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Abstract 
 

The purpose of this research is to investigate and determine effective ways to simulate 

facial animation for a specific person. It should introduce the reader to the world of facial 

animation, highlighting its history and origins. Existing techniques that have been 

devised for computer based facial animation will be explored, identifying the positive and 

negative aspects of each in the process. New physically based approaches will also be 

examined and compared to previous techniques to highlight improvements that have been 

made. Applicability of these relatively new algorithms to video games and similar 

entertainment outlets will also be examined. 
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1  Introduction 

 
Facial animation is a heavily researched area of computer science and has been so for 

decades. Even before then, it was a major part of feature film production for companies 

such as Disney. This dates as far back as 1928. 

 

 Animation of human faces is a difficult task, above all other forms of animation. When 

one factors in the range of expressions and emotions of individuals, it becomes evident 

how vast an area of research facial animation is.  

 

 Facial animation consists of two parts: animation of emotions, and speech animation, 

both which complement each other. How so? Well, speech animation alone would seem 

robotic without some form of accompanying fine tuned by adding emotional expressions. 

 

 

 

2 A Little History  
 

This section not only offers information on the history of facial animation, but it also 

highlights a non muscle-based implementation approach with a focus on speech 

animation  

 

2.1  Lip Sync: The Early Days 

Lip syncing has been explored since the release of Disney’s Steamboat Willie in 1928. 

This was the first time sound and animation had been joined. Shortly thereafter, the first 

techniques were developed in the early 30’s for timing facial expressions with 

accompanying dialogue. 

 

2.1.1 Development of Animation Shortcuts 
Disney played a major part. Their artists’ concern was on how the mouth looks while 

making the sounds. They later on discovered that several sounds can be made with the 

same mouth position.  
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Figure 2.1 is an example of a lip sync template. Animators relied on a chart consisting of 

a number of archetypal mouth positions to represent speech. 

 

Fig. 2.1: Lip Sync template 

2.2  Lip Sync: The Last Few Decades 

 
In the early 70s, Frederik Parke presented the polygonal representation of a head with 

animation of eyes and mouth opening and closing [Parke 1972]. 

Various approaches and techniques were introduced: 

1. concatenative [Lee et al. 1995] 

2. parameterized [Parke 1982]  

3. muscle based approach [Parke and Waters1996]. 

 

One major problem with most if not all techniques and was accomplishing accurate, 

realistic speech animation with minimal effort. In order to get a better grasp of the sub 

task at hand, one must be familiar with the concept of definition of a phoneme set and 

viseme creation. 

  

2.3  What is a Phoneme? 
 

A phoneme can be described as the smallest contrastive unit in the sound system of a 

language. Just as one or more syllables make up a word, one or more phonemes make up 

a syllable. They are the individual sounds that make up speech, the number of which vary 

depending on the language. 
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2.4  What is a Viseme? 
 

A viseme is described as a generic facial image that can be used to describe a particular 

phoneme. They are sometimes referred to as visual phonemes, though one should note 

that they do not have a 1-to-1 viseme/phoneme relationship. This will become more 

evident later on in the phoneme reduction description. 

 

2.5  Putting things together for Speech animation 

 
In order to simulate speech animation, visemes will need to be synced with each 

phoneme uttered by a given character, the naive approach to such animation would be to 

attempt to create a separate facial position for each phoneme, but this is a wasteful 

approach. In order to achieve realistic lip synching, the following general steps are taken 

by the Authors in [1], using 3ds Max and Maxscript: 

 

1. Viseme creation 

2. Assigning visemes to morpher modifier channels 

3. Animating the percentage of viseme appearance in key frames of animation. 

 

 

Step 1: Viseme Creation  

This consists of creating a particular number of copies of the basic head model. Every 

copy represents one of the visemes with facial vertices moved to achieve the look of 

the face during pronunciation of the corresponding phoneme. The number of these 

copies(visemes) created and stored depends on depends on reduction level. 

 

Step 2: Assigning visemes to Morpher modifier channels 

A Morpher modifier is a data structure designed to handle particular number of 

channels and their parameters. Basically, the idea is to gradually transform from one 

copy of the head model into another. Recall from step one that each copy stores a 

unique viseme. After visemes are created, they are then assigned to morpher modifier 

channels as morph targets. These channels allow for animators to interpolate between 
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the different visemes, via repositioning of vertices, taking note of their position in 

both copies of the original object. For this to work, these copies must possess the 

same number of vertices. 

 

Step 3: Animation, Key frames etc 

At this stage, the animator determines key frames for every phoneme. The Animation 

is created by assigning corresponding percentages to adequate visemes in Morpher 

modifier channels in key frames of time. Software calculates interpolation between 

key frames and generates the final animation that could be rendered and recorded to 

the tape and later edited/formatted into a final movie sequence. 

 

Since step 3 can be a very tedious step, Rizvic and Avdagic, created a script to 

automatically generate these key frames. The algorithm to achieve this will not be 

discussed in great detail, but it is still important to highlight the algorithm used: 

 

 

 

  

Phases of the algorithm: 

 initialization, file opening 

 viseme check 

 key frame creation in corresponding Morpher modifier channel 

 end of file check 

 final animation rendering 

MaxScript, being native to the 3ds environment was used. For information on how the 

scripting was performed, refer to [1] for more information on how this was performed. 
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2.6 Phoneme reduction 

 
In the early days of animation the basic principle was simplicity, as attempts at accuracy 

seemed too unnatural [Madsen 1969]. Because of this, animators decided to create visual 

shorthand that passes unchallenged by the viewer, similar to dropping frames per second 

in a game, yet maintaining fluidity at the same time. 

 

Reduction to a small set of visemes was feasible in the past was more feasible since 

characters were not as realistic, but due to increased realism of characters in games and 

feature films, When  level of detail becomes a factor. Rizvic and Avdagic propose the use 

of phoneme reduction to facilitate all levels of detail. 

 

2.6.1 Full Animation 
 

According to Flemming and Dobbs [3] there are 40 phonemes in the American English 

language. They also describe a unit of speech being considered a phoneme if replacing it 

in a word results in a change of meaning. Based on this information, they developed the 

following list of phonemes in the table below: 
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Fig 2.2: Phoneme Table 

 

2.6.2 Visemes according to Flemming and Dobbs 

 
The following visemes are according to the rules of reduction. Recall that the naïve 

approach would result in a 1-to-1 phoneme/viseme relationship (i.e. 40 visemes would be 

required) 
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Fig 2.3. Visemes for First Reduction 

 

One thing to be considered is when creating visemes is whether the model has or will 

have a visible tongue or not. Animating the tongue further complicates things, like the 

requirement of probably twice the number of visemes displayed above. For simplicity, 

the tongue will not be considered in the viseme creation. 

  

2.7 First Reduction 
 

The classification of phonemes plays a very important role in lip synch animation. 

Flemming and Dobbs have phonemes of the English language divided in the following 

groups: 

Consonants: 

Fricative (F, V, TH, DH, S, Z, SH ZH and H) – formed by forcing air 

through a narrow gap, creating a hissing sound. 

Plosives (P, B, T, D, K, G) – involve the same restriction of the speech 

canal as fricatives, but the speech organs are substantially less tense during 

the articulation of a spirant 
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Affricative (CH, J) – these are a plosives immediately followed by a 

fricative in the same place of articulation 

Nasal (M, N, AN) – consonants in which air escapes only through the 

nose 

 

Vowels: 

Unitary (IY, EY, EH, AE, AA, AO, OW, UH, UW, AH, ER, AX) – a 

single syllable sound with no change in articular position 

Diphtong (AY, OY, AW, YU) – a gliding, single syllable vowel sound 

that starts at or near one articulator position and moves toward the position 

of another 

Glide (Y, W) – subclass of diphtongs, but even slower 

Liquids (L, R) – another subclass of diphtongs tending to be more like a 

rolling or thrill sound 

 

Guidelines for animation [Flemming and Dobbs 1999] 

1. Unitary phonemes are the strong vowel sounds and should be emphasized with 

visemes. They should never be dropped. 

2. Diphtongs tend to take longer to express. That’s why they should be given a 

higher frame count. They should never be dropped. 

3. Glides are slow diphtongs and they have to be given even more frames. 

4. Liquids are strong phonemes and they are needed to be accentuated. 

5. Fricatives can be accentuated or passed over completely depending on the 

word. For example, in the word “vice”, the V is uttered quickly, so it probably can 

be dropped completely since it’s followed by a strong vowel. On the other hand, 

in the word “voluptuous” the V is spoken slowly and we need to accentuate it. 

6. Plosives are the stop consonants, so they are never emphasized in lip synch 

animation. They can be completely dropped. 

7. Affricatives may never be dropped since they are the strong accent of the word 

and feature two consonants combined. 
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Guidelines for Dropping Phonemes (Based on their position) 

1. Never drop a phoneme in the beginning of a word 

2. Drop nasal visemes between two vowels to smooth transitions 

 

2.8 Second Reduction 
 

From the viseme table in figure 2.3, there are negligible differences between some of the 

visemes (phoneme groups).  This being the case, further reduction can be carried out by 

merging similar phoneme groups. As a result, the 16 visemes from the first reduction 

drop to 10: 

 

Fig 2.4: Visemes for second Reduction  

 

 

2.9 Third Reduction 
 

This follows the guidelines, for dropping phonemes, and is merely for reducing the 

number of key frames to transition among. The number of visemes remains at 10. 
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It is important to note that further reduction beyond the third level would probably only 

work well with characters without tongue animation. They would otherwise begin to look 

non-realistic, with the tongue most likely out of place. It is still important to point out 

further reduction as they could be applied in cases where level of detail is low. 

 

2.10 Fourth Reduction 
 

Madsen rules for cartoon animation, should one feel the need to further simplify 

animation. These are based on visual pattern of vowel lip motions accented by the 

consonants, according to Madsen. 

 

The resulting 4 visemes are as follows: 

 

Fig 2.4: Visemes for fourth reduction 

 

B, M, P – lips are closed 

O, W – oval mouth shape 

F, V – lower lip is tucked under the upper front teeth (in our case upper lip) 

OTHER – some intermediate shape of the mouth for all the other phonemes 

 

2.11 Results and Analysis 
 

It was pointed out earlier that full animation led to forced, and unnatural, hence the need 

for reduction. Rizvic and Avdagic point that at first reduction looks slightly smoother but 

still appeared to be forced. Their observations showed that at the second reduction, there 

was not much of a difference visually between 10 & 16 visemes and thus still wasn’t 
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fluid enough. Things began to take shape and looked smooth on the third reduction. One 

is led to assume that the third reduction would be ideal for realistic facial animation. 

 

The fourth reduction proved to be too simplified and far from accurate, and would be 

more ideal for less detailed shots. They concluded that Madsen's rules better for wide 

shots  

 

 

3 Animation of Facial features 
 

It has been established that both the third and fourth levels of reduction in section 2.11 

have their place in computer facial animation. Choice would depend mainly on the level 

of detail required for a given scene.  

 

For animation with high level of detail, speech animation alone as described by Rizvic 

and Avdagic will not be sufficient, as there would be no emotion attached to each viseme. 

Furthermore, the models would remain generic and lacking character. Ideally, one would 

require a system by which a finite set of key points could aid in controlling a number of 

vertices to create a semi-automated system of morphing the skin and other facial features. 

This lends to the idea of physically based approaches to facial animation. 

 

At this stage, we shall take a look at a couple of variations of techniques in  [5],[6] & [7], 

but first, in order to appreciate where we are today, let us take a look at some of the 

previous approaches adopted over the years for personalized facial animation. 

 

3.1  Previous Approaches for Personalized Facial Animation 

Personalized face modeling has been an active area of research since the early 80s. Due 

to the uniqueness of individuals, animation of specific human faces is a difficult task. 

Over the last 3 decades several approaches have been brought up in order to achieve 

visually graphically appealing models that simulate facial animations efficiently. A 

couple of examples are parametric conformation models, plaster model and deformation 
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method, image based method, anthropometry based method, scattered data interpolation 

method and the Direct3D digitization method. 

  

3.1.1 Parametric Conformation models 

This was invented in the early 80s. The intended model was to be designed such that it 

would be capable of creating a wide variety of deformable faces using a limited number 

of input conformation parameters. Flexibility was an issue due to the inability to develop 

a parameterization universal enough for such a task. That being the case, heavy manual 

tuning would be required for these models to be of any use. Unfortunately, this proved to 

be too difficult a task. 

 

3.1.2 Plaster Model and interactive deformation method 

This was a heavily researched approach between the mid 80s to early 90s, made famous 

by Nadia Magnenat-Thalmann, from the University of Geneva; famous for her work on 

the creation of a virtual world with virtual actors. The general procedure of this approach 

was that models would be sculptured from clay to achieve the desired surface detail for a 

specific face in order to construct an accurate polygonal mesh. Although the results 

appeared desirable, it was evidently not practical, seeing as this would require artistic 

skills and time to construct these models. 

 

 

3.1.3 Image based method 

The Image based method [Kurihara and Arai 1991; Akimoto et al. 1993; Ip and Yin 

1996; Leeand Magnenat-Thalmann 2000] was a more efficient method than the previous 

attempts. 

This approach utilizes existing 3D models and 2D information from a few images. 

Functionality was through the use of automatically detected feature points of the 2D 

images which would help project to 3D. The drawback to this approach was that on 

average, not enough feature points were identified, which meant that there was not a base 

robust enough to ensure that a 3D reconstruction would be accurate  
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Approaches (mid to late 90s) 

In the mid to late 90s the Scattered Data Interpolation Method was utilized by a number 

of approaches brought into the limelight by researchers like Kolja Kähler, Jörg Haber , 

and Hans-Peter Seidel from Max-Planck-Institute for Information. The idea was to morph 

a generic face to a more specific one using scattered data interpolation technique. This 

depended heavily on a good and dense selection of feature points. The only way to 

achieve this is manually, and this is an arduous task 

  

3.1.4 Direct3D digitization method 

Accurate 3D reconstructions are created using Laser Scanning, stereo photogrametry, and 

active light projection. These models proved to be more suitable for static facial models 

and aren’t ideal for facial deformation and animation for a couple of reason. The first one 

is that the only information gathered during the scanning process is the outward shape of 

the human face and there is no underlying mechanism for animation control (facial 

deformation, jaw control, etc). These controls would need to be manually inserted, which 

presents a time issue. The second problem is that these scanned models (created via 

triangle mesh) are generally made up of tens of thousands of triangles. In order to achieve 

real time animation, the number of triangles should fall to less than ten thousand. Due to 

the high polygon count, the cost of computation would be too high. 

 

Of the aforementioned methods, some attempt an automated modeling process, but due to 

the various shortcomings described for each, most require significant manual 

intervention. A couple of approaches, which have yet to be discussed, show promise for 

overcoming the obstacles of their aforementioned predecessors. These techniques will be 

examined in detail over the next couple of sections and later on the advantages and 

disadvantages for each will be analyzed.  

 

4 Yu Zhang, Terence Sim and Chew Lim Tan 

Zhang et al, of the National University of Singapore, developed a relatively new 

Adaptation-based approach, which is based on adapting an existing low-resolution 

generic facial model to an acquired surface data to provide a control layer for animation. 
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4.1 The Generic Control Model 

The generic control model contains a known topology, and already has a structure data in 

place for controlling facial deformation. The geometry and texture of the real face is 

obtained using a laser range scanner. For the tests conducted by Zhang, Sim and Tan, a 

Minolta Vivid 900 Digitizer was used. Three scans of the front view and 45 degree side 

profiles were taken for each subject. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1:  Generic Control Model 

 

The Skin Layer is a triangle mesh which consists of 2,848 vertices & 5,277 triangles; 

well under the ten thousand triangle maximum requirement for real time rendering. To 

minimize the number of controllable artifacts the mesh edges are aligned to the facial 

features. 

The skin deformation is represented by the skin mesh acting as a mass-spring system in 

which the vertices act as the point masses of the system, and the edges act as springs. One 

must note that this system is not perfectly elastic as that would take away any hint of 

realism in the animation. 

The Muscles Layer is attached to the skin layer. 23 of the most important muscles found 

in the human face are modeled in order to enable a free range of deformation and 

contraction options during animation control 
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The Skull is a triangular mesh which is utilized as an anatomical framework for mapping 

the facial muscles during the construction and initialization process. During render time, 

the skull is not required. 

 

To finish of the model, Eyes and teeth though not absolutely essential are added as 

separate components to enhance the overall realism   

 

Facial Deformation or deformation of the facial skin is influenced by muscle contractions 

and jaw rotation. This is obtained by calculating the energy equilibrium state of the entire 

mass-spring system using LaGrange dynamics.  

 

Control can be done in a number of ways. On the low level it could be done using an 

animation script whereby the muscle and jaw parameters are adjusted to get the desired 

expressions. There is also the option on the high level to implement expression 

commands. 

 



 22 

 

Figure 4.2: Pipeline for reconstructing animated facial model. 

 

4.2 Adapting the Control Model 

The Generic Control model denoted as F and is referred to as the source model. A Hi-res 

scan model denoted as F* is referred to as target model.  The goal in this approach, is to 

adapt F to F* such that F takes on the texture and shape of the specific individual to be 

animated with predictability. For this to happen a series of steps will be taken as shown in 

the pipeline (Fig. 1) 

 

The next step is for data from the scanned surface to be adapted to the generic model in 

the following 4 steps:  

Landmark Location, 

Global shape adaptation,  

Local shape adaptation and  

Muscle layer adaptation. 

Scanned Surface 

Data 

Landmark 

Location 

Generic Control 
Model 

Global Shape  

Adaptation 
 

Local Shape 
Adaptation 

 

Muscle Layer 

Adaptation 

Animation 
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4.3 Landmark Location 

 
This first step takes into account the anthropometric specification of landmarks on the 2D 

images of both the Generic Control Model and the scanned data. The 3D coordinates 

would later be recovered by using a projection mapping approach. 

 

 In order to achieve this, the image of the control model is stored as a bitmap. RGB 

values of the facial surface are stored. Zhang et al then specified on the bitmap, a set of 

landmarks following the anthropometric guidelines rules: 

Eye Parameters:   

le

lp  and le

rp  represent the left and right corners of the left eye 

re

lp  and re

rp  represent the left and right corners of the right eye 

Mouth Parameters: 

m

lp  and m

rp  represent the left and right corners of the mouth 

 

This constitutes the minimum set of landmarks based on their prominence on the face. 

Surprisingly the nose tip was not in this set. 

 

After specification of the landmarks, the texture coordinates of each vertex on the 

generic/source model (F) are obtained via orthographic projection. The landmarks can be 

located on the 2d image via cylindrical projection of the 3D face, which maps onto the 

2D image plane. The result was a 512x512 cylindrical image. Recall that the RGB values 

are stored for each pixel. These represent the surface color of the texture mapped surface 

with corresponding longitude and latitude.  

3D positions of landmark points are obtained from mapping the 3d Mesh of F and F* to 

2D images using cylindrical projection. Each landmark p located within a triangle in the 

source model mesh can be obtained since each of the triangles have been accounted for in 

the 3D to 2D projection. They are recovered from normalized barycentric coordinates of 

p in the 2D triangle ),,( 321  as follows: 
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p = 
3

1i

iiw  with 
3

1

1
i

i   10 i      (4.1) 

 

where: 

p is the 3D position of the landmark p and  

iw  is one of the vertices of the indexed triangle in which p is located 

 

 

Four more key points were defined using the minimum set defined above: 

 

Centers of the left and right eye : 

 )(
2

1 le

r

le

l

le ppp  and  )(
2

1 re

r

re

l

re ppp     (4.2) 

Center between both eyes: 

)(
2

1 relec ppp   )(
2

1 m

r

m

l

m ppp     (4.3) 

 

The target Model (F*) follows similar steps to that of F in terms of landmark 

specification: 

Eye Parameters:   

le

lp*  and le

rp*  represent the left and right corners of the left eye 

re

lp*  and re

rp*  represent the left and right corners of the right eye 

Mouth Parameters: 

m

lp*  and m

rp*  represent the left and right corners of the mouth 

 

Similarly, the four extra key points are calculated: 

)(
2

1 *** le

r

le

l

le ppp  &  )(
2

1 *** re

r

re

l

re ppp  

)(
2

1 *** relec ppp   &  )(
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Figure 4.3: Specification of landmarks and recovery of their 3D positions based on a projection-mapping approach: 

(a) landmark image of the source model; (b) projected textured-mapped source model; (c) projected surface mesh of the source model; 

(d) recovered 3D positions of specified landmarks (red points) and key points (green points) on the source model; (e) landmark image 

of the target model; (f) projected textured-mapped target model; (g) projected surface mesh of the target model; (h) recovered 3D  

positions of specified landmarks (red points) on the target model (key points are occluded). 

 

4.4  Global Shape Adaptation  

 
Here is where the generic model is aligned with the scanned face in 3D space using 

measurements between landmark locations obtained in step one.  

This step involves some rotation and translation. The first step would be to transform F* 

by aligning an imaginary line connection the eye centers (
rele pp **

) with the world x-axis 

and is also have the y-z plane cut through the center of F* (i.e. 
mc pp **

 should be on the 

y-z plane). 

 Zhang et al, go about this in the following manner: 
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Let an arbitrary vertex 3* Rxi
on F* move to a new position 3*/

Rxi
. And let R* 

33R be the rotation matrix, T* 3R be the translation vector, and 0*C 3R be the face 

model center.  The transformation equates to: 

*0**** )(
/

TCxRx ii (4.4) 

0*C is defined as the center between both eyes of F* 

cpC *0* (4.5) 

R* is comprised of 3 rotation angles. Zhang et al define them as: 

Face tilt (  *

xr ) around the x-axis 

Face rotation (
*

yr ) around the y-axis 

Face inclination ( *

zr ) around the z-axis 

They project 
rele pp **

of  F* onto the x-z plane using orthographic projection as seen in

Fig. 4.4. 

*

yr is calculated as:

otherwise
pp

npp

nnppif
pp

npp

r

xzlexzre

x

xzlexzre

yx

xzlexzre

xzlexzre

x

xzlexzre

y

)
||||

arccos(

0)()
||||

arccos(

|*|*

|*|*

|*|*

|*|*

|*|*

*

    (4.6) 

where xzlexzrexzlexzre pppp |*|*|*|*  and 
xn and yn are unit vectors of the x- and y-axes

*

zr is calculated as:
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xzlexzrelere

xzlexzrelere

z

pppp

pppp
r

|*|***

|*|***
* arccos

         (4.7) 

To determine the direction of rotation assuming 
/*rep  and 

/*lep  are the new positions of 

rele pp **
: 

 

otherwiser

nnppifr
r

z

zx

lere

z

y
*

***

*
0)(

//

          (4.8) 

*

xr is calculated using the angle between eye-mouth plane normal ( emn ), and the z-axis 

otherwisenn

nnnifnn
r

z

em

xz

em

z

em
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)arccos(

0)()arccos(
*

        (4.9) 

 

 

 

Fig. 4.5 
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Translation component T* = 
3*** ),,( Rttt T

zyx : 

 
c

zz

c

yyx ptptt ***** ,,0          (4.10) 

Zhang et al also needed to scaled, rotated and translated to match F to F* 

Let a vertex 3Rxi  on F move to a new position 3/

Rxi
. And let R 33R  be the 

rotation matrix, T 3R  be the translation vector, and 0C 3R  be the face model center.  

The transformation equates to: 

TCxSRx ii )( 0/           (4.11) 

As with F*, 0C is defined as the center between both eyes of F 

cpC0              (4.12) 

 

S 33R is the scaling matrix 

 

z
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S
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          (4.13) 

Translation component T = 
3),,( Rttt T

zyx : 

 
c

zz

c

yyx ptptt ,,0 *
         (4.14) 
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Figure 4.6: Local adaptation of the source model to the target model using cylindrical projection. 

 

The scaling factors were calculated as follows: 

 
relec

z

relec

z

x
ppp

ppp
s

*

**

        (4.15) 

 yxzmc

mc

y sss
pp

pp
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2

1
,

**

     (4.16) 

 

 

 

4.5 Local Shape Adaptation 
 

This step is where the vertices of the generic model are mapped or fitted onto scanned 

surface data, by shifting vertices of F to match the scan data of F*. The fitting is a tricky 

process in which there needs to be a manner of determining the corresponding 3D 

position of each vertex of F on F*. This was achieved by Zhang et al using cylindrical 

projection as shown in Fig. 4.6 
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For the image coordinates ii vu ,  of a vertex 
iiii zyxx ,,  on F: 

 

 ii

i

i
i yv

z

x
u ,arctan           (4.17) 

 

Likewise, **, ii vu  is computed, and are found in the projected triangular mesh of F*. 

Zhang et al define a point ii vu ,  in the triangle *

3

*

3

*

2

*

2

*

1

*

1 ,,,,, vuvuvu  as a linear 

interpolation using barycentric coordinates as: 

 

 
3

*
3

* ,
ij

jji

ij

jji vvuu         (4.18) 

 

where j are barycentric coordinates. 

Given ,,, 321  in the 2D triangle, the 3D position of ix~ was calculated as follows: 

 

3 *~

ij

jji xx              (4.19) 

 

where  
*

jx  is a 3D position of one of the points that make up a given triangle on F*  

After adaptation, the texture coordinates of  )
~

,~(,~
iii tsx  were computed: 

  

 
3 *3 * ~

,~

ij

jji

ij

jji ttss          (4.20) 

 

Where ),(
**

jj ts  are the texture coordinates associated with three vertices of the triangle on 

F* that contains ix~ . 

 

 



 31 

 

4.6 Muscle Layer Adaptation  
 

Here, the muscles defined beneath the skin of the generic model are transferred to new 

skin geometry. The muscle layer is essential for animation and resolves the issue of 

having no underlying control mentioned earlier with the Direct3D approach. 

 

Zhang et al took into account 2 muscle groups: 1) Linear and 2) Sphincter Muscles.  

These muscles form a layer in between the skull and Skin layers and are the driving 

forces for the deformation of the skin mesh. 

 

4.6.1 Linear Muscles 

 
Each is defined by a fixed point on the skull referred to as the muscle attachment point, 

which is connected to a muscle insertion point that is attached to the skin 

 

 
Figure 4.7: Muscle points and their corresponding skin points. Red and green points represent the insertion and attachment points of 

linear muscles respectively, yellow points represent sphincter muscle points, azure points represent the corresponding points of the 

linear muscle attachment points and sphincter muscle points on the skin mesh, and blue lines represent central muscle fibers. 
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4.7 Interpolation Computations 
 

3

1j

k

j

I

j

I

i xm                (4.21) 

where: 

I

im  is a muscle insertion point located on a skin triangle  ),,( 321

kkk

k xxxt  

The value 
I

j  is said to be a barycentric coordinate of non negative scalar variables, but it 

is unclear what this value is required for; possibly some elasticity coefficient. 

 

Compute the new position of the insertion point base on the new position of kt , 

))~,~,~(
~

( 321

kkk

k xxxt , we get: 
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j

I

i xm                             (4.22) 

Computing the position each muscle attachment point A

im  requires computing the 

corresponding skin point )(skinA

im  (point which when projected via the normal of A

im ) 

 
3

1

)(

j

l

j

A

j

skinA

i xm            (4.23) 

where: 

)(skinA

im  is the point which when ray cast from the normal at A

im , makes 

contact with the skin 

l

jx  are points of the skin triangle in which A

im is in. 

As illustrated in Fig. 4.7, the relationship between  A

im  and )(skinA

im  is defined by id  

 A

i

skinA

ii mmd )(            (4.24) 

After mesh adaptation, )(skinA

im  is updated as follows: 
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Since we now have )(~ skinA

im  and we know id  calculating the new position of A

im  is 

simply: 

 i

skinA

i

A

i dmm )(~  ~          (4.26) 

 

4.8 Sphincter Muscles 
 

Unlike linear muscles, they are elliptical. Zhang et al define this type of muscle, with 3 

parameters, ),,( iii bao  where 

 io  is the virtual center of the muscle  

ii ba ,  are located at the half lengths of the axes of the elliptical shape of the 

muscle 

Adaptation is computed by locating the end of the axes a

im  and b

im . Skin surface points 

)(skina

im   & )(skinb

im  are calculated similarly to the linear muscles. Like wise, the offsets are 

calculated as such: 

b

i

skinb

i

b

i

a

i

skina

i

a

i mmdmmd )()(   ,                (4.27) 

Computing new positions after adaptation is also similar to linear muscles 
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i
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b

i

a

i
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),,( iii bao  is determined as follows: 

 )~~(
2

1~~
)()()(),()(),()(

b

zi

a

zizi

b

yiyi

b

xixi mmomomo         (4.29) 

  )()()()(
~,~

yi

b

yiixi

a

xii omboma       (4.30) 

 

4.9  Results and Analysis 
 

It becomes apparent that this adaptive approach possesses advantages over its 

predecessors. It has a fully functional generic model as a base. Manual intervention is 

kept to a minimum, so it is a more efficient process which contains a fully automated 

muscle adaptation technique.  
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The following are finished products of the Adaptive Approach: 

 

Figure 4.8: Sample results of the adaptation 

 

5 Kolja Kähler, Jorg Haber and Hans-Peter Seidel 
 

Similar to [5], this approach takes the approach of adapting underlying muscle, of a 

scanned facial surface.  The muscles are grouped depending on the location of the face, 

and skin deformations under physically based conditions that mimic the human anatomy. 

 

To facilitate their work, the authors of [6] developed a muscle editor capable of 

modifying the source model. Their reason for opting for muscle control as opposed to the 

previously tested parametric control was as a result of weighing out the benefits of each. 

Though parametric control isn’t costly, interpolation becomes an issue without a 

physically based underlying structure, which with the commonly used mass-spring 

network system, would display a higher degree of accuracy in terms of modeling the  

(visco-)elastic properties of skin. 

 

5.1 Approach Model 
 

As with [5] based their model on three conceptual layers: 
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1. Skin / tissue layer representing the epidermis and subcutaneous fatty tissue; 

2. A layer of muscles attached to the skull and inserting into the skin 

3. Underlying bone structure, composed of immovable skull and rotating jaw. 

 

The input data is composed of arbitrary triangle mesh representing the skin geometry and 

the skull geometry and facial muscle layout created semi-automatically. There is no 

mention on whether the skull was modifiable, but with the muscle editor, Kähler et al 

were able to tweak the layout of the muscle groups for the face. One would assume that 

that spring and dampening coefficients (to be discussed later) could be modified with this 

editor.  

 

With the layer system in place, animation of the face is achieved by physics-based 

simulation of a mass-spring system that connects the three layers. 

 

 

Figure #.1: Generic skull model fitted to head using affine transformation for estimating assignment of skin regions to skull and jaw 

 

5.2 Skull and Jaw 
 

Similar to [5], a skeletal underlying mesh was utilized. This comprised of the jaw and the 

skull. This was setup to determine the nature of the behavior of the skin mesh. For the 

skin covering the jaw area, their movement will be determined by the rotation of the jaw. 
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It is not pointed out in the article, but one would assume that the lower lip would still be 

under the influence of a muscle-based mass spring system. 

These meshes (for the skull and jaw) are not rendered during the final stages of 

the animation process. They are used only while building muscles in the editor and 

during the startup phase of the animation system and also possibly for skull penetration 

constraint testing, though the authors of [6] only mention that this (skull penetration 

constraints) is handled internally to the mass-spring mesh. 

 

 

Figure #.2: Head model prepared from scan data (left), cut up and simplified to represent the skull (right). 

 

5.3 Muscles 
 

The muscles are made up of segments, which either contract towards the end attached to 

the skull (linear muscle) or towards a point (circular muscle), as was the case with [5]. 

However, Kähler et al go into more detail as to how the muscles interact with each other. 

Whether this extra step makes for an improvement over [5] remains to be seen, however 

it should be explored nonetheless 

Each of the segments is represented by an ellipsoidal shape, and the muscles form 

a more complex system, in which they would be allowed to slide freely across each other 

 

Muscle types are as follows: 

(1) Linear 



 37 

(2) Sheet 

(3) Curved 

(4) Sphincter  

 

 

Fig. 5.3 Different Types of Muscles: (1) Linear (2) Sheet (3) Curved (4) Sphincter 

  

Muscles (1) to (3) expand and contract in a similar manner, while the sphincter muscle (4) acts a 

little different in that its deformation is based on a virtual center, as touched on in [5]. From this 

point on, calculations for muscles (1) to (3) will be referred to as linear muscle calculations 

 

5.4 Skin and Tissue Simulation Guidelines 

 The top layer of model represents the skin 

 Skin layer connects to muscles and bones  

 Nodes and edges of the input triangle mesh comprise initial spring mesh. 

 Each surface node is connected to either the bone layer or to an underlying muscle 

by a spring with low stiffness. 

It is important to note that there is the risk of the skin penetrate skull, if it is treated as a 

simple membrane. There is also the issue of the skin folding over itself. To enforce this, 

Kähler et al employed methods for local preservation proposed by [7] They also attached 
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another outward pulling spring as illustrated in Fig. #.4. They are designed to mirror the 

muscle attachments to force the surface nodes to move tangentially to the skull and 

muscle surface, and thus preventing penetration. 

 

 

 

 

 

Fig. #.4: Mass-spring system in our model. Top: Relaxed muscle, outer springs mirroring skull and muscle attachments.  

Bottom: Contracted muscle, with mass points moving due to the contraction marked by   

 

The equations for motion for the mass-spring system numerically integrated through time 

using explicit forward integration scheme. 

 

 

 

5.5 Quick Verlet Integration Review: 
 

2

00

2

0000

)()(2

))()(()()(

tattxtx

tattxtxtxttx
           (5.1) 

where  

0t  is the current time and Δt is the time step. 

The velocity at each time step is then not calculated until the next time step. 
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t
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)( 00

0            (5.2) 

 

5.6 Muscle Model Calculations  
 

Kähler et al base the muscles on individual fibers that are composed of piecewise linear 

segments. These segments were represented by quadric shapes (ellipsoid) aligned with 

them, and scaled to the length of the muscle segment. 

 They further define the structure of these fibers as having n control points 

)1,...,1,0(3 niRpi  as illustrated in Fig. 5.5. These control points make up a control 

polygon P 

 

Fig. 5.5 Muscle fiber with control polygon P and per-segment ellipsoids. 

 

5.7.1 Contraction 
 

On contraction of a control polygon 1

0}{ n

iipP   to a resized control polygon 1

0}{ n

iiqQ , 

each parameter is assigned a parameter ]1,0[it : 

else
pp

pp

iif

t
n

j jj

i

j jji
,
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1

1 1

1 1           (5.3) 

Scaling is performed using a contraction factor c: 

 }01.0,)1max{(
~

ii tct            (5.4)  
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Figure 5.6: Contraction (c = 1/2 ) of a linear (top) and a sphincter (bottom) muscle fiber. 

The control points pi=0…6 and qi=0…6 represent the relaxed and contracted muscle. 

 

Next it
~

 gets mapped to a index }2,...,0{ nki  of the starting point of it
~

: 

elsetttm

iif
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mim

i
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~
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               (5.5)  

The value m is however not defined. This is possibly an oversight in the article. 

 

With that (5.3), (5.4) & (5.5) the new control Polygon Q can now be computed. 

 

For linear muscles: 
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For sphincter muscles: 

 *)1(* ppcpq ii            (5.7) 

 where: 

 p* is the center point of the muscle 

There is no mention by [Kähler et al] as to whether clamping is performed for the 

contraction factor, but based on earlier calculations, this will be implied. 
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5.7.2 Bulge 
 

To simulate realistic muscle behavior for linear muscles, muscle should get thinner on 

expansion and thicker on contraction, with the center of the muscle exhibiting the biggest 

bulge. Sphincter muscles will act in a slightly different manner, in the sense that the 

muscle will bulge evenly 

 

[Kähler et al] achieve this by introducing a scaling factor ]1,0[is , computed from r

il and 

c

il  whereby it scales the height of each muscle segment 1ii pp  by )21( is  where: 

 ii

r

i ppl 1  is the rest length 

  ii

c

i qql 1  is the current length 

So then: 

 r

i

c

ii lls /1              (5.8) 

If 3n  then 
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5.8  Building Muscles from Geometry 

 
1. Load a face mesh and display it in the editor. 

2. Lay out the fixed end (i.e. the origin) of a muscle by specifying at least two grid points. 

3. Sketch the basic muscle grid row by row. 

4. For a sphincter muscle: specify the center of contraction. 

5. The muscle grid is refined automatically to fit the geometry and the muscle is inserted, 

making it fully functional for immediate testing and re-editing. 

6. Goto step 2 until all muscles are specified. 
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Figure 5.7: A simple grid (left, zygomatic major) and a non-uniform complex grid (right, orbicularis oris). 

 

5.9 Optimizing Muscle Shape Guidelines 

 The surface of a muscle must lie within a prescribed distance range below the skin 

surface. 

 Muscles that are well-adapted to the resolution of the skin mesh 

 Given the skin mesh and a muscle grid, optimization step determines the 

following parameters that are needed to create the muscles: 

  the number of muscle fibers; 

  the number of segments per fiber; 

  width, height, and length of each segment; 

  position of the muscle fiber control points; 

  alignment of the quadrics’ coordinate systems. 

 

5.9.1  Initializing the grid: 

  The initial outline is converted into a regular grid, i.e. all rows are 

assigned the same number of grid points. The grid points are then 

projected onto the face mesh and placed slightly underneath the skin 

surface. 

 

5.9.2 Refining the grid: 
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  The grid is adaptively refined until a decent approximation has been 

found.  

 

5.9.3 Creating the muscle: 

  Muscle fibers are created and aligned to the refined grid. 

 

5.9.4 Attaching the muscle: 

 The muscle is attached to the spring mesh, and the control points of the 

muscle segments are attached to either the skull or the jaw. 

 

 

Figure 5.8: Visual information while editing a muscle: the muscle grid of the currently edited muscle(yellow); the skin vertices 

influenced by this muscle (green dots); muscle control points attached to the jaw (white dots); merged muscle segments (connected by 

green lines). 

 

5.10 Results and Analysis 
 Pros: 

 The muscle model itself performs well with low computational overhead. 

 Once a rough layout for a muscle has been specified, the muscle can be 

automatically rebuilt from this data for many different head models.  

 Cons 

 Polygon count may be undesirable  
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 Skin thickness must remain constant 

 

 

 

 

6 Yuencheng Lee, Demetri Terzopoulos, and Keith Waters  
 

This technique improves on the physics-based facial modeling approach proposed by 

Terzopoulos and Waters. It promises to reduce the amount of work that must be done by 

the animator. Also present in this installment is the ability to articulate the neck. 

The process begins with scanning and creation of the facial mesh, and as with other 

approaches care must be taken not to over-sample the surface because there is a trade-off 

between the number of nodes and the computational cost of the model 

The set of key/landmark points differ slightly from that of [5]. Positions of the nose, eyes, 

chin, ears, and other facial features with respect to the generic mesh are taken into 

account. Facial muscle emergence and attachment points are also known relative to the 

generic mesh and are adapted automatically as the mesh is conformed to the scanned 

data. 

 

6.1 Image Processing 
 

The technique applied to image processing is similar to that employed by the authors of 

[5]. Image resolution on of these scans however was 512x256. 

  

Figure 6.1: (Left) Range data of “Grace” from a Cyberware scanner.  

(Right) Recovered plain data. 
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Figure 6.2: (Left) Texture data of “George” with void points displayed in white and 

 (Right) texture image interpolated using relaxation method. 

 

6.2 Generic Face Mesh and Mesh Adaptation 
 

Automatically produces an efficient triangulation, with finer triangles over the highly 

curved and/or highly articulate regions of the face, such as the eyes and mouth, and larger 

triangles elsewhere. 

 

 

Figure 2: Facial Portion of Generic Mesh in 2D cylindrical coordinates 

 

6.2.1 Mesh Adaptation Procedure 

Lee et al outline the mesh adaptation procedure as follows 

1. Locate nose tip 

2. Locate chin tip 

3. Locate mouth contour 

4. Locate chin contour 
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5. Locate ears 

6. Locate eyes 

7. Activate spring forces 

8. Adapt hair mesh 

9. Adapt body mesh 

10. Store texture coordinates 

 

Lee et al claim to be able to normalize the expression of a given scanned face, should it 

not be in a neutral state: 

1. Perform mesh adaptation procedure without step 3. 

2. Store nodal longitude/latitude into adapted face model. 

3. Perform lip adaptation in step 3 of the mesh adaptation procedure 

4. Store nodal range values into adapted face model. 

 

6.3 The Dynamic Skin and Muscle Model 
 

Upon adaptation a dynamic model of facial tissue is developed. For this model as with 

other techniques we estimate a skull surface, and insert the major muscles of facial 

expression into the model. The following sections describe each of these components.  

 

6.4 Layered Synthetic Tissue Model 

The skull is covered by deformable tissue which has five distinct layers. Four layers make up the 

epidermis, dermis, sub-cutaneous connective tissue, and fascia comprise the skin. The fifth layer 

consists of the muscles of facial expression. Following the work of D. Terzopoulos and K. Waters 

(Physically-based facial modeling) and in accordance with the structure of real skin, have 

designed a new, synthetic tissue model 
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Figure 6.3: (a) Triangular skin tissue prism element. 

(b) Close-up view of right side of an individual with conformed elements. 

 

The tissue model is composed of triangular prism elements which match the triangles in 

the adapted facial mesh. 

 The epidermal surface is defined by nodes 1, 2, and 3, which are connected by 

epidermal springs.  

 The epidermis nodes are also connected by dermal-fatty layer springs to nodes 4, 

5, and 6, which define the fascia surface. Fascia nodes are interconnected by 

fascia springs. 

 They are also connected by muscle layer springs to skull surface nodes 7, 8, 9. 

 

6.5 Discrete Deformable Models (DDMs) 
 

The DDM is composed of a node-spring-node structure. It is a uni-axial finite element. 

The data structure for the node consists of: 

1. the nodal mass: mi  

2. position: t

iiii tztytxtx )](),(),([)(  

3. velocity: dtdxv ii /  

4. acceleration: 22 / dtxda ii   
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5. net nodal forces:  )(tf n

i  

 

The data structure for the spring in this DDM consists of: 

1. pointers to the head node i and the tail node j which the spring interconnects 

2. the natural or rest length kl  of the spring 

3. the spring stiffness 
kc  

 

6.6 Tissue Model Spring Forces (TMSFs) 
 

Lee et al, employ a simplified tissue model (as seen in Fig. 6.3a). Each layer has its own 

stress-strain relationship cj and the dermal-fatty layer uses biphasic springs (non-constant 

cj) 

They define a force spring j which exerts on node i as follows:  

j

r

jjjj sllcg )(  

where: 

r

jl and |||| ijj xxl  are the rest and current lengths for spring  j 

jijj lxxs /)(|  is the spring direction vector for spring  j 

 

 

6.7 Linear Muscle Forces 
 

Despite the extra layers in this model, it acts in a similar fashion to the one proposed in 

[5]. They connect to the skin tissue by short elastic tendons at many fascia points and are 

fixed to the skeleton at only a few points 

Contractions of muscles cause movement of the facial tissue. Face construction algorithm 

determines the nodes affected by each muscle in a pre computation step. 

 

6.8 Applying muscle forces to the fascia nodes 
 

Lee et al calculate a force for each node by multiplying the muscle vector with a force 
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length scaling factor and a force width scaling factor.  

 

Figure 6.4 

 

 

Figure 6.5 

 

Muscle j exerts a force f on node i as follows: 

jijij

j

i mf )()( ,2,1            (6.1)  

where 

 1  scales the force according to the distance or length ratio ij, ,  

jd  = length of muscle j, 

||)/(||))((/,,

F

j

A

jji

F

jjijji mmmxmd   

2  scales the force according to the width ratio jij /,  
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j  = width of muscle j, and 

||))(||, jjijji nnpp   

 jm  is the normalized muscle vector for muscle j 

 

6.9 Piecewise Linear Muscles  
 

As in [Kähler et al] other types of muscles (e.g. sphincter, sheet) build on the most basic 

form (linear).  

Figure 4(b) illustrates two segments of an N-segment piecewise linear muscle j showing 

three nodes 
l

jm ,  
1l

jm  and 
2l

jm . The unit vectors ljm , , 1,ljm 1 and ljn , , 1,ljn  are parallel 

and normal to the segments, respectively. The figure indicates fascia node i at ix , as well 

as the distance balj 1, , the width ji, , and the perpendicular vector ip  from fascia 

node i to the nearest segment of the muscle. The length ratio ij ,  for fascia node i in 

muscle fiber j is: 
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6.10 Volume Preservation forces 

The volume preservation force element e exerts on nodes i in element e is defined as: 

)~()
~

( 21

e

i

e

i

e

i

eee

i ppknVVkq           (6.3) 

where: 

 
eV

~
 and 

eV  = rest volumes for e 

 e

in  = epidermal normal for epidermal node i 

 e

ip~  and e

ip  = rest and current nodal coordinates for node i w.r.t. the center of 

mass of e 

1k   and 2k  =  force scaling constants 
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6.11 Skull Penetration Constraint Forces  
 

The reasons for these forces have already been covered in the previous paper. The force 

is  to penalize fascia node i during motion is: 

 

otherwise
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i

i
0
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          (6.4) 

where  

 n

if  = net force on fascia node i 

 in  = nodal normal of node i  

 

6.12 Equations of Motion for Tissue model 
 

This obeys Newton’s law of motion for tissue model response to forces, which results in 2nd 

order Equations relating to position, velocity & acceleration of nodal forces 

 

Equation for node i: 
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dx
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          (6.5) 

where: 

 im  =  nodal mass  

 i  = dampening coefficient 

 ig~  = is the total spring force at node i 

 iq~  = total volume preservation force at node i 

 is~  = total skull penetration force at node i 

 ih
~

 = total nodal restoration force at node i 

 if
~

 = total applied muscle force at node i 

 

At time t:  

Acceleration of node i =  (net nodal Force at time t) / (mass of node i) 
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The Velocity and distance/length calculated through integration and extended to calculate 

at next time step t + Δt: 
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For their tests, Lee et al used the following as default parameters: 

 

 

6.13 Eyes, Teeth and Other artifacts  
 

The eyes are independent of the muscle-system, and are kinematically operated. Teeth 

were created using NURBS. 

 

7 My Implementation 

While Muscle based approaches have their advantages over parametric approaches to 

facial animation, there is still some work involved in determining morph targets for 

muscles, be it for a generic model, as used in [5] and [6] or simply for a single model. 

Some manual specification would still be required. Furthermore, computation overhead is 

not as favorable as with non-physically based approaches. 

 

With parametric approaches like [2] on the other hand, it is faster to interpolate between 

morph targets. Yet this approach still suffers the problem of being specific to an 

individual model. Looking in a big picture sense, several unique faces would then need to 
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be defined individually, which basically implies N•M sets of data, where N is the number 

of specific models and M is the number of Morph Targets to be used for each Face 

Model. 

 

Looking at the trade offs between the muscle-based and parametric approaches; some 

manual input is still going to be required for defining the morph targets, to achieve 

realistic Facial Animation. 

 

My approach is a parametric one which utilizes some of the basic idea in [5], whereby a 

generic model is used as a source of animation for multiple models. It will focus mainly 

on Speech animation (Animation of emotions being secondary work), so the majority of 

morph targets will be visemes. Though not physically based as in [5], vertex positioning 

for the morph targets of target models will be defined by a generic model, using vertex 

offset technique. Most of the manual input in this approach would apply to the generic 

model, thus making several models a less involved process. The catch to this though, is 

that the models must all be of equal polygon count for this approach to work.  

 

7.2 General Approach  
 

The general approach is to define all morph targets and their (absolute) model space 

vertex positions, for a generic model. Once this has been established, we would then be 

able to use this set of data to define our vertex offsets.  
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Figure 7.1: Generic Model (Middle) and Specific Models (Left & Right) 

 

Transitioning from one morph target to the next could be determined using a number of 

interpolation techniques. The most time-efficient option would be linear interpolation, but 

it is yet to be determined how smooth an animation this would produce with this facial 

animation technique. Another option though not as efficient would be cubic-spline 

interpolation, but this would only be required depending on how smooth the linear 

approach appears to be. 

 

Since we are focusing mainly on speech animation, accompanying the 

interpolation/animation would be a mechanism for generating or recording speech and 

having this audio played in synch with the speech animation. For robustness, we would 

need a way to convert text to speech, speech to text. To go even a step further, user 

recorded voices could be used to synch visemes generated determined by the audio input. 

 

7.3 Tools 
 

Some questions still need to be answered as to how these models are to be created and 
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whether they could be done so in a time efficient manner. And since we will be focusing 

on Speech animation, it would be nice to have an engine to facilitate creating a dialogue, 

also with little time overhead. If we were to generate all the visemes that make up speech 

animation, even for a single sentence, manually, this would be too time consuming. To 

answer these questions, a number of tools were required and leveraged to make this a 

possible. These tools are treated as integral components for the overall animation system.  

The tools used are: 

1. FaceGen Modeller (3.1) 

2. 3ds Max / Panda Exporter 

3. Microsoft SAPI (5.1) 

4. Microsoft DirectX / Visual Studio 

 

7.3.1 FaceGen Modeller (3.1) 

FaceGen is a stand-alone parametric face modeling middleware for Windows (XP or 

Vista). For artists, it is fast and flexible way for creating realistic 3D faces, exportable in 

a number of popular formats. For developers, it is a powerful and easy to use tool for 

(re)creating realistic 3D faces.  
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Figure 7.2 Creating a Model using PhotoFit  

 

There are 2 ways to create faces. They could either be generated at random, or by 

PhotoFit. As the name suggests, PhotoFit is a feature which offers the option to 

customize your own model, using source photoraph(s).  

 

To use PhotoFit, you will need to provide a front view photograph (mug shot) and two 

optional side view photos, as shown in Figure 7.2. You would also have the option to 

define 11 feature points: eyes, cheekbones, mouth, jaw, nose and chin as shown in figure 

7.3 
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Figure 7.3 Creating a Model using PhotoFit  

 

Once these are defined, the next step is to process the image to create a 3D representation  

 

The process takes about 10 to 15 minutes and the result is a set of interchangeable model 

parts of 3 different qualities: 

 Low Resolution   - 790 Quads & 775 Vertices 

 Medium Resolution - 1476 Quads & 1439 Vertices 

 High Resolution    -  5746 Quads & 5832 Vertices 

For best results, the Low resolution face mesh will be used. One advantage of using this 

software is that it uses an equal polygon count for all models. Further fine tuning can also 
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be performed on the model once the processing is completed. The resulting model can 

then be save in FaceGen’s native .fg format, for future use. 

 

7.3.2 3ds Max / Panda Exporter 

In addition to the native format, FaceGen models can also be exported to various standard 

formats, including wavefront .obj. The format of choice for the animation engine is 

DirectX, so we would need 3ds Max with an exporter plug-in to convert .obj files to .x. 

The exporting to .x file process is where Panda Exporter comes into play.  

 

7.3.3 Microsft SAPI (5.1) 

Microsoft’s Speech API will be used for converting Text-to-speech and Voice 

Recognition. This is done through a series of events which will be discussed in further 

detail later on 

 

7.3.3 Microsoft DirectX / Visual Studio 

The Animation Engine Application as a whole is written in C++ in the Visual Studio 

environment. This is seamlessly integrated with DirectX and SAPI to as they are all part 

of the Microsoft family 

 

7.4 Overview 

The general flow of the Animation process is illustrated in Figure 7.4. It outlines the 

aforementioned components, showing how each would relate to each other on a grand 

scheme.  

The SAPI Engine determines listens for events to determine whether information passed 

to it is text or audio. In the case of audio input the engine first performs a speech-to-text 

conversion before converting the text to speech by one of the Microsoft voices. Use of 

the Microsoft Voices is necessary to ensure proper synching of audio with the speech 

animation. 
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Figure 7.4 

 

Model Creation, performed offline is the model creation. It is done before the animation 

application is run. Upon application initialization, a model is loaded via an XML script 

into the scene of the Facial Animation engine.  

 

7.5 Facial Animation Engine 
 

To get a better understanding of how components are used it is important to take a closer 

look at the animation engine. It is essentially comprised of 3 major components: 

 SkinManger 

 Speech Wrapper  

 VisemeTrack 
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Figure 7.5: A Closer Look at the Facial Animation Engine 
 

7.6 Skin Manager  
 

All objects created in FaceGen are made up of eye, teeth, tongue and skin meshes. The 

skin manager, the core of the animation focuses on manipulating the skin mesh of the 

face model. It has access to the vertex buffer of the skin mesh and control over the 

vertices that define the skin mesh. All animation via interpolation between Visemes and 

other Morph Targets, are performed here. As it was mentioned earlier, this is a parametric 

approach which makes use of a vertex data of a source generic model. But it has yet to be 

discussed, the process of defining this source data. 

 

7.6.1 Defining Generic Model Vertex Data  

In total, FaceGen has 38 Morph Targets, but since the focus is on speech animation, half 

of these can be ignored. 
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Defining the generic data is a one time process. 17 visemes are created to define the 16 

viseme morphs and a neutral state.  These morph targets can be previewed under the 

morph Tab as shown in figure 7.6 below 

 

 

Figure 7.6: Morph (Viseme) Targets 

 

These visemes are exported to .obj files which each contain vertex data of the different 

meshes that make up the model. As mentioned earlier, we only need data for the skin 

mesh. For convenience and also to save space, all the Skin mesh vertex data for each 

viseme is compiled into one data file. It can be thought of as a collection of tables, each 

named according to the viseme file they originated from. These tables contain per row, 

information on a vertex index number, its position and normal in model space. With this 

data it is now possible to interpolate between targets of the generic model.  

 

But how does one apply this to a specific model. With the generic model’s vertex data, 
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the skin manager has enough information to generate viseme offsets. This can be done on 

initialization of the Facial Animation Application. The offset for a given vertex is 

determined by computing the vector defined by its position for a given viseme, and its 

position on the neutral target.  

 

To compute a vertex offsets (V): 

VG,p[i] = (VG,p[i] -VG,N[i])          (7.1) 

Where: 

i: a given vertex index 

G:  generic Model 

p:  one of the 16 viseme targets 

N:  Neutral viseme 

 

In order to keep track of all the data, a collection of Viseme objects is required. A 

Viseme object is comprised of all the vertices that make up the skin mesh of a morph 

target. Also included in this object, are generic model offsets determined using equation 

(7.1), and normals:  

 

class Viseme 

{ 

   std::map<UINT, D3DXVECTOR3>  m_v3DVerts; // Model Space Position  

   std::map<UINT, D3DXVECTOR3>  m_vNeutralOffset; //from Neutral Viseme 

   std::map<UINT, D3DXVECTOR3>  m_vNormals;  

public: 

   Viseme (); 

   ~Viseme (); 

}; 

  

The skin manager stores all of objects in a Viseme Container which is basically a table of 

all of Viseme Objects. In addition to the 16 viseme targets + the neutral target (of the 

generic model), we also need to include a viseme object for the specific model. This 

additional viseme object represents the Neutral state of the specific model.  
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7.6.2 Determining vertex offsets of the Specific Model 

Viseme Targets for the specific models are determined by applying the vertex offsets 

computed in (7.1) to the vertices of the specific model. It should be pointed out that these 

specific models can be thought of as the Neutral morph target for a given specific model 

 

 

The equation to compute a Viseme target (VS) for a specific model: 

Vs,p[i] = Vs,N[i] + (VG,p[i] -VG,N[i])      (7.2) 

Where: 

i: a given vertex index 

s: specific model 

G:  generic Model 

p:  one of the 16 viseme targets 

N:  Neutral viseme 

 

 

This method works seamlessly with models of equal polygon count and vertex indexing. 

We can go one step further and include an offset modifier (0.0 – 1.0), to control degree of 

articulation: 

Vs,p[i] = Vs,N[i] + (VG,p[i] -VG,N[i]) • M     (7.3) 

Where: 

M:  Offset Modifier 

 

The lower value of M, the less articulation occurs. By default, the value of M is 1.0 which 

reduces equation (7.3) back to (7.2) 

 

7.6.3 Interpolation Technique used 

Calculating vertex positions between 2 Visemes p and q is done by linear interpolation: 

Vsx[i] = Lerp(Vsp[i], Vsq[i], t) 

                          = (1-t)•Vsp[i]   +  t•Vsq[i]     (7.4) 



 64 

Where: 

i: a given vertex index 

s: specific model 

t:  normalized time between visemes  

p:  one of the 16 viseme targets 

q:  also one of the 16 viseme targets 

 

Vsp[i] and Vsq[i]   are computed using equation 7.3. Linear interpolation turns out to be the 

best option in this case as the resulting animation appeared as smooth as some higher 

order interpolation techniques, such as cubic spline interpolation. 

 

7.7 Speech Wrapper 
 

The Speech Wrapper leverages functionality of the speech API, Microsoft SAPI 5.1. It 

offers a variety of options, some of which are beyond the scope of this project, but the 2 

main areas of interest for integration into the Facial Animation Engine, are the Text-to-

Speech (TTS) and Speech-To-Text (our Speech Recoding (SR). For both, a series of 

events are used to determine Visemes parameters, for animation. In order to capture these 

events, three interfaces will be required: ISPVoice, ISpRecognizer and ISpRecoContext.  

 

7.7.1 ISpVoice 

Text synthesis operations are performed using this interface. Sources could be either a 

text string, text file, or an audio file.  These operations may be performed synchronously 

or asynchronously.  

This can also be used to modify the state of the voice (pitch, rate, volume etc), either in 

via SAPI XML tags in input text, or in real time using the various Set methods ISPVoice 

provides. Our facial Animation engine provides an interface to leverage these functions  
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Figure 7.7 SpeechWrapper User Interface 

ISpVoice inherits from ISpEventSource and ISPNotifySource, methods to specify how 

notifications are received and, which events should trigger notifications for the 

SpeechWrapper to take action. For this project, the events of interest are as follows: 

SPEI_START_INPUT_STREAM: On notification, the SpeechWrapper notifies the 

Skin Manager to begin animation  

SPEI_END_INPUT_STREAM: On notification, the SpeechWrapper notifies the Skin 

Manager to stop animation  

SPEI_WORD_BOUNDARY: Useful for displaying text on screen one word at a time  

SPEI_VISEME: When text is spoken via the ISPVoice::Speak method, a series of 

events is triggered, including all the visemes that make up the input text. It should be 

noted that the SAPI, assumes a set of 21 visemes. In order to make use of them 

effectively, an intermediate conversion is required to map any one of these 21 visemes to 

the 16 generated in FaceGen. Included in the viseme events are the current Viseme, 

duration of the current viseme and the next visemes. 

 With these 3 pieces of information, interpolation may be performed immediately. In fact, 

since we’re using the default TTS Voices, it makes most sense to perform immediate 

interpolation, concurrent with the audio playback. The Speech wrapper passes on the 

current Viseme information to the Skin Manager: 

 SkinSystem::SetCurrentVisemeInfo(currentVisID, fDuration, nextVisID) 
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The downside to immediate interpolation is that there is not enough information provided 

for Phoneme Reduction. The Facial animation provides a Viseme Track that aims to 

resolve the problem.  

 

7.7.2 ISpRecognizer & ISpRecoContext 

The ISpRecognizer is used to control aspects of the Speech Recognition Engine. 

Attached to it is a recognition context (ISpRecoContext), through which we will be able 

to control and handle recognition events. Like the ISpVoice object, we set the events we 

are interested in for the recognition context, using the ISpRecoContext::SetInterest 

method. 

e.g. 

const ULONGLONG ullInterest = SPFEI(SPEI_RECOGNITION)| SPFEI(SPEI_HYPOTHESIS) | 

SPFEI(SPEI_SR_AUDIO_LEVEL); 

//Set intereted in the Events defined above   

m_cpRecoCtxt->SetInterest(ullInterest, ullInterest); 

Events of interest (from the recognition context) are: 

SPEI_RECOGNITION: On notification, this event contains a RecoResult object which 

may be converted to text. 

SPEI_FALSE_RECOGNITION: On notification, do nothing 

 

 SPEI_SR_AUDIO_LEVEL: Audio levels ranging from 0 – 100 can be gathered for 

each phoneme event. 

 

7.7.3 Recognition Accuracy 

 Voice training sessions are required for improved sound recognition results. These 

training sessions are available as part of the Microsoft Speech SDK  

  

7.8  Viseme Track 

 
The viseme track is a container made up of markers which represent visemes interpreted 

by the SpeechWrapper. Markers or Marker objects consist of the following data: 
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1. ID: unsigned integer ranging from (0-16), representing visemes  

2. Duration: time in seconds representing the difference between the start 

time of the current viseme to be entered, and the next viseme.  

3. UI render components: to be displayed on screen (as shown in Fig 7.8). 

They are displayed as bars and text, showing the Phonemes a  given 

marker’s viseme ID represents 

Each time we convert Text-To-Speech, Viseme events (SPEI_VISEME) are triggered, 

during which markers may also be placed on the track. For every new entry, the track 

automatically rescales according to the updated total time, computed by the total of the 

duration values of all the markers.  

 

 

Figure 7.8 Viseme Track Segment 

 

Markers may also be manually modified or deleted, opening up the possibility for manual 

phoneme reduction, and possibly lip syncing with human voice playback 
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7.9 User Interface 
 

 

 

 

 

 

 

 

 

 

 

Figure 7.6 

 

 

 

 

 

 

 

Figure 7.9 UI Interface 

 

Figure 7.9 illustrates the user interface for the entire application. Users can toggle face 

models, play and replay recorded input, load text files for text-to-speech conversion, 

toggle voice recognition mode. Also included are the options edit the viseme track or 

control the offset scale introduced in equation 7.3.  

 

 

 

 

8 Summary 
 

We investigated a couple of different animation techniques, identified areas of concern in 
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each case and examined a number of relatively new approaches which apparently solved 

a number of the problems brought about by its predecessors.  

Whether these techniques are practical for use in real time gaming remains to be seen, but 

they are innovative approaches nonetheless which could be applied in other areas such as 

animated movies or video game cut-scenes. 

 

My implementation was introduced to address the issues and concerns of both muscle 

based and parametric animation techniques, and the result proved to be very positive, 

with lower computational overhead than muscle based approaches and an average frame 

rate exceeded 200 FPS. Like the new batch of physically based implementations, my 

parametric technique is applicable to multiple faces using an adaptation technique. 

 

There are however, some limitations. Specific models must be same resolution as the 

generic model for adaptation to be successful. Provided that a common modeling 

package, is used, this should not be an issue 

 
 

9 Future Work 
 

Future implementation include more focus on animation of emotion, currently models 

have 3 non viseme morph targets: blink and eyebrow raising both of which currently 

occur at random, and a closed mouth smile, which can only be triggered manually 

Currently only smile, blink, eyebrow raise. Enhancement would involve the addition of 

more expressions and tying some of them to with speech, to visually reflect a change in 

tone.  

 

Another area of interest is the automation of phoneme reduction, using the data gathered 

by the viseme track. Manual reduction is currently possible, but this quickly becomes an 

arduous task as the amount of speech increases 

  

Currently, the engine has only been thoroughly tested with low resolution, and it is yet to 

be seen if using higher resolution models would result a significant dip in frame rate.  
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