue most likely out of place. It is still important to point out

further reduction as they could be applied in cases where level of detail is low.

2.10 Fourth Reduction

Madsen rules for cartoon animation, should one feel the need to further simplify

animation. These are based on visual pattern of vowel lip motions accented by the

consonants, according to Madsen.

The resulting 4 visemes are as follows:

Fig 2.4: Visemes for fourth reduction

B, M, P – lips are closed

O, W – oval mouth shape

F, V – lower lip is tucked under the upper front teeth (in our case upper lip)

OTHER – some intermediate shape of the mouth for all the other phonemes

2.11 Results and Analysis

It was pointed out earlier that full animation led to forced, and unnatural, hence the need

for reduction. Rizvic and Avdagic point that at first reduction looks slightly smoother but

still appeared to be forced. Their observations showed that at the second reduction, there

was not much of a difference visually between 10 & 16 visemes and thus still wasn’t

 17

fluid enough. Things began to take shape and looked smooth on the third reduction. One

is led to assume that the third reduction would be ideal for realistic facial animation.

The fourth reduction proved to be too simplified and far from accurate, and would be

more ideal for less detailed shots. They concluded that Madsen's rules better for wide

shots

3 Animation of Facial features

It has been established that both the third and fourth levels of reduction in section 2.11

have their place in computer facial animation. Choice would depend mainly on the level

of detail required for a given scene.

For animation with high level of detail, speech animation alone as described by Rizvic

and Avdagic will not be sufficient, as there would be no emotion attached to each viseme.

Furthermore, the models would remain generic and lacking character. Ideally, one would

require a system by which a finite set of key points could aid in controlling a number of

vertices to create a semi-automated system of morphing the skin and other facial features.

This lends to the idea of physically based approaches to facial animation.

At this stage, we shall take a look at a couple of variations of techniques in [5],[6] & [7],

but first, in order to appreciate where we are today, let us take a look at some of the

previous approaches adopted over the years for personalized facial animation.

3.1 Previous Approaches for Personalized Facial Animation

Personalized face modeling has been an active area of research since the early 80s. Due

to the uniqueness of individuals, animation of specific human faces is a difficult task.

Over the last 3 decades several approaches have been brought up in order to achieve

visually graphically appealing models that simulate facial animations efficiently. A

couple of examples are parametric conformation models, plaster model and deformation

 18

method, image based method, anthropometry based method, scattered data interpolation

method and the Direct3D digitization method.

3.1.1 Parametric Conformation models

This was invented in the early 80s. The intended model was to be designed such that it

would be capable of creating a wide variety of deformable faces using a limited number

of input conformation parameters. Flexibility was an issue due to the inability to develop

a parameterization universal enough for such a task. That being the case, heavy manual

tuning would be required for these models to be of any use. Unfortunately, this proved to

be too difficult a task.

3.1.2 Plaster Model and interactive deformation method

This was a heavily researched approach between the mid 80s to early 90s, made famous

by Nadia Magnenat-Thalmann, from the University of Geneva; famous for her work on

the creation of a virtual world with virtual actors. The general procedure of this approach

was that models would be sculptured from clay to achieve the desired surface detail for a

specific face in order to construct an accurate polygonal mesh. Although the results

appeared desirable, it was evidently not practical, seeing as this would require artistic

skills and time to construct these models.

3.1.3 Image based method

The Image based method [Kurihara and Arai 1991; Akimoto et al. 1993; Ip and Yin

1996; Leeand Magnenat-Thalmann 2000] was a more efficient method than the previous

attempts.

This approach utilizes existing 3D models and 2D information from a few images.

Functionality was through the use of automatically detected feature points of the 2D

images which would help project to 3D. The drawback to this approach was that on

average, not enough feature points were identified, which meant that there was not a base

robust enough to ensure that a 3D reconstruction would be accurate

 19

Approaches (mid to late 90s)

In the mid to late 90s the Scattered Data Interpolation Method was utilized by a number

of approaches brought into the limelight by researchers like Kolja Kähler, Jörg Haber ,

and Hans-Peter Seidel from Max-Planck-Institute for Information. The idea was to morph

a generic face to a more specific one using scattered data interpolation technique. This

depended heavily on a good and dense selection of feature points. The only way to

achieve this is manually, and this is an arduous task

3.1.4 Direct3D digitization method

Accurate 3D reconstructions are created using Laser Scanning, stereo photogrametry, and

active light projection. These models proved to be more suitable for static facial models

and aren’t ideal for facial deformation and animation for a couple of reason. The first one

is that the only information gathered during the scanning process is the outward shape of

the human face and there is no underlying mechanism for animation control (facial

deformation, jaw control, etc). These controls would need to be manually inserted, which

presents a time issue. The second problem is that these scanned models (created via

triangle mesh) are generally made up of tens of thousands of triangles. In order to achieve

real time animation, the number of triangles should fall to less than ten thousand. Due to

the high polygon count, the cost of computation would be too high.

Of the aforementioned methods, some attempt an automated modeling process, but due to

the various shortcomings described for each, most require significant manual

intervention. A couple of approaches, which have yet to be discussed, show promise for

overcoming the obstacles of their aforementioned predecessors. These techniques will be

examined in detail over the next couple of sections and later on the advantages and

disadvantages for each will be analyzed.

4 Yu Zhang, Terence Sim and Chew Lim Tan

Zhang et al, of the National University of Singapore, developed a relatively new

Adaptation-based approach, which is based on adapting an existing low-resolution

generic facial model to an acquired surface data to provide a control layer for animation.

 20

4.1 The Generic Control Model

The generic control model contains a known topology, and already has a structure data in

place for controlling facial deformation. The geometry and texture of the real face is

obtained using a laser range scanner. For the tests conducted by Zhang, Sim and Tan, a

Minolta Vivid 900 Digitizer was used. Three scans of the front view and 45 degree side

profiles were taken for each subject.

Figure 4.1: Generic Control Model

The Skin Layer is a triangle mesh which consists of 2,848 vertices & 5,277 triangles;

well under the ten thousand triangle maximum requirement for real time rendering. To

minimize the number of controllable artifacts the mesh edges are aligned to the facial

features.

The skin deformation is represented by the skin mesh acting as a mass-spring system in

which the vertices act as the point masses of the system, and the edges act as springs. One

must note that this system is not perfectly elastic as that would take away any hint of

realism in the animation.

The Muscles Layer is attached to the skin layer. 23 of the most important muscles found

in the human face are modeled in order to enable a free range of deformation and

contraction options during animation control

 21

The Skull is a triangular mesh which is utilized as an anatomical framework for mapping

the facial muscles during the construction and initialization process. During render time,

the skull is not required.

To finish of the model, Eyes and teeth though not absolutely essential are added as

separate components to enhance the overall realism

Facial Deformation or deformation of the facial skin is influenced by muscle contractions

and jaw rotation. This is obtained by calculating the energy equilibrium state of the entire

mass-spring system using LaGrange dynamics.

Control can be done in a number of ways. On the low level it could be done using an

animation script whereby the muscle and jaw parameters are adjusted to get the desired

expressions. There is also the option on the high level to implement expression

commands.

 22

Figure 4.2: Pipeline for reconstructing animated facial model.

4.2 Adapting the Control Model

The Generic Control model denoted as F and is referred to as the source model. A Hi-res

scan model denoted as F* is referred to as target model. The goal in this approach, is to

adapt F to F* such that F takes on the texture and shape of the specific individual to be

animated with predictability. For this to happen a series of steps will be taken as shown in

the pipeline (Fig. 1)

The next step is for data from the scanned surface to be adapted to the generic model in

the following 4 steps:

Landmark Location,

Global shape adaptation,

Local shape adaptation and

Muscle layer adaptation.

Scanned Surface

Data

Landmark

Location

Generic Control
Model

Global Shape

Adaptation

Local Shape
Adaptation

Muscle Layer

Adaptation

Animation

 23

4.3 Landmark Location

This first step takes into account the anthropometric specification of landmarks on the 2D

images of both the Generic Control Model and the scanned data. The 3D coordinates

would later be recovered by using a projection mapping approach.

 In order to achieve this, the image of the control model is stored as a bitmap. RGB

values of the facial surface are stored. Zhang et al then specified on the bitmap, a set of

landmarks following the anthropometric guidelines rules:

Eye Parameters:

le

lp and le

rp represent the left and right corners of the left eye

re

lp and re

rp represent the left and right corners of the right eye

Mouth Parameters:

m

lp and m

rp represent the left and right corners of the mouth

This constitutes the minimum set of landmarks based on their prominence on the face.

Surprisingly the nose tip was not in this set.

After specification of the landmarks, the texture coordinates of each vertex on the

generic/source model (F) are obtained via orthographic projection. The landmarks can be

located on the 2d image via cylindrical projection of the 3D face, which maps onto the

2D image plane. The result was a 512x512 cylindrical image. Recall that the RGB values

are stored for each pixel. These represent the surface color of the texture mapped surface

with corresponding longitude and latitude.

3D positions of landmark points are obtained from mapping the 3d Mesh of F and F* to

2D images using cylindrical projection. Each landmark p located within a triangle in the

source model mesh can be obtained since each of the triangles have been accounted for in

the 3D to 2D projection. They are recovered from normalized barycentric coordinates of

p in the 2D triangle),,(321 as follows:

 24

p =
3

1i

iiw with
3

1

1
i

i 10 i (4.1)

where:

p is the 3D position of the landmark p and

iw is one of the vertices of the indexed triangle in which p is located

Four more key points were defined using the minimum set defined above:

Centers of the left and right eye :

)(
2

1 le

r

le

l

le ppp and)(
2

1 re

r

re

l

re ppp (4.2)

Center between both eyes:

)(
2

1 relec ppp)(
2

1 m

r

m

l

m ppp (4.3)

The target Model (F*) follows similar steps to that of F in terms of landmark

specification:

Eye Parameters:

le

lp* and le

rp* represent the left and right corners of the left eye

re

lp* and re

rp* represent the left and right corners of the right eye

Mouth Parameters:

m

lp* and m

rp* represent the left and right corners of the mouth

Similarly, the four extra key points are calculated:

)(
2

1 *** le

r

le

l

le ppp &)(
2

1 *** re

r

re

l

re ppp

)(
2

1 *** relec ppp &)(
2

1 *** m

r

m

l

m ppp

 25

Figure 4.3: Specification of landmarks and recovery of their 3D positions based on a projection-mapping approach:

(a) landmark image of the source model; (b) projected textured-mapped source model; (c) projected surface mesh of the source model;

(d) recovered 3D positions of specified landmarks (red points) and key points (green points) on the source model; (e) landmark image

of the target model; (f) projected textured-mapped target model; (g) projected surface mesh of the target model; (h) recovered 3D

positions of specified landmarks (red points) on the target model (key points are occluded).

4.4 Global Shape Adaptation

Here is where the generic model is aligned with the scanned face in 3D space using

measurements between landmark locations obtained in step one.

This step involves some rotation and translation. The first step would be to transform F*

by aligning an imaginary line connection the eye centers (
rele pp **

) with the world x-axis

and is also have the y-z plane cut through the center of F* (i.e.
mc pp **

 should be on the

y-z plane).

 Zhang et al, go about this in the following manner:

26

Let an arbitrary vertex 3* Rxi
on F* move to a new position 3*/

Rxi
. And let R*

33R be the rotation matrix, T* 3R be the translation vector, and 0*C 3R be the face

model center. The transformation equates to:

*0****)(
/

TCxRx ii (4.4)

0*C is defined as the center between both eyes of F*

cpC *0* (4.5)

R* is comprised of 3 rotation angles. Zhang et al define them as:

Face tilt (*

xr) around the x-axis

Face rotation (
*

yr) around the y-axis

Face inclination (*

zr) around the z-axis

They project
rele pp **

of F* onto the x-z plane using orthographic projection as seen in

Fig. 4.4.

*

yr is calculated as:

otherwise
pp

npp

nnppif
pp

npp

r

xzlexzre

x

xzlexzre

yx

xzlexzre

xzlexzre

x

xzlexzre

y

)
||||

arccos(

0)()
||||

arccos(

|*|*

|*|*

|*|*

|*|*

|*|*

*

 (4.6)

where xzlexzrexzlexzre pppp |*|*|*|* and
xn and yn are unit vectors of the x- and y-axes

*

zr is calculated as:

 27

xzlexzrelere

xzlexzrelere

z

pppp

pppp
r

|*|***

|*|***
* arccos

 (4.7)

To determine the direction of rotation assuming
/*rep and

/*lep are the new positions of

rele pp **
:

otherwiser

nnppifr
r

z

zx

lere

z

y
*

*
0)(

//

 (4.8)

*

xr is calculated using the angle between eye-mouth plane normal (emn), and the z-axis

otherwisenn

nnnifnn
r

z

em

xz

em

z

em

x

)arccos(

0)()arccos(
*

 (4.9)

Fig. 4.5

 28

Translation component T* =
3***),,(Rttt T

zyx :

c

zz

c

yyx ptptt ***** ,,0 (4.10)

Zhang et al also needed to scaled, rotated and translated to match F to F*

Let a vertex 3Rxi on F move to a new position 3/

Rxi
. And let R 33R be the

rotation matrix, T 3R be the translation vector, and 0C 3R be the face model center.

The transformation equates to:

TCxSRx ii)(0/ (4.11)

As with F*, 0C is defined as the center between both eyes of F

cpC0 (4.12)

S 33R is the scaling matrix

z

y

x

s

s

s

S

00

00

00

 (4.13)

Translation component T =
3),,(Rttt T

zyx :

c

zz

c

yyx ptptt ,,0 *
 (4.14)

 29

Figure 4.6: Local adaptation of the source model to the target model using cylindrical projection.

The scaling factors were calculated as follows:

relec

z

relec

z

x
ppp

ppp
s

*

**

 (4.15)

 yxzmc

mc

y sss
pp

pp
s

2

1
,

**

 (4.16)

4.5 Local Shape Adaptation

This step is where the vertices of the generic model are mapped or fitted onto scanned

surface data, by shifting vertices of F to match the scan data of F*. The fitting is a tricky

process in which there needs to be a manner of determining the corresponding 3D

position of each vertex of F on F*. This was achieved by Zhang et al using cylindrical

projection as shown in Fig. 4.6

 30

For the image coordinates ii vu , of a vertex
iiii zyxx ,, on F:

 ii

i

i
i yv

z

x
u ,arctan (4.17)

Likewise, **, ii vu is computed, and are found in the projected triangular mesh of F*.

Zhang et al define a point ii vu , in the triangle *

3

*

3

*

2

*

2

*

1

*

1 ,,,,, vuvuvu as a linear

interpolation using barycentric coordinates as:

3

*
3

* ,
ij

jji

ij

jji vvuu (4.18)

where j are barycentric coordinates.

Given ,,, 321 in the 2D triangle, the 3D position of ix~ was calculated as follows:

3 *~

ij

jji xx (4.19)

where
*

jx is a 3D position of one of the points that make up a given triangle on F*

After adaptation, the texture coordinates of)
~

,~(,~
iii tsx were computed:

3 *3 * ~

,~

ij

jji

ij

jji ttss (4.20)

Where),(
**

jj ts are the texture coordinates associated with three vertices of the triangle on

F* that contains ix~ .

 31

4.6 Muscle Layer Adaptation

Here, the muscles defined beneath the skin of the generic model are transferred to new

skin geometry. The muscle layer is essential for animation and resolves the issue of

having no underlying control mentioned earlier with the Direct3D approach.

Zhang et al took into account 2 muscle groups: 1) Linear and 2) Sphincter Muscles.

These muscles form a layer in between the skull and Skin layers and are the driving

forces for the deformation of the skin mesh.

4.6.1 Linear Muscles

Each is defined by a fixed point on the skull referred to as the muscle attachment point,

which is connected to a muscle insertion point that is attached to the skin

Figure 4.7: Muscle points and their corresponding skin points. Red and green points represent the insertion and attachment points of

linear muscles respectively, yellow points represent sphincter muscle points, azure points represent the corresponding points of the

linear muscle attachment points and sphincter muscle points on the skin mesh, and blue lines represent central muscle fibers.

 32

4.7 Interpolation Computations

3

1j

k

j

I

j

I

i xm (4.21)

where:

I

im is a muscle insertion point located on a skin triangle),,(321

kkk

k xxxt

The value
I

j is said to be a barycentric coordinate of non negative scalar variables, but it

is unclear what this value is required for; possibly some elasticity coefficient.

Compute the new position of the insertion point base on the new position of kt ,

))~,~,~(
~

(321

kkk

k xxxt , we get:

3

1

~~

j

k

j

I

j

I

i xm (4.22)

Computing the position each muscle attachment point A

im requires computing the

corresponding skin point)(skinA

im (point which when projected via the normal of A

im)

3

1

)(

j

l

j

A

j

skinA

i xm (4.23)

where:

)(skinA

im is the point which when ray cast from the normal at A

im , makes

contact with the skin

l

jx are points of the skin triangle in which A

im is in.

As illustrated in Fig. 4.7, the relationship between A

im and)(skinA

im is defined by id

 A

i

skinA

ii mmd)((4.24)

After mesh adaptation,)(skinA

im is updated as follows:

3

1

)(~~

j

l

j

A

j

skinA

i xm (4.25)

 33

Since we now have)(~ skinA

im and we know id calculating the new position of A

im is

simply:

 i

skinA

i

A

i dmm)(~ ~ (4.26)

4.8 Sphincter Muscles

Unlike linear muscles, they are elliptical. Zhang et al define this type of muscle, with 3

parameters,),,(iii bao where

 io is the virtual center of the muscle

ii ba , are located at the half lengths of the axes of the elliptical shape of the

muscle

Adaptation is computed by locating the end of the axes a

im and b

im . Skin surface points

)(skina

im &)(skinb

im are calculated similarly to the linear muscles. Like wise, the offsets are

calculated as such:

b

i

skinb

i

b

i

a

i

skina

i

a

i mmdmmd)()(, (4.27)

Computing new positions after adaptation is also similar to linear muscles

 b

i

skinb

i

b

i

a

i

skina

i

a

i dmmdmm)()(~ ~,~ ~ (4.28)

),,(iii bao is determined as follows:

)~~(
2

1~~
)()()(),()(),()(

b

zi

a

zizi

b

yiyi

b

xixi mmomomo (4.29)

)()()()(
~,~

yi

b

yiixi

a

xii omboma (4.30)

4.9 Results and Analysis

It becomes apparent that this adaptive approach possesses advantages over its

predecessors. It has a fully functional generic model as a base. Manual intervention is

kept to a minimum, so it is a more efficient process which contains a fully automated

muscle adaptation technique.

 34

The following are finished products of the Adaptive Approach:

Figure 4.8: Sample results of the adaptation

5 Kolja Kähler, Jorg Haber and Hans-Peter Seidel

Similar to [5], this approach takes the approach of adapting underlying muscle, of a

scanned facial surface. The muscles are grouped depending on the location of the face,

and skin deformations under physically based conditions that mimic the human anatomy.

To facilitate their work, the authors of [6] developed a muscle editor capable of

modifying the source model. Their reason for opting for muscle control as opposed to the

previously tested parametric control was as a result of weighing out the benefits of each.

Though parametric control isn’t costly, interpolation becomes an issue without a

physically based underlying structure, which with the commonly used mass-spring

network system, would display a higher degree of accuracy in terms of modeling the

(visco-)elastic properties of skin.

5.1 Approach Model

As with [5] based their model on three conceptual layers:

 35

1. Skin / tissue layer representing the epidermis and subcutaneous fatty tissue;

2. A layer of muscles attached to the skull and inserting into the skin

3. Underlying bone structure, composed of immovable skull and rotating jaw.

The input data is composed of arbitrary triangle mesh representing the skin geometry and

the skull geometry and facial muscle layout created semi-automatically. There is no

mention on whether the skull was modifiable, but with the muscle editor, Kähler et al

were able to tweak the layout of the muscle groups for the face. One would assume that

that spring and dampening coefficients (to be discussed later) could be modified with this

editor.

With the layer system in place, animation of the face is achieved by physics-based

simulation of a mass-spring system that connects the three layers.

Figure #.1: Generic skull model fitted to head using affine transformation for estimating assignment of skin regions to skull and jaw

5.2 Skull and Jaw

Similar to [5], a skeletal underlying mesh was utilized. This comprised of the jaw and the

skull. This was setup to determine the nature of the behavior of the skin mesh. For the

skin covering the jaw area, their movement will be determined by the rotation of the jaw.

 36

It is not pointed out in the article, but one would assume that the lower lip would still be

under the influence of a muscle-based mass spring system.

These meshes (for the skull and jaw) are not rendered during the final stages of

the animation process. They are used only while building muscles in the editor and

during the startup phase of the animation system and also possibly for skull penetration

constraint testing, though the authors of [6] only mention that this (skull penetration

constraints) is handled internally to the mass-spring mesh.

Figure #.2: Head model prepared from scan data (left), cut up and simplified to represent the skull (right).

5.3 Muscles

The muscles are made up of segments, which either contract towards the end attached to

the skull (linear muscle) or towards a point (circular muscle), as was the case with [5].

However, Kähler et al go into more detail as to how the muscles interact with each other.

Whether this extra step makes for an improvement over [5] remains to be seen, however

it should be explored nonetheless

Each of the segments is represented by an ellipsoidal shape, and the muscles form

a more complex system, in which they would be allowed to slide freely across each other

Muscle types are as follows:

(1) Linear

 37

(2) Sheet

(3) Curved

(4) Sphincter

Fig. 5.3 Different Types of Muscles: (1) Linear (2) Sheet (3) Curved (4) Sphincter

Muscles (1) to (3) expand and contract in a similar manner, while the sphincter muscle (4) acts a

little different in that its deformation is based on a virtual center, as touched on in [5]. From this

point on, calculations for muscles (1) to (3) will be referred to as linear muscle calculations

5.4 Skin and Tissue Simulation Guidelines

 The top layer of model represents the skin

 Skin layer connects to muscles and bones

 Nodes and edges of the input triangle mesh comprise initial spring mesh.

 Each surface node is connected to either the bone layer or to an underlying muscle

by a spring with low stiffness.

It is important to note that there is the risk of the skin penetrate skull, if it is treated as a

simple membrane. There is also the issue of the skin folding over itself. To enforce this,

Kähler et al employed methods for local preservation proposed by [7] They also attached

 38

another outward pulling spring as illustrated in Fig. #.4. They are designed to mirror the

muscle attachments to force the surface nodes to move tangentially to the skull and

muscle surface, and thus preventing penetration.

Fig. #.4: Mass-spring system in our model. Top: Relaxed muscle, outer springs mirroring skull and muscle attachments.

Bottom: Contracted muscle, with mass points moving due to the contraction marked by

The equations for motion for the mass-spring system numerically integrated through time

using explicit forward integration scheme.

5.5 Quick Verlet Integration Review:

2

00

2

0000

)()(2

))()(()()(

tattxtx

tattxtxtxttx
 (5.1)

where

0t is the current time and Δt is the time step.

The velocity at each time step is then not calculated until the next time step.

 39

t

ttxttx
tv

2

)()(
)(00

0 (5.2)

5.6 Muscle Model Calculations

Kähler et al base the muscles on individual fibers that are composed of piecewise linear

segments. These segments were represented by quadric shapes (ellipsoid) aligned with

them, and scaled to the length of the muscle segment.

 They further define the structure of these fibers as having n control points

)1,...,1,0(3 niRpi as illustrated in Fig. 5.5. These control points make up a control

polygon P

Fig. 5.5 Muscle fiber with control polygon P and per-segment ellipsoids.

5.7.1 Contraction

On contraction of a control polygon 1

0}{ n

iipP to a resized control polygon 1

0}{ n

iiqQ ,

each parameter is assigned a parameter]1,0[it :

else
pp

pp

iif

t
n

j jj

i

j jji
,

0,0

1

1 1

1 1 (5.3)

Scaling is performed using a contraction factor c:

 }01.0,)1max{(
~

ii tct (5.4)

 40

Figure 5.6: Contraction (c = 1/2) of a linear (top) and a sphincter (bottom) muscle fiber.

The control points pi=0…6 and qi=0…6 represent the relaxed and contracted muscle.

Next it
~

 gets mapped to a index }2,...,0{ nki of the starting point of it
~

:

elsetttm

iif
k

mim

i
,

~
:

,0,0

1

 (5.5)

The value m is however not defined. This is possibly an oversight in the article.

With that (5.3), (5.4) & (5.5) the new control Polygon Q can now be computed.

For linear muscles:

ii

i

iii

kk

ki

kkki
tt

tt
pppq

1

~

~~

)(1 (5.6)

For sphincter muscles:

)1(ppcpq ii (5.7)

 where:

 p* is the center point of the muscle

There is no mention by [Kähler et al] as to whether clamping is performed for the

contraction factor, but based on earlier calculations, this will be implied.

 41

5.7.2 Bulge

To simulate realistic muscle behavior for linear muscles, muscle should get thinner on

expansion and thicker on contraction, with the center of the muscle exhibiting the biggest

bulge. Sphincter muscles will act in a slightly different manner, in the sense that the

muscle will bulge evenly

[Kähler et al] achieve this by introducing a scaling factor]1,0[is , computed from r

il and

c

il whereby it scales the height of each muscle segment 1ii pp by)21(is where:

 ii

r

i ppl 1 is the rest length

 ii

c

i qql 1 is the current length

So then:

 r

i

c

ii lls /1 (5.8)

If 3n then

2

1
2

2
1)/1(

n

i
lls r

i

c

ii (5.9)

5.8 Building Muscles from Geometry

1. Load a face mesh and display it in the editor.

2. Lay out the fixed end (i.e. the origin) of a muscle by specifying at least two grid points.

3. Sketch the basic muscle grid row by row.

4. For a sphincter muscle: specify the center of contraction.

5. The muscle grid is refined automatically to fit the geometry and the muscle is inserted,

making it fully functional for immediate testing and re-editing.

6. Goto step 2 until all muscles are specified.

 42

Figure 5.7: A simple grid (left, zygomatic major) and a non-uniform complex grid (right, orbicularis oris).

5.9 Optimizing Muscle Shape Guidelines

 The surface of a muscle must lie within a prescribed distance range below the skin

surface.

 Muscles that are well-adapted to the resolution of the skin mesh

 Given the skin mesh and a muscle grid, optimization step determines the

following parameters that are needed to create the muscles:

 the number of muscle fibers;

 the number of segments per fiber;

 width, height, and length of each segment;

 position of the muscle fiber control points;

 alignment of the quadrics’ coordinate systems.

5.9.1 Initializing the grid:

 The initial outline is converted into a regular grid, i.e. all rows are

assigned the same number of grid points. The grid points are then

projected onto the face mesh and placed slightly underneath the skin

surface.

5.9.2 Refining the grid:

 43

 The grid is adaptively refined until a decent approximation has been

found.

5.9.3 Creating the muscle:

 Muscle fibers are created and aligned to the refined grid.

5.9.4 Attaching the muscle:

 The muscle is attached to the spring mesh, and the control points of the

muscle segments are attached to either the skull or the jaw.

Figure 5.8: Visual information while editing a muscle: the muscle grid of the currently edited muscle(yellow); the skin vertices

influenced by this muscle (green dots); muscle control points attached to the jaw (white dots); merged muscle segments (connected by

green lines).

5.10 Results and Analysis
 Pros:

 The muscle model itself performs well with low computational overhead.

 Once a rough layout for a muscle has been specified, the muscle can be

automatically rebuilt from this data for many different head models.

 Cons

 Polygon count may be undesirable

 44

 Skin thickness must remain constant

6 Yuencheng Lee, Demetri Terzopoulos, and Keith Waters

This technique improves on the physics-based facial modeling approach proposed by

Terzopoulos and Waters. It promises to reduce the amount of work that must be done by

the animator. Also present in this installment is the ability to articulate the neck.

The process begins with scanning and creation of the facial mesh, and as with other

approaches care must be taken not to over-sample the surface because there is a trade-off

between the number of nodes and the computational cost of the model

The set of key/landmark points differ slightly from that of [5]. Positions of the nose, eyes,

chin, ears, and other facial features with respect to the generic mesh are taken into

account. Facial muscle emergence and attachment points are also known relative to the

generic mesh and are adapted automatically as the mesh is conformed to the scanned

data.

6.1 Image Processing

The technique applied to image processing is similar to that employed by the authors of

[5]. Image resolution on of these scans however was 512x256.

Figure 6.1: (Left) Range data of “Grace” from a Cyberware scanner.

(Right) Recovered plain data.

 45

Figure 6.2: (Left) Texture data of “George” with void points displayed in white and

 (Right) texture image interpolated using relaxation method.

6.2 Generic Face Mesh and Mesh Adaptation

Automatically produces an efficient triangulation, with finer triangles over the highly

curved and/or highly articulate regions of the face, such as the eyes and mouth, and larger

triangles elsewhere.

Figure 2: Facial Portion of Generic Mesh in 2D cylindrical coordinates

6.2.1 Mesh Adaptation Procedure

Lee et al outline the mesh adaptation procedure as follows

1. Locate nose tip

2. Locate chin tip

3. Locate mouth contour

4. Locate chin contour

 46

5. Locate ears

6. Locate eyes

7. Activate spring forces

8. Adapt hair mesh

9. Adapt body mesh

10. Store texture coordinates

Lee et al claim to be able to normalize the expression of a given scanned face, should it

not be in a neutral state:

1. Perform mesh adaptation procedure without step 3.

2. Store nodal longitude/latitude into adapted face model.

3. Perform lip adaptation in step 3 of the mesh adaptation procedure

4. Store nodal range values into adapted face model.

6.3 The Dynamic Skin and Muscle Model

Upon adaptation a dynamic model of facial tissue is developed. For this model as with

other techniques we estimate a skull surface, and insert the major muscles of facial

expression into the model. The following sections describe each of these components.

6.4 Layered Synthetic Tissue Model

The skull is covered by deformable tissue which has five distinct layers. Four layers make up the

epidermis, dermis, sub-cutaneous connective tissue, and fascia comprise the skin. The fifth layer

consists of the muscles of facial expression. Following the work of D. Terzopoulos and K. Waters

(Physically-based facial modeling) and in accordance with the structure of real skin, have

designed a new, synthetic tissue model

 47

Figure 6.3: (a) Triangular skin tissue prism element.

(b) Close-up view of right side of an individual with conformed elements.

The tissue model is composed of triangular prism elements which match the triangles in

the adapted facial mesh.

 The epidermal surface is defined by nodes 1, 2, and 3, which are connected by

epidermal springs.

 The epidermis nodes are also connected by dermal-fatty layer springs to nodes 4,

5, and 6, which define the fascia surface. Fascia nodes are interconnected by

fascia springs.

 They are also connected by muscle layer springs to skull surface nodes 7, 8, 9.

6.5 Discrete Deformable Models (DDMs)

The DDM is composed of a node-spring-node structure. It is a uni-axial finite element.

The data structure for the node consists of:

1. the nodal mass: mi

2. position: t

iiii tztytxtx)](),(),([)(

3. velocity: dtdxv ii /

4. acceleration: 22 / dtxda ii

 48

5. net nodal forces:)(tf n

i

The data structure for the spring in this DDM consists of:

1. pointers to the head node i and the tail node j which the spring interconnects

2. the natural or rest length kl of the spring

3. the spring stiffness
kc

6.6 Tissue Model Spring Forces (TMSFs)

Lee et al, employ a simplified tissue model (as seen in Fig. 6.3a). Each layer has its own

stress-strain relationship cj and the dermal-fatty layer uses biphasic springs (non-constant

cj)

They define a force spring j which exerts on node i as follows:

j

r

jjjj sllcg)(

where:

r

jl and |||| ijj xxl are the rest and current lengths for spring j

jijj lxxs /)(| is the spring direction vector for spring j

6.7 Linear Muscle Forces

Despite the extra layers in this model, it acts in a similar fashion to the one proposed in

[5]. They connect to the skin tissue by short elastic tendons at many fascia points and are

fixed to the skeleton at only a few points

Contractions of muscles cause movement of the facial tissue. Face construction algorithm

determines the nodes affected by each muscle in a pre computation step.

6.8 Applying muscle forces to the fascia nodes

Lee et al calculate a force for each node by multiplying the muscle vector with a force

 49

length scaling factor and a force width scaling factor.

Figure 6.4

Figure 6.5

Muscle j exerts a force f on node i as follows:

jijij

j

i mf)()(,2,1 (6.1)

where

 1 scales the force according to the distance or length ratio ij, ,

jd = length of muscle j,

||)/(||))((/,,

F

j

A

jji

F

jjijji mmmxmd

2 scales the force according to the width ratio jij /,

 50

j = width of muscle j, and

||))(||, jjijji nnpp

 jm is the normalized muscle vector for muscle j

6.9 Piecewise Linear Muscles

As in [Kähler et al] other types of muscles (e.g. sphincter, sheet) build on the most basic

form (linear).

Figure 4(b) illustrates two segments of an N-segment piecewise linear muscle j showing

three nodes
l

jm ,
1l

jm and
2l

jm . The unit vectors ljm , , 1,ljm 1 and ljn , , 1,ljn are parallel

and normal to the segments, respectively. The figure indicates fascia node i at ix , as well

as the distance balj 1, , the width ji, , and the perpendicular vector ip from fascia

node i to the nearest segment of the muscle. The length ratio ij , for fascia node i in

muscle fiber j is:

N

lk

k

j

k

j

N

lk

k

j

k

jlji

l

j

ij

mm

mmmxm

1

1

1

1
,

1

,

)(
 (6.2)

6.10 Volume Preservation forces

The volume preservation force element e exerts on nodes i in element e is defined as:

)~()
~

(21

e

i

e

i

e

i

eee

i ppknVVkq (6.3)

where:

eV

~
 and

eV = rest volumes for e

 e

in = epidermal normal for epidermal node i

 e

ip~ and e

ip = rest and current nodal coordinates for node i w.r.t. the center of

mass of e

1k and 2k = force scaling constants

 51

6.11 Skull Penetration Constraint Forces

The reasons for these forces have already been covered in the previous paper. The force

is to penalize fascia node i during motion is:

otherwise

nfifnnf
s i

n

iii

n

i

i
0

0)(
 (6.4)

where

 n

if = net force on fascia node i

 in = nodal normal of node i

6.12 Equations of Motion for Tissue model

This obeys Newton’s law of motion for tissue model response to forces, which results in 2nd

order Equations relating to position, velocity & acceleration of nodal forces

Equation for node i:

iiiii
i

i
i

i fhsqg
dt

dx

dt

xd
m

~~~~
2

2

          (6.5) 

where: 

 im  =  nodal mass  

 i  = dampening coefficient 

 ig~  = is the total spring force at node i 

 iq~  = total volume preservation force at node i 

 is~  = total skull penetration force at node i 

 ih
~

 = total nodal restoration force at node i 

 if
~

 = total applied muscle force at node i 

 

At time t:  

Acceleration of node i =  (net nodal Force at time t) / (mass of node i) 



 52 

 

The Velocity and distance/length calculated through integration and extended to calculate 

at next time step t + Δt: 

 

t

i

t

i

t

i

t

i

t

ii

t

i

i

t

i hsqgvf
m

a
~~~~~1

 (6.6)

t

i

t

i

tt

i tavv (6.7)

tt

i

t

i

tt

i tvxx (6#.8)

For their tests, Lee et al used the following as default parameters:

6.13 Eyes, Teeth and Other artifacts

The eyes are independent of the muscle-system, and are kinematically operated. Teeth

were created using NURBS.

7 My Implementation

While Muscle based approaches have their advantages over parametric approaches to

facial animation, there is still some work involved in determining morph targets for

muscles, be it for a generic model, as used in [5] and [6] or simply for a single model.

Some manual specification would still be required. Furthermore, computation overhead is

not as favorable as with non-physically based approaches.

With parametric approaches like [2] on the other hand, it is faster to interpolate between

morph targets. Yet this approach still suffers the problem of being specific to an

individual model. Looking in a big picture sense, several unique faces would then need to

 53

be defined individually, which basically implies N•M sets of data, where N is the number

of specific models and M is the number of Morph Targets to be used for each Face

Model.

Looking at the trade offs between the muscle-based and parametric approaches; some

manual input is still going to be required for defining the morph targets, to achieve

realistic Facial Animation.

My approach is a parametric one which utilizes some of the basic idea in [5], whereby a

generic model is used as a source of animation for multiple models. It will focus mainly

on Speech animation (Animation of emotions being secondary work), so the majority of

morph targets will be visemes. Though not physically based as in [5], vertex positioning

for the morph targets of target models will be defined by a generic model, using vertex

offset technique. Most of the manual input in this approach would apply to the generic

model, thus making several models a less involved process. The catch to this though, is

that the models must all be of equal polygon count for this approach to work.

7.2 General Approach

The general approach is to define all morph targets and their (absolute) model space

vertex positions, for a generic model. Once this has been established, we would then be

able to use this set of data to define our vertex offsets.

 54

Figure 7.1: Generic Model (Middle) and Specific Models (Left & Right)

Transitioning from one morph target to the next could be determined using a number of

interpolation techniques. The most time-efficient option would be linear interpolation, but

it is yet to be determined how smooth an animation this would produce with this facial

animation technique. Another option though not as efficient would be cubic-spline

interpolation, but this would only be required depending on how smooth the linear

approach appears to be.

Since we are focusing mainly on speech animation, accompanying the

interpolation/animation would be a mechanism for generating or recording speech and

having this audio played in synch with the speech animation. For robustness, we would

need a way to convert text to speech, speech to text. To go even a step further, user

recorded voices could be used to synch visemes generated determined by the audio input.

7.3 Tools

Some questions still need to be answered as to how these models are to be created and

 55

whether they could be done so in a time efficient manner. And since we will be focusing

on Speech animation, it would be nice to have an engine to facilitate creating a dialogue,

also with little time overhead. If we were to generate all the visemes that make up speech

animation, even for a single sentence, manually, this would be too time consuming. To

answer these questions, a number of tools were required and leveraged to make this a

possible. These tools are treated as integral components for the overall animation system.

The tools used are:

1. FaceGen Modeller (3.1)

2. 3ds Max / Panda Exporter

3. Microsoft SAPI (5.1)

4. Microsoft DirectX / Visual Studio

7.3.1 FaceGen Modeller (3.1)

FaceGen is a stand-alone parametric face modeling middleware for Windows (XP or

Vista). For artists, it is fast and flexible way for creating realistic 3D faces, exportable in

a number of popular formats. For developers, it is a powerful and easy to use tool for

(re)creating realistic 3D faces.

 56

Figure 7.2 Creating a Model using PhotoFit

There are 2 ways to create faces. They could either be generated at random, or by

PhotoFit. As the name suggests, PhotoFit is a feature which offers the option to

customize your own model, using source photoraph(s).

To use PhotoFit, you will need to provide a front view photograph (mug shot) and two

optional side view photos, as shown in Figure 7.2. You would also have the option to

define 11 feature points: eyes, cheekbones, mouth, jaw, nose and chin as shown in figure

7.3

 57

Figure 7.3 Creating a Model using PhotoFit

Once these are defined, the next step is to process the image to create a 3D representation

The process takes about 10 to 15 minutes and the result is a set of interchangeable model

parts of 3 different qualities:

 Low Resolution - 790 Quads & 775 Vertices

 Medium Resolution - 1476 Quads & 1439 Vertices

 High Resolution - 5746 Quads & 5832 Vertices

For best results, the Low resolution face mesh will be used. One advantage of using this

software is that it uses an equal polygon count for all models. Further fine tuning can also

 58

be performed on the model once the processing is completed. The resulting model can

then be save in FaceGen’s native .fg format, for future use.

7.3.2 3ds Max / Panda Exporter

In addition to the native format, FaceGen models can also be exported to various standard

formats, including wavefront .obj. The format of choice for the animation engine is

DirectX, so we would need 3ds Max with an exporter plug-in to convert .obj files to .x.

The exporting to .x file process is where Panda Exporter comes into play.

7.3.3 Microsft SAPI (5.1)

Microsoft’s Speech API will be used for converting Text-to-speech and Voice

Recognition. This is done through a series of events which will be discussed in further

detail later on

7.3.3 Microsoft DirectX / Visual Studio

The Animation Engine Application as a whole is written in C++ in the Visual Studio

environment. This is seamlessly integrated with DirectX and SAPI to as they are all part

of the Microsoft family

7.4 Overview

The general flow of the Animation process is illustrated in Figure 7.4. It outlines the

aforementioned components, showing how each would relate to each other on a grand

scheme.

The SAPI Engine determines listens for events to determine whether information passed

to it is text or audio. In the case of audio input the engine first performs a speech-to-text

conversion before converting the text to speech by one of the Microsoft voices. Use of

the Microsoft Voices is necessary to ensure proper synching of audio with the speech

animation.

 59

Figure 7.4

Model Creation, performed offline is the model creation. It is done before the animation

application is run. Upon application initialization, a model is loaded via an XML script

into the scene of the Facial Animation engine.

7.5 Facial Animation Engine

To get a better understanding of how components are used it is important to take a closer

look at the animation engine. It is essentially comprised of 3 major components:

 SkinManger

 Speech Wrapper

 VisemeTrack

 60

Figure 7.5: A Closer Look at the Facial Animation Engine

7.6 Skin Manager

All objects created in FaceGen are made up of eye, teeth, tongue and skin meshes. The

skin manager, the core of the animation focuses on manipulating the skin mesh of the

face model. It has access to the vertex buffer of the skin mesh and control over the

vertices that define the skin mesh. All animation via interpolation between Visemes and

other Morph Targets, are performed here. As it was mentioned earlier, this is a parametric

approach which makes use of a vertex data of a source generic model. But it has yet to be

discussed, the process of defining this source data.

7.6.1 Defining Generic Model Vertex Data

In total, FaceGen has 38 Morph Targets, but since the focus is on speech animation, half

of these can be ignored.

 61

Defining the generic data is a one time process. 17 visemes are created to define the 16

viseme morphs and a neutral state. These morph targets can be previewed under the

morph Tab as shown in figure 7.6 below

Figure 7.6: Morph (Viseme) Targets

These visemes are exported to .obj files which each contain vertex data of the different

meshes that make up the model. As mentioned earlier, we only need data for the skin

mesh. For convenience and also to save space, all the Skin mesh vertex data for each

viseme is compiled into one data file. It can be thought of as a collection of tables, each

named according to the viseme file they originated from. These tables contain per row,

information on a vertex index number, its position and normal in model space. With this

data it is now possible to interpolate between targets of the generic model.

But how does one apply this to a specific model. With the generic model’s vertex data,

 62

the skin manager has enough information to generate viseme offsets. This can be done on

initialization of the Facial Animation Application. The offset for a given vertex is

determined by computing the vector defined by its position for a given viseme, and its

position on the neutral target.

To compute a vertex offsets (V):

VG,p[i] = (VG,p[i] -VG,N[i]) (7.1)

Where:

i: a given vertex index

G: generic Model

p: one of the 16 viseme targets

N: Neutral viseme

In order to keep track of all the data, a collection of Viseme objects is required. A

Viseme object is comprised of all the vertices that make up the skin mesh of a morph

target. Also included in this object, are generic model offsets determined using equation

(7.1), and normals:

class Viseme

{

 std::map<UINT, D3DXVECTOR3> m_v3DVerts; // Model Space Position

 std::map<UINT, D3DXVECTOR3> m_vNeutralOffset; //from Neutral Viseme

 std::map<UINT, D3DXVECTOR3> m_vNormals;

public:

 Viseme ();

 ~Viseme ();

};

The skin manager stores all of objects in a Viseme Container which is basically a table of

all of Viseme Objects. In addition to the 16 viseme targets + the neutral target (of the

generic model), we also need to include a viseme object for the specific model. This

additional viseme object represents the Neutral state of the specific model.

 63

7.6.2 Determining vertex offsets of the Specific Model

Viseme Targets for the specific models are determined by applying the vertex offsets

computed in (7.1) to the vertices of the specific model. It should be pointed out that these

specific models can be thought of as the Neutral morph target for a given specific model

The equation to compute a Viseme target (VS) for a specific model:

Vs,p[i] = Vs,N[i] + (VG,p[i] -VG,N[i]) (7.2)

Where:

i: a given vertex index

s: specific model

G: generic Model

p: one of the 16 viseme targets

N: Neutral viseme

This method works seamlessly with models of equal polygon count and vertex indexing.

We can go one step further and include an offset modifier (0.0 – 1.0), to control degree of

articulation:

Vs,p[i] = Vs,N[i] + (VG,p[i] -VG,N[i]) • M (7.3)

Where:

M: Offset Modifier

The lower value of M, the less articulation occurs. By default, the value of M is 1.0 which

reduces equation (7.3) back to (7.2)

7.6.3 Interpolation Technique used

Calculating vertex positions between 2 Visemes p and q is done by linear interpolation:

Vsx[i] = Lerp(Vsp[i], Vsq[i], t)

 = (1-t)•Vsp[i] + t•Vsq[i] (7.4)

 64

Where:

i: a given vertex index

s: specific model

t: normalized time between visemes

p: one of the 16 viseme targets

q: also one of the 16 viseme targets

Vsp[i] and Vsq[i] are computed using equation 7.3. Linear interpolation turns out to be the

best option in this case as the resulting animation appeared as smooth as some higher

order interpolation techniques, such as cubic spline interpolation.

7.7 Speech Wrapper

The Speech Wrapper leverages functionality of the speech API, Microsoft SAPI 5.1. It

offers a variety of options, some of which are beyond the scope of this project, but the 2

main areas of interest for integration into the Facial Animation Engine, are the Text-to-

Speech (TTS) and Speech-To-Text (our Speech Recoding (SR). For both, a series of

events are used to determine Visemes parameters, for animation. In order to capture these

events, three interfaces will be required: ISPVoice, ISpRecognizer and ISpRecoContext.

7.7.1 ISpVoice

Text synthesis operations are performed using this interface. Sources could be either a

text string, text file, or an audio file. These operations may be performed synchronously

or asynchronously.

This can also be used to modify the state of the voice (pitch, rate, volume etc), either in

via SAPI XML tags in input text, or in real time using the various Set methods ISPVoice

provides. Our facial Animation engine provides an interface to leverage these functions

 65

Figure 7.7 SpeechWrapper User Interface

ISpVoice inherits from ISpEventSource and ISPNotifySource, methods to specify how

notifications are received and, which events should trigger notifications for the

SpeechWrapper to take action. For this project, the events of interest are as follows:

SPEI_START_INPUT_STREAM: On notification, the SpeechWrapper notifies the

Skin Manager to begin animation

SPEI_END_INPUT_STREAM: On notification, the SpeechWrapper notifies the Skin

Manager to stop animation

SPEI_WORD_BOUNDARY: Useful for displaying text on screen one word at a time

SPEI_VISEME: When text is spoken via the ISPVoice::Speak method, a series of

events is triggered, including all the visemes that make up the input text. It should be

noted that the SAPI, assumes a set of 21 visemes. In order to make use of them

effectively, an intermediate conversion is required to map any one of these 21 visemes to

the 16 generated in FaceGen. Included in the viseme events are the current Viseme,

duration of the current viseme and the next visemes.

 With these 3 pieces of information, interpolation may be performed immediately. In fact,

since we’re using the default TTS Voices, it makes most sense to perform immediate

interpolation, concurrent with the audio playback. The Speech wrapper passes on the

current Viseme information to the Skin Manager:

 SkinSystem::SetCurrentVisemeInfo(currentVisID, fDuration, nextVisID)

 66

The downside to immediate interpolation is that there is not enough information provided

for Phoneme Reduction. The Facial animation provides a Viseme Track that aims to

resolve the problem.

7.7.2 ISpRecognizer & ISpRecoContext

The ISpRecognizer is used to control aspects of the Speech Recognition Engine.

Attached to it is a recognition context (ISpRecoContext), through which we will be able

to control and handle recognition events. Like the ISpVoice object, we set the events we

are interested in for the recognition context, using the ISpRecoContext::SetInterest

method.

e.g.

const ULONGLONG ullInterest = SPFEI(SPEI_RECOGNITION)| SPFEI(SPEI_HYPOTHESIS) |

SPFEI(SPEI_SR_AUDIO_LEVEL);

//Set intereted in the Events defined above

m_cpRecoCtxt->SetInterest(ullInterest, ullInterest);

Events of interest (from the recognition context) are:

SPEI_RECOGNITION: On notification, this event contains a RecoResult object which

may be converted to text.

SPEI_FALSE_RECOGNITION: On notification, do nothing

 SPEI_SR_AUDIO_LEVEL: Audio levels ranging from 0 – 100 can be gathered for

each phoneme event.

7.7.3 Recognition Accuracy

 Voice training sessions are required for improved sound recognition results. These

training sessions are available as part of the Microsoft Speech SDK

7.8 Viseme Track

The viseme track is a container made up of markers which represent visemes interpreted

by the SpeechWrapper. Markers or Marker objects consist of the following data:

 67

1. ID: unsigned integer ranging from (0-16), representing visemes

2. Duration: time in seconds representing the difference between the start

time of the current viseme to be entered, and the next viseme.

3. UI render components: to be displayed on screen (as shown in Fig 7.8).

They are displayed as bars and text, showing the Phonemes a given

marker’s viseme ID represents

Each time we convert Text-To-Speech, Viseme events (SPEI_VISEME) are triggered,

during which markers may also be placed on the track. For every new entry, the track

automatically rescales according to the updated total time, computed by the total of the

duration values of all the markers.

Figure 7.8 Viseme Track Segment

Markers may also be manually modified or deleted, opening up the possibility for manual

phoneme reduction, and possibly lip syncing with human voice playback

 68

7.9 User Interface

Figure 7.6

Figure 7.9 UI Interface

Figure 7.9 illustrates the user interface for the entire application. Users can toggle face

models, play and replay recorded input, load text files for text-to-speech conversion,

toggle voice recognition mode. Also included are the options edit the viseme track or

control the offset scale introduced in equation 7.3.

8 Summary

We investigated a couple of different animation techniques, identified areas of concern in

 69

each case and examined a number of relatively new approaches which apparently solved

a number of the problems brought about by its predecessors.

Whether these techniques are practical for use in real time gaming remains to be seen, but

they are innovative approaches nonetheless which could be applied in other areas such as

animated movies or video game cut-scenes.

My implementation was introduced to address the issues and concerns of both muscle

based and parametric animation techniques, and the result proved to be very positive,

with lower computational overhead than muscle based approaches and an average frame

rate exceeded 200 FPS. Like the new batch of physically based implementations, my

parametric technique is applicable to multiple faces using an adaptation technique.

There are however, some limitations. Specific models must be same resolution as the

generic model for adaptation to be successful. Provided that a common modeling

package, is used, this should not be an issue

9 Future Work

Future implementation include more focus on animation of emotion, currently models

have 3 non viseme morph targets: blink and eyebrow raising both of which currently

occur at random, and a closed mouth smile, which can only be triggered manually

Currently only smile, blink, eyebrow raise. Enhancement would involve the addition of

more expressions and tying some of them to with speech, to visually reflect a change in

tone.

Another area of interest is the automation of phoneme reduction, using the data gathered

by the viseme track. Manual reduction is currently possible, but this quickly becomes an

arduous task as the amount of speech increases

Currently, the engine has only been thoroughly tested with low resolution, and it is yet to

be seen if using higher resolution models would result a significant dip in frame rate.

 70

References

[1] Selma Rizvic, Zikrija Avdagic. Phoneme Reduction in Automated Speech for Computer

Animation. 2004

[2] RIZVIC S, AVDAGIC Z. 2003. Model for Speech Animation Based on MaxScript Scripting

Language, IKT Sarajevo, 2003.

[3] FLEMMING B, DOBBS D. 1999. Animating Facial Featuresand Expressions, Charles River

Media INC, Rockland Massachussets

[4] MADSEN R. 1969. Animated film: Concepts, Methods, Uses. Interland, New York

[5] Y. Zhang, T. Sim, C. L.Tan. 2004. Rapid Modeling of 3D Faces for Animation Using an

Efficient Adaptation Algorithm.

<http://www.comp.nus.edu.sg/~face/paper/GRAPHITE2004.pdf>

[6] K. Kähler, J. Haber , H. P. Seidel. 2001. Geometry-based Muscle Modeling for Facial

Animation <http://www.graphicsinterface.org/proceedings/2001/103/file103-1.pdf>

[7] Yuencheng Lee1, Demetri Terzopoulos, and Keith Waters. 2001. Realistic Modeling for

Facial Animation. <http://www.graphicsinterface.org/proceedings/2001/103/file103-1.pdf>

[8] Wikipedia. April 16, 2006. Verlet Integration. <http://en.wikipedia.org/wiki/Verlet>

	Title Page
	Table of Contents
	Abstract
	Chapter 1 Introduction
	Chapter 2 A little History
	2.1 Lip Sync: The early Days
	2.1.1 Development of Animation Sortcuts

	2.2 Lip Sync: The last few decades
	2.3 What is a phoneme?
	2.4 What is a viseme?
	2.5 Putting things together for Speech animation
	2.6 Phoneme reduction
	2.6.1 Full Animation
	2.6.2 Visemes according to Flemming and Dobbs

	2.7 First Reduction
	2.8 Second Reduction
	2.9 Third Reduction
	2.10 Fourth Reduction
	2.11 Results and Analysis

	Chapter 3 Animation of Facial features
	3.1 Previous Approaches for Personalized Facial Animation
	3.1.1 Parametric Conformation models
	3.1.2 Plaster Model and interactive deformation method
	3.1.3 Image based method
	3.1.4 Direct3D digitization method

	Chapter 4 Yu Zhang Terence Sim and Chew Lim Tan
	4.1 The Generic Control Model
	4.2 Adapting the Control Model
	4.3 Landmark Location
	4.4 Global Shape Adaptation
	4.5 Local Shape Adaptation
	4.6 Muscle Layer Adaptation
	4.6.1 Linear Muscles

	4.7 Interpolation Computations
	4.8 Sphincter Muscles
	4.9 Results and Analysis

	Chapter 5 Kolja Kahler Jorg Haber and Hans Peter Seidel
	5.1 Approach Model
	5.2 Skull and Jaw
	5.3 Muscles
	5.4 Skin and Tissue Simulation Guidelines
	5.5 Quick Verlet Integration Review
	5.6 Muscle model Calculations
	5.7.1 Contraction
	5.7.2 Bulge
	5.8 Building Muscles from Geometry
	5.9 Optimizing Muscle Shape Guidelines
	5.9.1 Initializing the Grid
	5.9.2 Refining the grid
	5.9.3 Creating the Muscle'
	5.9.4 Attaching the muscle

	5.10 Results and Analysis

	Chapter 6 Yuencheng Lee Demetri Terzopoulos and Keith Waters
	6.1 Image Processing
	6.2 Generic Face Mesh and Mesh Adaptation
	6.2.1 Mesh Adaptation Procedure

	6.3 The Dynamic Skin and Muscle Model
	6.4 Layered Synthetic Tissue Model
	6.5 Discrete Deformable Models
	6.6 Tissue Model Spring Forces
	6.7 Linear Muscle Forces
	6.8 Applying muscle forces to the fascia nodes
	6.9 Piecewise Linear Muscles
	6.10 Volume Preservation forces
	6.11 Skull Penetration Constraint Forces
	6.12 Equations of Motion for Tissue model
	6.13 Eyes, Teeth and Other Artifacts

	Chapter 7 My Implementation
	7.2 General Approach
	7.3 Tools
	7.3.1 FaceGen Modeller
	7.3.2 3ds max panda exporter
	7.3.3 Microsoft s a p i
	7.3.3 Microsoft Direct x Visual Studio

	7.4 Overview
	7.5 Facial Animation Engine
	7.6 Skin Manager
	7.6.1 Defining Generic Model Vertex Data
	7.6.2 Determining vertex offsets of the Specific Model
	7.6.3 Interpolation Technique used

	7.7 Speech Wrapper
	7.7.1 I S P Voice
	7.7.2 i s p recognizer and i s p reco context
	7.7.3 Recognition Accuracy

	7.8 Viseme Track
	7.9 User Interface

	Chapter 8 Summary
	Chapter 9 Future Work
	References

