
Contents 

I Survey 1 

1 Introduction 1 

2 Vector Calculus 2 

2.1 Scalar and Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
2.2 Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
2.3 Divergence and Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
2.4 Divergence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
2.5 Computational Fluid Dynamics (CFD) Equations . . . . . . . . . . . . . . . . 7 
2.6 Conservation of Mass Derivation . . . . . . . . . . . . . . . . . . . . . . . . . 7 
2.7 Conservation of Momentum Derivation . . . . . . . . . . . . . . . . . . . . . . 9 
2.8 External Forces Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
2.9 The Navier-Stokes Equations (Putting it all together) . . . . . . . . . . . . . 14 

3 Toward Interactive-Rate Simulation of Fluids with Moving Obstacles Us-

ing Navier-Stokes Equations 14 

3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 
3.2 Visual Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
3.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
3.4 Streak Lines and Floating Objects . . . . . . . . . . . . . . . . . . . . . . . . 20 
3.5 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

4 Rapid, Stable Fluid Dynamics for Computer Graphics 21 

4.1 Shallow Water Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 
4.2 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
4.3 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
4.4 The Third Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 
4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 

5 Stable Fluids 27 

5.1 Basic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 
5.2 Method of Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

5.2.1 Method of Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 31 
5.3 Di˙usion and Projection in the Fourier Domain . . . . . . . . . . . . . . . . . 33 

5.3.1 The Fast Fourier Transform (FFT) . . . . . . . . . . . . . . . . . . . . 33 
5.3.2 Di˙usion in the Fourier Domain . . . . . . . . . . . . . . . . . . . . . . 34 
5.3.3 Projection in the Fourier Domain . . . . . . . . . . . . . . . . . . . . . 34 

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 

6 Particle-Based Fluid Simulation for Interactive Applications 36 

6.1 Smoothed Particle Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . 36 
6.2 Modeling Fluids with Particles . . . . . . . . . . . . . . . . . . . . . . . . . . 38 
6.3 Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 
6.4 Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 
6.5 External Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

i 



6.6 Surface Tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 
6.7 Smoothing Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 
6.8 Surface Tracking and Visualization . . . . . . . . . . . . . . . . . . . . . . . . 42 
6.9 Point Splatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 
6.10 Marching Cubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 
6.11 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 

7 Hypertexture 45 

7.1 Modeling Hypertexture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 
7.2 Base Density Modulation Functions . . . . . . . . . . . . . . . . . . . . . . . . 46 
7.3 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 
7.4 Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 
7.5 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 
7.6 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 
7.7 Higher Level Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 
7.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 

8 Worthy Mentions 50 

II Implementations 52 

9 3D Liquid Surface 52 

9.1 Height Field Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 
9.2 Grid-Based Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 

9.2.1 Data and Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 
9.2.2 Implementation of Stam's Solver . . . . . . . . . . . . . . . . . . . . . 54 
9.2.3 Inferring Third Dimension . . . . . . . . . . . . . . . . . . . . . . . . . 57 

9.3 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 
9.3.1 Specular Color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 
9.3.2 Refractive Color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 
9.3.3 Re˛ective Color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 
9.3.4 Color Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 

9.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 

10 3D Liquid Volume 63 

10.1 Particle-Based Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 
10.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 
10.1.2 Grid Partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 
10.1.3 Thread Pool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 
10.1.4 The Core SPH Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 

10.2 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 
10.2.1 Thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 
10.2.2 Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 
10.2.3 Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 
10.2.4 Final Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 

10.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 

ii 



III Conclusions and Future Work 81 

iii 



Part I 

Survey 

1 Introduction 

Fluid simulation is a very active topic in the ˝eld of computer science. The complexity 

of many ˛uid phenomena makes them di°cult to replicate, but when done properly yields 

visually pleasing results. The high challenge and high reward makes it a very appealing 

topic to most computer scientists, and is a driving motivator behind this survey. However, 

visually pleasing simulations tend to come at a high cost computationally, especially due to 

the complex behavior of ˛uid, and in many cases make it implausible to run at interactive 

rates. For this reason, computer scientists have simpli˝ed components of the equations that 

describe the behavior of ˛uid in an attempt to overcome this obstacle. This, coupled with 

the increasing power of computers, is making realistic, real-time water simulation possible. 

The following is a survey on the topic of water simulation in the ˝eld of computer science. 

This survey will highlight the most prominent schools of thought in this ˝eld. Though there 

are many di˙erent ways to go about simulating ˛uid, most borrow from Eulerian-grid-

based or Lagrangian-particle-based approaches. Before getting into the ˝ner details of these 

approaches, it is important to understand the mathematics behind them. Therefore, the ˝rst 

sections of this survey will go over necessary vector calculus and ˛uid-dynamics equations. 

1 



2 Vector Calculus 

2.1 Scalar and Vector Fields 

Because ˛uid is a continuous ˛uid, and its characteristics at some position within it can vary 

drastically from any other point in the ˛uid, the notion of a scalar or vector ˝eld becomes 

a very powerful tool. A scalar ˝eld is a function of position that results in a scalar value 

denoted as 

f(p) = f(x, y, z) = s, 

where p is a three dimensional vector and s is a scalar value. For example, the temperature, 

t, of some ˛uid at position p, would be f(p) = t. A vector ˝eld, on the other hand, is a 

function of position that results in a vector denoted as 

f(p) = f(x, y, z) = v, 

where v is a three dimensional vector. An example of this might be the direction, v, of ˛ow 

in a ˛uid at position p. 

A two dimensional vector ˝eld. 

2.2 Gradient 

Now that a data structure, that can be used to represent the state of a volume of ˛uid, has 

been de˝ned, it is important to de˝ne operators that can be applied to it. The gradient, for 

2 



example, when applied to a scalar ˝eld, results in a vector ˝eld, where each vector points in 

the direction of the greatest increase of the scalar ˝eld. The gradient is de˝ned by 

� � � � 
∂ ∂ ∂ ∂sf ∂sf ∂sf r(sf ) = , , sf = , , ,
∂x ∂y ∂z ∂x ∂y ∂z 

where r, nabla, is the gradient operator and sf is a scalar ˝eld. For example, if 

2 3 4 sf = x yz + 2xy z + 3xyz , 

then 

� � 
2 3r(sf ) = vf 2xyz, 6xy z, 12xyz

A scalar ˝eld overlaid with its resultant vector ˝eld after application of gradient operator. 

Note The gradient can also be applied to a vector ˝eld. In this case the application results 

in a matrix that represents the rate of increase, or acceleration. 

2.3 Divergence and Flux 

First consider ˛ux. Flux, denoted as Φ, is the total volume of ˛uid passing through a surface 

per unit time, i.e.: 

ˆ
Φ = v · ndS, 

S 

3 



	

where v is a vector representing the ˛ow, n is a vector perpendicular to the surface S, and 

Φ is the resultant ˛ux. 

A two dimensional depiction of the ˛ux through a ˛uid surface. 

For example, let p = {1, 2, 3}, v = {1, 2, 1}, n = {1, 0, 0}, and δy, δz = 2. Where p is the 

center of the sub surface of S, v is the vector at position p in the vector ˝eld and n is a 

vector normal to the surface S. Then the ˛ux, Φ, at position p is 

334343 ˆ 

2 

ˆ 

1

v · nδyδz =
ˆ 

2 

ˆ 

1 

1δyδz =
ˆ 

1 

y|42δz =
ˆ 

1 

2δz = 2|31 = 4 = Φ. 

Now consider the divergence of a vector ˝eld as it relates to ˛ux. The divergence of a 

vector ˝eld yields a scalar ˝eld, where each scalar value represents the net ˛ux through the 

surface of the volume surrounding its position in the ˝eld as that volume approaches zero, 

i.e.: 

r · vf = limV →0

ˆ
v · n 

δS, (2.1)
VS 

where V is an arbitrary volume of ˛uid around the position of the vector v. For example, 

let vf be a vector ˝eld such that: 

�
2 2 32 3 3 vf = x + y + z, x + y + z , x + y + z 

then, 

4 



	 	� � 
∂ ∂ ∂ � �

2 2 2 3 3 3 2 r · vf = , , · x + y + z, x + y + z , x + y + z = 1 + 2y + 3z 
∂x ∂y ∂z 

2.4 Divergence Theorem 

Integrating both sides of equation 2.1 over the volume, V , yields: 

ˆ ˆ
(r · vf ) dV = vf · ndS, 

V S 

which is the divergence theorem. The divergence theorem states that the ˛ux through a 

˛uid's surface is equal to the volume integral of its divergence. The divergence theorem was 

˝rst discovered by Joseph-Luis Lagrange [20] in 1762 and later by Gauss [6] and Green [9]. 

To conceptualize this, think of a ˛uid in a rectangular, axis aligned cube, with boundaries 

{a ≤ x ≤ b, c ≤ y ≤ d, e ≤ z ≤ f}. 

An axis aligned cube representing the volume of a ˛uid. 

The ˛ux along the x axis is 

ˆ ˆ
vf · ndS1 + vf · ndS2. 

S1 S2 

Expanding out the surface integrals gives: 

ˆ f ˆ d ˆ f ˆ d 

− vf (a, y, z) · ndydz + vf (b, y, z) · ndydz, 
e c e c 

5 



or, 

ˆ f ˆ d 

(vf (b, y, z) − vf (a, y, z)) · ndydz. 
e c 

The fundamental theorem of calculus states that 

ˆ b 

f(x)dx = F (b) − F (a), 
a 

´ b ∂vxtherefore replacement of (vf (b, y, z) − vf (a, y, z)) with a ∂x dx can result in 

ˆ f ˆ d ˆ b ∂vx 
dxdydz. 

∂x e c a 

The same can be said for the y and z axis. Adding them together yields 

ˆ ˆ f ˆ d ˆ b � � ˆ
∂vx ∂vy ∂vz 

vf · ndS = + + dxdydz = (r · vf ) dV. 
∂x ∂y ∂z s e c a V 

This concludes the vector calculus review of the survey. What has been reviewed should 

prove to be enough of a basis to start the derivation of the ˛uid equations shown in the 

following sections. 

6 



2.5 Computational Fluid Dynamics (CFD) Equations 

With the basics of vector calculus understood, the fundamental mathematics behind com-

putational ˛uid dynamics can now be derived. Sections 2.6, 2.7 and 2.8 contain derivations 

of key components of the Navier-Stokes equations as shown in [1]. These equations are the 

basis for all realistic water simulations. 

2.6 Conservation of Mass Derivation 

The change in mass of a volume of ˛uid can be described as the rate of change of the 

volume's density multiplied by its area, denoted: 

∂ ∂ρ 
Mass = δxδyδz. 

∂t ∂t 

The rate of mass entering the volume in the positive x direction is the density times the 

velocity in the x direction times the area of the surface it is ˛owing through, denoted: 

ρvxδyδz. 

Because the mass ˛ux may have changed within the volume, the ˛ux through the opposite 

surface of the volume in the x direction is the sum of the density and the change in density 

multiplied by the sum of the velocity in the x direction and the change in velocity in the x 

direction all multiplied by the area of the surface � the ˛ux is negative because the ˛ow is 

now leaving the volume. 

−(ρ + δρ)(vx + δvx)δyδz 

Follow this same logic for the y and z directions and add them all up to get the total change 

in mass within the volume. 

∂ρ 
∂t δxδyδz = ρvxδyδz − (ρ + δρ)(vx + δvx)δyδz 

+ ρvyδxδz − (ρ + δρ)(vy + δvy)δxδz 

+ ρvzδxδy − (ρ + δρ)(vz + δvz)δxδy 

7 



Multiplying and expanding terms in the second column of the right side of the equation 

yields: 

∂ρ δxδyδz = ρvxδyδz − (ρvx + ρδvx + δρvx + δρδvx)δyδz ∂t 

+ ρvyδxδz − (ρvy + ρδvy + δρvy + δρδvy)δxδz 

+ ρvzδxδy − (ρvz + ρδvz + δρvz + δρδvz)δxδy 

Pulling out the area terms gives: 

∂ρ δxδyδz = (ρvx − ρvx − ρδvx − δρvx − δρδvx)δyδz ∂t 

+ (ρvy − ρvy − ρδvy − δρvy − δρδvy)δxδz 

+ (ρvz − ρvz − ρδvz − δρvz − δρδvz)δxδy 

Canceling out ρvf in the ˝rst two columns results in: 

∂ρ δxδyδz = (−ρδvx − δρvx − δρδvx)δyδz ∂t 

+ (−ρδvy − δρvy − δρδvy)δxδz 

+ (−ρδvz − δρvz − δρδvz)δxδy. 

As we take the limit δp, δv we can neglect higher order terms. Because of this the last terms 

multiplied by δyδx are dropped resulting in: 

∂ρ δxδyδz = (−ρδvx − δρvx)δyδz ∂t 

+ (−ρδvy − δρvy)δxδz 

+ (−ρδvz − δρvz)δxδy, 

or, via the chain rule: 

∂ρ δxδyδz = −δ(ρvx)δyδz ∂t 

+ −δ(ρvy)δxδz 

+ −δ(ρvz)δxδy. 

Divide by the area of the volume. 

8 



∂ρ −∂ρvx= ∂t ∂x 

∂ρvy+ − ∂y 

−∂ρvz+ ∂z 

Rearrange and set equal to zero. 

∂ρ ∂ρvx ∂ρvy ∂ρvz 
+ + + = 0 

∂t ∂x ∂y ∂z 

The density within the volume is constant, so the ˝rst term is zero. The remainder is the 

density of the volume multiplied by the divergence of the velocity ˝eld, which is the total 

change of the mass within the volume. This change is zero, therefore mass is conserved. 

ρ(r · vf ) = 0 

2.7 Conservation of Momentum Derivation 

First, recognize that the change in momentum equation can be denoted as the following: 

∂ ∂ 
Momentum = ρvf δxδyδz. 

∂t ∂t 

With that in mind, the following derivation will focus on momentum in the x direction. The 

complete set of equations will be derived later, by symmetry. The momentum ˛ux in the x 

direction is the product of the mass ˛ux and the velocity in the x direction, therefore the 

momentum ˛ux in the x direction of the surface of a volume whose normal is < −1, 0, 0 > 

can be written as 

ρvxvxδyδz. 

The ˛ux through the opposite surface of the volume, with normal < 1, 0, 0 >, would then 

be written as 

� � 
∂ − ρvxvx + ρvxvxδx δyδz. 
∂x 

9 



The momentum ˛ux through the y and z surfaces can be symmetrically described as the 

equation above and after summing them all together with external forces in the x directions, P 
fx, the result is the following: 

� �
∂ ∂ρvxδxδyδz = ρvxvxδyδz − ρvxvx + ρvxvxδx δyδz ∂t ∂x � � 

∂+ ρvyvxδxδz − ρvyvx + ∂y ρvyvxδy δxδz � �
∂+ ρvzvxδxδy − ρvzvx + ρvzvxδz δxδy ∂z P 

+ fx. 

The ˝rst two columns cancel out. This simpli˝es to 

� � 
∂ρvx ∂ρvxvx ∂ρvyvx ∂ρvwvx 

X 
+ + + δxδyδz = fx. 

∂t ∂x ∂y ∂z 

Next, expand with the product rule to yield the following equation: 

∂ρ ∂ρvx ∂ρvy ∂ρvz ∂vx ∂vx ∂vx ∂vx 
X 

vx + vx + vx + vx + ρ + ρvx + ρvy + ρvz = fx. 
∂t ∂x ∂y ∂z ∂t ∂x ∂y ∂z 

Use conservation of mass equation to cancel out the four terms on the left. 

∂ρ ∂ρvx ∂ρvy ∂ρvz ρ∂vx ∂vx ∂vx ∂vx 
P 

vx + vx + vx + vx + + ρvx + ρvy + ρvz = fx∂t ∂x ∂y ∂z ∂t ∂x ∂y ∂z � � P∂ ∂vx ∂vy ∂vz ρ∂vx ∂vx ∂vx ∂vxρvx + + + + + ρvx + ρvy + ρvz = fx∂t ∂x ∂y ∂z ∂t ∂x ∂y ∂z P 
ρ∂vx ∂vx ∂vx ∂vxρvx(r · vf )+ + ρvx + ρvy + ρvz = fx∂t ∂x ∂y ∂z 

ρ∂vx ∂vx ∂vx0+ + ρvx + ρvy + ρvz 
∂vx = 

P 
fx∂t ∂x ∂y ∂z 

Following this same logic for the y and z directions yields the equations 

X∂vx ∂vx ∂vx ∂vx
ρ + ρvx + ρvy + ρvz = fx,
∂t ∂x ∂y ∂z 

∂vy ∂vy ∂vy ∂vy 
X 

ρ + ρvx + ρvy + ρvz = fy,
∂t ∂x ∂y ∂z 

10 



and 

X∂vx ∂vx ∂vz ∂vz
ρ + ρvx + ρvy + ρvz = fz,
∂t ∂x ∂y ∂z 

which is 

X∂vf
ρ( + vf · rvf ) = f. 

∂t 

2.8 External Forces Derivation 

The conservation of momentum equation requires knowledge of the external forces. There 

are two types of external forces that can be applied to a ˛uid. The ˝rst type, body forces, 

are applied to the entire volume. Gravity, for example, would be described as 

fg = gρδxδyδz. 

The second type, surface forces, are described as the sum of stresses on a given sub-surface 

of the volume of ˛uid. This stress must be calculated for each sub-surface of the volume. 

Stress, denoted σij , is an outward force, where i is the normal direction of the surface and j 

is the direction of the stress. Knowing this, the stress on a surface with normal < −1, 0, 0 > 

in the x direction can be described as 

fsx1 = −σxxδyδz, 

and the stress on a surface with normal < 1, 0, 0 > in the same direction as 

� � 
∂ 

fsx2 = σxx + σxxδx δyδz. 
∂x 

Sum these two to get the following: 

� � 
∂ 

fsx1 + fsx2 = −σxxδyδz + σxx + σxxδx δyδz 
∂x 

or 

11 



∂ 
fsx1 + fsx2 = σxxδxδyδz. 

∂x 

Now, to get the total amount of stress force in the x direction, add forces due to shearing. 

Which are obtained in a similar fashion as just shown. Adding them all up gives us the total 

amount of stress in the volume: 

X ∂ ∂ ∂ 
fx = σxxδxδyδz + σyxδxδyδz + σzxδxδyδz 

∂x ∂y ∂z 

or 

� �X ∂ ∂ ∂ 
fx = σxx + σyx + σzx δxδyδz. 

∂x ∂y ∂z 

Stress can be further broken up into stress due to pressure, p, and stress due to the viscosity 

of the ˛uid, τij . Pressure, acting inward, is negative, while viscosity forces push out. τxx 

describes the normal viscosity forces in the x direction, while τyx and τzx describes viscous 

stress due to shearing. 

� �X ∂ ∂ ∂ ∂p 
fx = τxx + τyx + τzx − δxδyδz 

∂x ∂y ∂z ∂x 

For the purposes of this derivation, it is assumed that the ˛uid in question is an incompress-

ible newtonian ˛uid. In such a case the viscous stresses are described as the following: 

∂vx
τxx = 2µ ,

∂x 

� � 
∂vy ∂vx

τyx = µ + ,
∂x ∂y 

and 

� � 
∂vz ∂vx

τzx = µ + . 
∂x ∂z 

Plug these values into the stress equation to get: 

12 



X � � � � � �� � � �� � 
∂ ∂vx ∂ ∂vy ∂vx ∂ ∂vz ∂vx ∂p 

fx = 2µ + µ + + µ + − δxδyδz. 
∂x ∂x ∂y ∂x ∂y ∂z ∂x ∂z ∂x 

Now expand and rearrange the equation to make it more manageable: 

� �X ∂2vx ∂2vx ∂2vx ∂2vx ∂2vy ∂2vz ∂p 
fx = µ + + + + + − . 

∂x2 ∂y2 ∂z2 ∂x2 ∂x∂y ∂x∂z ∂x 

The last three terms inside the parentheses can be dropped due to conservation of momen-

tum. 

P ∂2vx ∂2vx ∂2vx ∂2vx ∂2vy ∂2vz ) − ∂p fx = µ( + + + + +
∂x2 ∂y2 ∂z2 ∂x2 ∂x∂y ∂x∂z ∂x � �P ∂2vx ∂2vx ∂2vx ∂ ∂vx ∂vy ∂vz ) − ∂p fx = µ( + 

∂y2 + + ∂x + ∂y + ∂z ∂x2 ∂z2 ∂x ∂x P ∂2vx ∂2vx ∂2vx ∂ ) − ∂p = µ( + + + (0)fx ∂x2 ∂y2 ∂z2 ∂x ∂x P ∂2vx ∂2vx ∂2vx ) − ∂p fx = µ( + + + 0
∂x2 ∂y2 ∂z2 ∂x 

And the sum of all external forces due to stress in the x direction is: 

� 
∂2

� 
∂p X ∂2 ∂2vx vx vx

fx = µ + + − . 
∂x2 ∂y2 ∂z2 ∂x 

The y and z stresses can be symmetrically derived to yield the ˝nal set of equations: 

� �X ∂2 ∂2 ∂2vx vx vx ∂p 
fx = µ + + − ,

∂x2 ∂y2 ∂z2 ∂x

� 
∂2 � 

∂p X ∂2 ∂2vy vy vy
fy = µ + + − ,

∂x2 ∂y2 ∂z2 ∂y 

and 

� �X ∂2 ∂2 ∂2vz vz vz ∂p 
fz = µ + + − 

∂x2 ∂y2 ∂z2 ∂z 

. 

Syntax of the above equations can be simpli˝ed to the following single equation: 

13 



X 
2fx = µr vf −rp. 

2.9 The Navier-Stokes Equations (Putting it all together) 

So far the derivation of the conservation of mass and momentum, as well as the equations 

that describe external forces have been shown. Putting all these equations together gives us 

the following: 

∂vf 2ρ( + vf · rvf ) = µr vf −rp + g
∂t 

or 

∂vf µ 2 1 
= −(vf · r)vf + r vf − rp + g

∂t ρ ρ 

Where −(vf ·r)vf describes the advection, 
µ
ρ r

2vf describes the stress forces due to viscosity, 

1 
ρ rp describes the stress forces due to pressure, and g describes external body accelerations 

such as gravity. That coupled with the conservation of mass equation: 

r · vf = 0 

gives us the complete derivation of the Navier-Stokes equations � named after Claude-Luis 

Navier and George Gabriel Stokes for their mathematical contributions to the equations. 

3 Toward Interactive-Rate Simulation of Fluids with Moving 

Obstacles Using Navier-Stokes Equations 

Chen and Lobo simulated a three-dimensional liquid surface in [3]. However, they only 

apply the ˛uid dynamics equations in two-dimensional space. After solving the equations 

for a two dimensional grid, they use the pressure of each cell to determine a height, and thus 

yielding the third dimension. This is justi˝ed by the fact that when incompressible water 

rushes into a single area that is bounded on the bottom, the pressure forces the column of 

14 



water to rise vertically. 

3.1 Implementation 

Chen and Lobo solve the Navier-Stokes equations using a ˝nite-di˙erencing solution, that 

uses penalization. Essentially they change the conservation of mass equation to: 

εp + r · vf = 0, ε > 0, ε → 0 

Where ε is the penalty parameter. In addition to this they describe the viscosity term of 

the Navier-Stokes equation as: 

1 2 r vf
Re 

Where Re is the Reynolds number, a parameter that indicates the ˛ow regime of the ˛uid. 

ρvL The parameter is de˝ned as Re = µ , where L and v are a characteristic length and velocity. 

For spacial descritization they make use of a staggered marker and cell mesh, illustrated by 

the image below. 

Where u and v are the velocities in the x and y directions, and p is the pressure at that 

point. With this data structure in mind, the process of updating the velocity ˝eld is the 

following: 

� � 
n+1 n n n 2 n u = u + −a −41 

xp +
1 rhu 4t1 1 1 11 i+ ;j i+ ;j i+ ;j i+ ;ji+ ;j Re 2 2 2 22

� � 
1n+1 n n 2 n−41 

yi;j+
+ −bn 4t+ rv = v p hv1 1 1 11 i;j+ i;j+ i;j+i;j+ Re 2 2 2 22 

15 



n+1 n+141 u + 41v 
n+1 x i;j y i;j

p = −i;j ε 

Where i and j are indexes into the mesh ˝eld, n is the current state of the ˝eld, and n + 1 

is the state of the mesh ˝eld after an amount of time has passed, 4t. The operators 41 ,x

41 2, and r are de˝ned as: y h 

� �1 41 
x ;m − fl− 1 

2
;m fl;m = fl+ 1 4x 2

� �1 41 
y 1 

2 
− fl;m− 1 

2 
fl;m = fl;m+4y 

2 rhfl;m = 4xxfl;m + 4yyfl;m 

fl+1;m − 2fl;m + fl−1;m4xxfl;m = 
24x

fl;m+1 − 2fl;m + fl;m−14yyfl;m = 
24y

n and bnThat leaves the ˝nal terms still not de˝ned, a , which are described by the 1 1i+ ;j i;j+
2 2 

following: 

40 
x 40 

y
n n n + V n 

i+
n a = u u u1 1 1 1 1i+ ;j i+ ;j i+ ;j ;j i+ ;j

2 2 2 2 2

40 
x 40 

ybn 
i;j+

= Un 
i;j+

n n n+ vv v1 1 1 1 1 
2

i;j+ i;j+ i;j+
2 2 2 2 

where 

� �1 
Ui;j+ 1 1 ;j + ui+ 1 ;j+1 + ui− 1 ;j+1 + ui− 1 ;j = ui+42 2 2 2 2

16 



� �1 
Vi+ = ;j 4 

vi+1;j+ 1 
2 
+ vi;j+ 1 

2 
+ vi+1;j− 1 

2 
+ ui;j− 1 

2 
1 
2

1 40 
xfl;m = (fl+1;m − fl−1;m)

24x 

1 40fl;m = (fl;m+1 − fl;m−1)y 24y 

After calculating the velocities of the waters surface at each edge of the mesh, the ˝nal ˛ow 

˝eld at each point can be calculated by: 

+ ui−ui+

vi;j+

1 1;j ;j
2 2ui,j = 
2 

1 
2 

1 
2 
+ vi;j−

Finally, a vector can be drawn from a single point in the grid (i, j) using the velocity at that 

point. Scaling that vector in the third dimension allows for three dimensional rendering of 

the ˛uid. 

3.2 Visual Steps 

To aid in the visualization of the above equations, here are a few diagrams that map out 

what values are modi˝ed for which terms of the update equation. 

vi,j = 
2 

17 



Figure 1: Advection term of the velocity update. 

Figure 2: Pressure term of the velocity update. 

18 



Figure 3: Viscosity term of the velocity update. 

Figure 4: Pressure update. 

19 



3.3 Boundary Conditions 

Chen and Lobo describe two types of ˝xed boundary conditions in this paper. The ˝rst, 

external boundaries, are those that encase the ˛uid volume, or are at least on some edge of 

the volume, a wall or riverbed for example. The second, internal boundaries, are those that 

are encased by the ˛uid, like a post or a bridge. In addition to this, Chen and Lobo also 

implemented moving boundaries in their simulation. Moving boundaries would be needed 

to show the reaction of water to objects moving through the water, like a boat or buoy. 

Applying these boundary conditions to the velocity ˝eld requires a simple set velocity to a 

speci˝c cell in the surface mesh. 

3.4 Streak Lines and Floating Objects 

To simulate streak lines in the ˛uid, particles are introduced into the system at several 

di˙erent origins and are allowed to ˛ow freely on the surface. Their positions are updated 

by the value of the velocity ˝eld at their current positions. This results in streak lines due 

to particles following the ˛ow of the ˛uid at the surface. This same logic can be used for 

free ˛oating objects in the water. Their positions are simply updated by the surface velocity 

of the ˛uid at their position. 

3.5 Stability 

Essentially, this solver becomes more stable as its time steps and Reynolds numbers shrink, 

and as its penalty parameters grow. However, smaller time steps result in a slower simulation, 

smaller Reynolds numbers result in less turbulent or laminar waters, and large penalty 

numbers result in an inaccurate simulation. Balancing these values are essential to the 

stability and accuracy of the simulation. 

20 



4 Rapid, Stable Fluid Dynamics for Computer Graphics 

The work of Kass and Miller [16] is based on three assumptions. The ˝rst assumption is that 

the water's surface can be represented by a height ˝eld. This limits the simulation to ˛uid 

without splashing or wave breaks. The second assumption is that the velocity of the water 

in the vertical direction can be ignored. This means that the more vertical or steep a wave 

gets the less accurate the simulation will be. The ˝nal assumption is that the horizontal 

velocity of the ˛ow is nearly constant. This takes away the possibility for turbulent water. 

Though this approach is somewhat limited when it comes to certain ˛uidic phenomena, it 

makes up for these limitations with speed and stability. 

4.1 Shallow Water Equations 

The three assumptions stated above allow Kass and Miller to make use of the widely used 

Shallow Water Equations. These equations are extremely simpli˝ed versions of the Navier-

Stokes equations. The equations are described as such: 

∂u ∂u ∂h 
+ u + g = 0 (4.1)

∂t ∂x ∂x 

∂d ∂ 
+ (ud) = 0 (4.2)

∂t ∂x

Where g is the acceleration due to gravity, z = h(x) is the height of the water surface, 

z = b(x) is the height of the ground, d(x) = h(x) − b(x) is the water depth, and u(x) is the 

horizontal velocity of a vertical column of water. From here, Kass and Miller make another 

assumption that the velocity of the liquid is small and the depth varies slowly. With these 

additional assumptions in mind, the equations can be further simpli˝ed. First, the ˛uid 

velocity is considered small enough that the second value of equation 4.1 can be ignored 

resulting in: 

∂u ∂h 
+ g = 0 

∂t ∂x 

Now focusing on equation 4.2, expand out all terms to get: 

21 



∂(h − b) ∂u ∂d 
+ d + u = 0 

∂t ∂x ∂x 

or 

∂h ∂b ∂u ∂d − + d + u = 0 
∂t ∂t ∂x ∂x 

The height of the surface on which the ˛uid rests never changes with respect to time, so the 

second term can be ignored, thus yielding: 

∂h ∂u ∂d 
+ d + u = 0 

∂t ∂x ∂x 

Finally, the third term can be ignored, because velocity is very small and the depth is slowly 

varying. Equations 4.1 and 4.2 now become: 

∂u ∂h 
∂t 
+ g 

∂x 
= 0 (4.3) 

∂h ∂u 
∂t 
+ d 

∂x 
= 0 (4.4) 

Combining equations 4.3 and 4.4 result in a ˝nal single equation that can later be descritized. 

To do so, ˝rst di˙erentiate equation 4.3 with respect to distance. 

� � 
∂ ∂u ∂h 

+ g = 0 
∂x ∂t ∂x 

∂ ∂u ∂g ∂h ∂2h 
+ + g = 0 (4.5)

∂x ∂t ∂x ∂x ∂x2 

∂ ∂u ∂2h 
+ g = 0 

∂x ∂t ∂x2 

The second term in equation 4.5 drops, because gravity is constant and, thus, its derivative 

is zero. Now di˙erentiate equation 4.4 with respect to time. 

22 



� � 
∂ ∂h ∂u 

+ d = 0 
∂t ∂t ∂x 

∂2h ∂d ∂u ∂ ∂u 
+ + d = 0 (4.6)

∂t2 ∂t ∂x ∂t ∂x 

∂2h ∂ ∂u 
+ d = 0 

∂t2 ∂t ∂x 

The second term in equation 4.6 drops, because one of the assumptions is that the horizontal 

velocity is relatively constant, therefore its derivative can be considered zero. Next simply 

substitute for the cross derivatives to get the ˝nal equation describing the height of the ˛uid. 

∂2h ∂2h − gd = 0 
∂t2 ∂x2 

or 

∂2h ∂2h 
= gd 

∂t2 ∂x2 

4.2 Discretization 

The equation above must be transform into something discrete if we are to calculate a 

solution computationally. To do this, Kass and Miller use a forward-di˙erencing approach 

described by the following set of equations. 

� � � � 
∂hi di−1 + di di + di+1 

= ui−1 − ui
∂t 24x 24x 

∂ui −g (hi+1 − hi) 
= 

∂t 4x 

Where 4x is the separation of the samples along the x direction. When these equations are 

put together they produce the discrete approximation of the ˝nal shallow water equation. 

To do so, ˝rst take the second derivative of the ˝rst equation: 

23 



� � � � � �� � 
∂2hi ∂ di−1+di di−1+di ∂ui−1 = ui−1 +∂t2 ∂t 24x 24x ∂t � � �� �� � � 

∂ di+di+1 di+di+1 ∂ui− ui − .∂t 24x 24x ∂t 

Assume the change in depth is constant and then substitute the change in velocity to get 

� � � � 
∂2hi di−1 + di di + di+1 

= −g (hi − hi−1) + g (hi+1 − hi) . 
∂t2 2(4x)2 2(4x)2 

4.3 Integration 

The discrete ˛uid equation must be integrated to give the height of the ˛uid at each position 

in the map. Kass and Miller use a ˝rst-order implicit method, where h(n) is the height at the 

nth iteration and dots above h denote di˙erentiation with time. They write the ˝rst-order 

implicit equations as: 

h(n) − h(n − 1) ˙= h(n)
4t 

ḣ(n) − ḣ(n − 1) ¨ = h(n)
4t 

Rearrange these equations to get the following: 

h(n) = h(n − 1) + 4tḣ(n − 1) +(4t)2ḧ(n) 

h(n) = 2h(n − 1) − h(n − 2) +(4t)2ḧ(n) � � 
di−1+dihi(n) = 2hi(n − 1) − hi(n − 2) −g(4t)2 (hi(n) − hi−1(n))2(4x)2 � � 
di+di+1+g(4t)2 (hi+1(n) − hi(n))2(4x)2 

The main goal here is to come up with a linear equation that can be rapidly solved. The 

equation above, however, is still not linear because d depends on h. To solve this problem, 

Kass and Gaven treat d as a constant. This ˝xes the velocity as a function of x and allows 

the height to be calculated using a symmetric tri-diagonal linear system. Before deriving the 

symmetric tri-diagonal linear matrix from the equation above lets ˝rst respectively abstract � � � � 
di−1+di di+di+1g(4t)2 , , and to A, B, and C. Then the equation becomes: 
2(4x)2 2(4x)2 

24 



hi(n) = 2hi(n − 1) − hi(n − 2) − AB (hi(n) − hi−1(n)) + AC (hi+1(n) − hi(n)) 

Distribute A's, B's, and C's: 

hi(n) = 2hi(n − 1) − hi(n − 2) − ABhi(n) + ABhi−1(n) + AChi+1(n) − AChi(n) 

Rearrange, so that all heights based o˙ current step n are on the left side of the equality: 

−ABhi−1(n) + hi(n) + ABhi(n) + AChi(n) − AChi+1(n) = 2hi(n − 1) − hi(n − 2) 

Now pull out like terms: 

−ABhi−1(n) + (1 + AB + AC) hi(n) − AChi+1(n) = 2hi(n − 1) − hi(n − 2) 

Notice that the left side of the equation is now organized in such a way that adding up all 

the terms is the same process as multiplying the height ˝eld by the following matrix: 

⎞⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

(1 + AB + AC)0 −AC0 

−AB0 (1 + AB + AC)1 −AC1 

. . . . . . . . . 

−ABn−3 (1 + AB + AC)n−2 −ACn−2 

−ABn−2 (1 + AB + AC)n−1 

Label the above matrix as matrix M . Now the ˝nal discrete equation for animating the 

˛uid can be described as the following linear equation: 

25 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 



Mhi(n) = 2hi(n − 1) − hi(n − 2) 

4.4 The Third Dimension 

This approach can be used to simulate the animation of ˛uid in three dimensions as well as 

two. This is done by now solving a series of two dimensional equations and changing the 

second derivative of h with the Laplacian: 

� � 
∂2h ∂2h ∂2h 

= gd + = gdr 2h 
∂x2 ∂x2 ∂y2 

4.5 Results 

With this implementation, Kass and Miller have come up with a stable, real-time 

simulation for ˛uid animation. The algorithm is linear and highly parallel. 

26 



5 Stable Fluids 

In this paper Stam [37] presents a model for solving the full Navier-Stokes set of equations 

with real-time-interactive frame rates and unconditional stability. The main idea behind 

this model is the use of the Helmholtz-Hodge Decomposition on the velocity ˝eld to project 

it onto its divergence free part. 

5.1 Basic Equations 

The Helmholtz-Hodge Decomposition states that any vector ˝eld w can uniquely be decom-

posed into the form: 

w = r× (G(r× w)) −r(G(r · w)) 

Where the ˝rst term has zero divergence and the second is a scalar ˝eld � G is a special 

type of integral called the Newtonian Potential. Using this the Navier-Stokes equations can 

be solved and the resultant velocity ˝eld can be projected onto its divergence free part � 

the projection operator being P : 

� � � � 
∂u 1 2P = P −(u · r)u − rp + νr u + g
∂t ρ 

or, 

∂u � �
2 = P −(u · r)u + νr u + f 

∂t 

Notice that the pressure term dropped from the right side of the equation. This is due to 

the fact that the curl of the gradient of a scalar ˝eld is equal to zero. Also u is already 

divergence free, so applying the P operator to the left side of the equation will result in 

itself. 

5.2 Method of Solution 

Stam solves the above equation in four main steps, add forces, advect, di˙use, then project. 

If wi is an intermediate state of the velocity ˝eld then this process can be illustrated by the 

27 



following diagram. 

Add Force Updating the external force term is a simple addition between the previous 

state force and the current force multiplied by the change in time. 

w1(x) = w0(x) + 4tf(x, t) 

Advect To compute the advection step, Stam uses the Method of Characteristics. Es-

sentially, a particle is traced from the current position back in time to a previous position. 

The new velocity at the current point is then set to the velocity that the particle had at its 

previous location 4t ago. 

w2(x) = w1(p(x, −4t)) 

To prove that this approach is valid see section 5.2.1. 

Di˙use The next step in the solution is the di˙usion step. To solve this Stam uses an 

implicit method. 

w3(x) − w2(x) 
= νr 2 w3(x)4t 

2 w3(x) − w2(x) = ν4tr w3(x) 

2 w3(x) − ν4tr w3(x) = w2(x) 

28 



(I − ν4tr 2)w3(x) = w2(x) 

Where I is the identity operator. This is known as a Poisson equation. To solve this ˝rst 

make the Laplacian operator discrete by changing it from 

∂2 ∂2 ∂2v v v2 r v = + + 
∂x2 ∂y2 ∂z2 

to 

∂2v vi−1,j,k + 2vi,j,k + vi+1,j,k 
= 

∂x2 4x2 

∂2v vi,j−1,k + 2vi,j,k + vi,j+1,k 
= 

2∂y2 4y

∂2v vi,j,k−1 + 2vi,j,k + vi,j,k+1 
= 

∂z2 4z2 

where v is some three dimensional vector ˝eld, in this case w3. If the grid sizes are equal in 

length then the equation can be further simpli˝ed to 

� � 
∂2v 1 

= [v ∗ +6vi,j,k]
∂r2 4r2 

v∗ = vi−1,j,k + vi+1,j,k + vi,j−1,k + vi,j+1,k + vi,j,k−1 + vi,j,k+1 

Now that a discrete solution has been found, apply it to the di˙usion step. 

(I − ν4tr 2)w3(x) = w2(x) 

2 w3(x) − ν4tr w3(x) = w2(x) 

29 



�� 
ν4t 

w3i,j,k(i, j, k) − [w3(i, j, k) 
∗ + 6w3(i, j, k)] = w2(i, j, k)24r

� �� � 
4r2 

ν4t 

2 

w3(i, j, k) − w3(i, j, k) 
∗ + 6w3(i, j, k) = 

4r
w2(i, j, k)

ν4t 

� �� � 
4r2 

ν4t 

2 

− 6 w3(i, j, k) + w3(i, j, k) 
∗ = 

4r
w2(i, j, k)

ν4t 

The ˝nal equation could be thought of as a series of two dimensional linear equations of the 

form 

Aw3(x) = b 

where 

⎤��⎡ 
24r − 6 1ν4t 

. . . .1 . . 
A = 

⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎦ 
. . . . . . 1 �� 

24r1 − 6ν4t 

� �
24r

b = w2(x)
ν4t 

Now with a discrete and linear di˙usion equation, apply one of many techniques for solving 

Poisson equations. For example, Gauss-Seidel Relaxation could be used to ˝nd a solution: 

⎞ X 
⎛ 

nXi−1
k⎝bi − ai,j wj − 

1k k−1⎠w = ai,j wi jai,i j=1 j=i+1 

30 



Project The solution to the projection step is very similar to the di˙usion step. This is 

because, using Helmholtz-Hodge Decomposition, 

w4(x) = w3(x) −rq 

or 

0 = r · w3(x) −r2 q 

Again, a Poisson equation of the form 

� � 
1 

0 = r · w3(x) − [q ∗ + 6qi,j,k]24r

must be solved. Once q is found, subtract its gradient from w3(x) to get the ˝nal projection. 

5.2.1 Method of Characteristics 

The ˝rst order wave equation, 

∂u ∂u 
c + = 0,
∂t ∂x 

describes the movement of a wave in one direction with no change of shape. Using the 

method of characteristics, the partial di˙erential equation can be converted into several 

ordinary di˙erential equations, by expressing the curve in the x − t plane parametrically. To 

do so, let 

x = x(r) 

and 

t = t(r) 

where r is distance along the curve. Therefore, 

31 



u(x, t) = u(x(r), t(r)) 

making u a function of r. u's derivative with respect to r would then be 

du dx ∂u dt ∂u 
= + . 

dr dr ∂x dr ∂t 

Comparing this to the ˝rst order wave equation, 

du 
dr 
= 0, 

when, 

dx 
= c 

dr 

and, 

dt 
= 1. 

dr 

This shows that u is constant along the characteristic curve, but may be di˙erent on di˙erent 

characteristic curves. Now integrate these equations to get 

u = constant, 

x = cr + x0, 

and 

t = r. 

Which implies that x − ct = x0. 

32 



5.3 Di˙usion and Projection in the Fourier Domain 

Stam also proposes a more elegant solution, by solving the di˙usion and projection steps in 

the Fourier domain. However, this solution will only work for ˛uids with periodic boundaries 

(boundaries that wrap around). Though ˛uids with periodic boundaries do not show up in 

nature, this technique still has its applications. For example, a ˛uid simulation could be 

solved for one speci˝c portion of a plane, and then be tiled to cover the rest. 

Figure 5: Because of the periodic boundaries of this solver, ˛uid ˛ows can be tiled along 
surfaces. 

For this approach the method of solution goes as follows: 

1. Add force ˝eld 

2. Advect velocity 

3. Transform to Fourier domain 

4. Di˙use velocity 

5. Project velocity 

6. Inverse transform from Fourier domain 

Because the ˝rst two steps of this approach are the same as what has been described 

before they will not be described again here. 

5.3.1 The Fast Fourier Transform (FFT) 

Stam does not implement his own FFT solver, due to the fact that there are many �black 

box� solvers that can be easily found and do the job e°ciently. Instead, he makes use of 

MIT's FFTW [5]. 

33 



For this very reason further detail about the FFT will be omitted from this survey. Es-

sentially, the FFT can take a set of values (a velocity ˝eld for example) from the time domain 

to the frequency domain where certain calculations become much easier. For example, in 

the Fourier domain most di˙erential equations become algebraic. 

5.3.2 Di˙usion in the Fourier Domain 

After transforming into the Fourier domain, higher spacial frequencies are ˝ltered out by a 

˝lter whose decay depends on the magnitude of the wave direction, viscosity and the time 

step denoted 

−k2∗visc∗δt . 

Here is a code snippet from Stam's solver that does just this: 

5.3.3 Projection in the Fourier Domain 

Just as explained earlier Stam uses the Helmholtz Hodge Decomposition to project onto a 

˝nal, stable solution for the ˛uid. Only now the decomposition is applied in the Fourier 

domain. Here is an example of how decomposition might compare between the two domains: 

34 



Helmholtz Hodge Decomposition in time (top row) and frequency (bottom row) domains. 

The left most column being the initial velocity ˝eld, middle - the divergence free ˝eld, and 

right most - the gradient ˝eld. 

Notice how each velocity vector in the gradient ˝eld is parallel to the wave direction and in 

the mass conserving ˝eld it is perpendicular. This means that projecting the velocity onto 

the mass conserving ˝eld requires a simple projection onto the plane parallel to the direction 

of the wave. This is shown by the following code snippet: 

After projection, the velocity ˝eld is then inversely transformed from the frequency domain 

back into the time domain and is used as the solution ˝eld for the current time step. 

5.4 Results 

Stam has implemented both a two and three dimensional ˛uid solver at interactive rates. 

Figures 6 and 7 were taken from the three dimensional solver on an SGI Octane workstation 

with R10K processor and 192 Mbytes of memory. 

Figure 6 

Figure 7 

35 



6 Particle-Based Fluid Simulation for Interactive Applications 

In [27], Muller et al. propose a particle-based approach, based on Smoothed Particle Hy-

drodynamics (SPH) to animate arbitrary ˛uid motion. Before this paper, SPH had been 

used to depict ˝re and other gaseous phenomena, as well as highly deformable bodies. This 

paper extends this method focusing on the simulation of ˛uids. 

6.1 Smoothed Particle Hydrodynamics 

SPH is an interpolation method for particle systems. This method calculates some value for 

a particle at a speci˝c point in space by distributing quantities from neighboring particles 

using radial symmetrical smoothing kernels. A scalar quantity A of a particle is interpolated 

at location r by a weighted sum of contributions from all particles. This is denoted 

X Aj
AS(r) = mj W (r − rj , h) 

j 
ρj 

where j iterates over all particles, mj is the mass of particle j, rj its position, ρj the density 

and Aj the ˝eld quantity at rj . The function W (r, h) is called the smoothing kernel with 

core radius h. The smoothing kernel is essentially a function that, when applied, dictates 

how much a value from a certain particle at rj will impact the queried position r, based 

o˙ their distance from each other and an arbitrary fallo˙ point h. The Gaussian bell curve 

would be a good example of this (see following ˝gures). 

1 r 2 

W (r, h) = 3 e − 
2h2 , h > 0 

(2πh2) 2 

36 



Figure 8: A standard normalized Gaussian bell curve. 

Figure 9: A visual representation of the interpolation of some value at position r, between 
particles within a smoothing kernel's radius h. 

37 



An example of calculating the density of a speci˝c particle using this technique would look 

like the following: 

X ρj X 
ρS (r) = mj W (r − rj , h) = mj W (r − rj , h) . 

ρjj j 

The derivative of a value would look like this: 

X AjrAS(r) = rmj W (r − rj , h) 
j 

ρj 

� �X Aj AjrAS (r) = rmj W (r − rj , h) + mj rW (r − rj , h) 
j 

ρj ρj 

� �X AjrAS (r) = 0 × W (r − rj , h) + mj rW (r − rj , h)
ρjj 

X AjrAS(r) = mj rW (r − rj , h) 
j 

ρj 

6.2 Modeling Fluids with Particles 

Like most ˛uid simulation approaches, start with the Navier-Stokes equations: 

∂ρ 
+ r · (ρv) = 0 

∂t 

and, 

� � 
∂v 2ρ + v · rv = −rp + ρg + µr v. 
∂t 

And like other approaches simplify the equations down to something more manageable. 

Because this approach is particle based, mass is guaranteed not to changed and therefore 

the ˝rst equation can be ignored completely. Also, because the particles move with the ˛uid 

and the velocity and density of the ˛uid at any given point is tied to each particle, momentum � �
∂v is guaranteed to be conserved and the advection portion of the equation ∂t + v · rv can 

38 



be reduced to just the time derivative ∂v This means that∂t . 

� � 
∂v 2ρ = −rp + ρg + µr v, 
∂t 

which implies that the acceleration of a particle i is: 

∂vi fi 
ai = = 

∂t ρi 

where fi is a summation of all the forces on the right hand side of the original equation. 

The following sections will de˝ne how to go about calculating fi. 

6.3 Pressure 

When calculating pressure with SPH, one would think to simply plug in the pressure term 

−rp into the SPH equation, yielding: 

X pj−rp(ri) = − mj rW (ri − rj , h) . 
ρjj 

However, this is not symmetric (think of the case with only two particles of di˙erent pressure 

values). To solve this use: 

fpressure 
X pi + pj

= −rp(ri) = − mj rW (ri − rj , h)i 2ρjj 

where the SPH equation now yields the mean of the pressures of interacting particles. 

6.4 Viscosity 

Using SPH for the viscosity term, also, is not symmetrical. 

X 
2 µr v(ri) = µ mj 

vj r 2W (ri − rj , h) . 
j 

ρj 

An intuitive solution is to change the above equation to 

39 



viscosity 2 
X vj − vi

f = µr v(ri) = µ mj r 2W (ri − rj , h) .i 
j 

ρj 

This makes sense because viscosity is solely based on the di˙erence between velocities. Using 

this a single particle is accelerated by the velocities relative to its surrounding position. 

6.5 External Forces 

For calculating accelerations due to external forces, such as gravity, SPH is not necessary. 

For this model the accelerations are simply added directly to the a˙ected particle itself. 

6.6 Surface Tension 

Though surface tension does not show up in the Navier-Stokes equations, it is important to 

include in the model. Surface tension is a force that pushes into the ˛uid volume and in 

doing so minimizes its curvature. 

Unstable forces push down on the surface particles � minimizing their curvature. 

To apply this force ˝rst identify the surface of the ˛uid using the following SPH equation: 

X 1 
cS (r) = mj W (r − rj , h) . 

ρjj 

Now apply the gradient operator to convert to a ˝eld of vectors pointing into the surface. 

40 



n = rcS 

Then ˝nd the divergence of the vector ˝eld to obtain a ˝eld of scalars that de˝ne the 

curvature of the surface (the negative ensures positive values for convex ˛uid volumes). 

−r · rcS
κ = 

|n| 

or 

−r2cs
κ = 

|n| 

Put these two equations together to get the surface tension: 

f surface = σκn 

where σ is a surface tension coe°cient that depends on the two ˛uids that form the surface. 

6.7 Smoothing Kernels 

Just as most grid-based ˛uid solvers use di˙erent di˙erencing schemes for updating velocities, 

particle-based ˛uid solvers use what are called smoothing kernels. Muller et al. in [27] use 

three smoothing kernels for all of its SPH equations. 

For pressure computations use the following: 

15 (h − r)3 0 ≤ r ≤ h 
Wspiky(r, h) = 

πh6 ⎪⎪⎩ 0 otherwise 

⎧ ⎪⎪⎨ 

For viscosity computations: 

41 



� 

15 − r
3 
+ r

2 h+ − 1 0 ≤ r ≤ h
2h3 h2 2r 

⎧ ⎪⎪⎨ ⎪⎪⎩ 0 otherwise 

Wviscosity(r, h) = 
2πh3 

All other SPH computations: 

⎧ ⎪⎪⎨ ⎪⎪⎩ 

�3
h2 − r2 0 ≤ r ≤ h 

0 otherwise 

315 
Wpoly6(r, h) = 

64πh9 

It is important to note that in the Wpoly6 kernel r only shows up as r2 � reducing the 

number square-root calculations. However, Wpoly6's gradient goes to zero when r is zero, 

which isn't a very good characteristic for measuring pressure in the ˛uid. This is because for 

very close particles, the forces that push them away goes to zero resulting in a clumping of 

particles. To solve this Muller et al. use Wspiky which has a gradient that is always positive. 

The gradient is not the only problem with the Wpoly6 kernel. Another problem is that its 

Laplacian changes sign. This becomes a problem when di˙using the ˛uid. If this kernel were 

to be used, some particles, depending on their relative distances, would become accelerated, 

which is not the proper behavior. To solve this problem Muller et al. make use of what they 

call Wviscosity, the Laplacian of which is always positive. 

6.8 Surface Tracking and Visualization 

In order to visualize the ˛uid surface some sort of mesh must be de˝ned from the mass 

of points. In [27] Muller et al. implement two di˙erent algorithms, point splatting and 

marching cubes. Between the two, the point splatting approach is fast, while the marching 

cubes approach is accurate. 

42 



6.9 Point Splatting 

Point splatting can by done numerous ways, but in general the algorithm entails projecting 

the surface points into screen space and blending colors according to basis functions. Muller 

et al. reference techniques by Zwicker et al. in [45]. 

Figure 10 

As seen in Figure 10 each point has a small radius where neighboring colors are sampled 

and ˝ltered. Once the circle is projected into screen space, however, its shape becomes an 

ellipse. Because of this an Elliptical Weighted Average formulation is used (EWA) from [10]. 

6.10 Marching Cubes 

The marching cubes algorithm [21] constructs a mesh from as set of points identi˝ed as the 

surface of the object being rendered. This is done by grabbing eight neighboring points and 

forming a cube around them. Depending on where the points are located in the cube, one of 

256 possible surface intersections can be possible (28 = 256, where 8 is the number of sides 

of the cube). Using rotational and translational symmetry the possible surface intersections 

can be further simpli˝ed to the 15 cases shown in Figure 11. 

Figure 11 

43 



As the algorithm 'marches' from cube to cube it determines which of these 15 cases best ˝ts 

how the surface intersects each cube. The best case is chosen and the proper vertices and 

surface normals are calculated to represent the ˝nal mesh. 

6.11 Results 

The liquid in Figure 12 was sampled with 2200 particles. Image (a) shows the individual 

particles, while (b) and (c) are rendered using the point splatting and marching cubes 

techniques, respectively. Running on a 1.8 GHz Pentium IV PC with a GForce 4 graphics 

card, (a) and (b) achieve 20 frames per second, while (c) runs at 5. Though using the 

marching cubes technique is much slower than point splatting, it yields a much more realistic 

representation of the ˛uid. 

Figure 12 

44 



7 Hypertexture 

Another approach for rendering ˛uids is with the use of noise-based hypertextures. A hy-

pertexture is essentially a volumetric texture animated by some arbitrary algorithm. Perlin 

et al. [31] de˝ne their hypertextures as density regions between the surface of an object 

and the non-surface. They do this because in˝nitesimally thin surfaces are insu°cient to 

properly de˝ne realistic surfaces. Furry, or corroded surfaces are good examples of this, see 

Figure 13. 

Figure 13: Example of a hypertexture volume that represents a corroded surface. 

With this approach objects are no longer modeled as connected surfaces, but as a distri-

bution of density. The base shape of the density distribution is broken up into a completely 

solid region and a malleable region where, in the malleable region, the surfaces can be 

deformed. This can be applied to ˛uids, by de˝ning functions that deform the malleable 

surface over time according to the CFD equations. 

7.1 Modeling Hypertexture 

Perlin et al. hypertextures are de˝ned by two functions. The ˝rst being an Object Density 

Function, D(x), with range [0, 1], which describes the 3D shape of the object for all positions 

x in R3 space. In other words the malleable region of a given object consists of all x such that 

0 < D(x) < 1. The second is a Density Modulation Function fi, which is used to modulate 

the density of a given object within its malleable region. Using these two equations the 

hypertexture can be de˝ned like so: 

45 



H(D(x), x) = fn(...f2(f1(f0(D(x))))) 

An example of the density function that might de˝ne a spherical geometry with position, 

radius, and softness c, r, and s could look something like this: 

⎧ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

2r1 := (r − s/2)2 

2r0 := (r + s/2)2 

2D[c,r,s](x) = r := (xx − cx)2 + (xy − cy)2 + (xz − cz)2 
x 

if(r n 

2 2≤ r1)then{1.0}elsex 
D := o 

2 2 (r0
2−rx2 )

if(r ≥ r0)then{0.0}else 2 2x (r0 −r1 ) 

where r0 is the outer (D = 0) boundary, r1 is the inner (D = 1) boundary and rx is the 

radius of the sphere at the point x. 

7.2 Base Density Modulation Functions 

Perlin et al. base all higher level modulation functions o˙ of four main base modulation 

functions � bias, gain, noise, and turbulence. 

7.3 Bias 

Bias is used to push up or pull down density values between zero and one. If the desired 

bias is b then biasb(0) = 0, biasb(1 ) = b, and biasb(1) = 1. Using bias 1 as the identity for2 2 

the bias function it can be de˝ned as the power function 

ln(b) 
ln(0.5)t . 

See the following ˝gure for a visual representation of di˙erent bias functions. 

46 



7.4 Gain 

Gain is used to ˛atten or steepen the a density gradient. Perlin et al. de˝ne their gain 

function as gaing(0) = 0, gaing(1/4) = (1−g)/2, gaing(1/2) = 1/2, gaing(3/4) = (1+g)/2, 

and gaing(1) = 1. This can be de˝ned as a spline of two bias curves: 

if(t < 0.5)then{bias1−g(2t)/2} 

else{1 − bias1−g(2 − 2t)/2}. 

As shown in the following ˝gure. 

7.5 Noise 

The third base density modulation function is noise. Perlin et al. sum pseudo-random spline 

knots of each point on the integer lattice in R3 . The knot Ωi,j,k consists of a pseudo-random 

linear gradient Γi,j,k smoothed by a drop o˙ function ω(t). 

Ωi,j,k(u, v, w) = ω(u)ω(v)ω(w)(Γi,j,k · (u, v, w)) 

where 

ω(t) = if(|t| < 1)then{2|t|3 − 3|t|2 + 1}else{0}. 

Using this the noise at point (x, y, z) is equal to 

x+1 y+1 z+1XXX 
Ωi,j,k(x − i, y − j, z − k). 

i=x j=y k=z 

Γi,j,k is found by hashing (i, j, k) to create an index into a precomputed gradient table G 

47 



Γi,j,k = G{φ(i + φ(j + φ(k)))} 

where φ(i) = P [imod(n)], and P is a precomputed array containing a pseudo-random per-

mutation of the ˝rst n integers, G is a precomputed array of n pseudo-random vectors, 

uniformly distributed on the unit sphere, and n is the length of the P and G arrays. 

7.6 Turbulence 

Using the previously described noise function, the last base function, turbulence, can be 

described like so: 

� �X 1 � � 
abs noise 2i x 

2i 
i 

Perlin et al. point out that this is not a true turbulence function, but merely a method of 

simulating turbulent activity. 

7.7 Higher Level Functions 

Using these base functions, di˙erent phenomena can be simulated. For example, the density 

equation 

� � �� 
1 

D(x) = sphere x 1 + noise (fx) ,
f 

1where f is the frequency and f is the amplitude, results in a 'noisy sphere'; see following 

˝gure. 

Changing the frequency and amplitude results in the following: 

48 



Perlin et al. composed di˙erent base functions to result in many di˙erent phenomena. Here 

are a few more examples of what can be simulated using this technique. 

49 



7.8 Results 

Hypertextures make it easy to model objects that cannot be simply de˝ned by their surface 

alone. Unlike traditional models, where objects are de˝ned by their surface alone, hypertex-

tures de˝ne the density of the object at every position in R3 . Though the run-time of this 

model is O(n3), it is highly parallel, and an increase of processor count results in a linear 

decrease in execution time of the algorithm. 

8 Worthy Mentions 

The ˝eld of ˛uid simulation is vast and there are many papers describing di˙erent solvers 

for ˛uids under di˙erent conditions. Most of which build upon the fundamentals of other 

research papers highlighted in this survey; nevertheless, they are worth mentioning for future 

research pursuits. 

Shallow Waves In [42] Wang et al. describe a framework for solving General Shallow 

Wave Equations (GSWE). This paper extends the GSWE to solve for external forces such 

as gravity a surface tension, as well as interactions with rigid bodies. 

Deep Water The deep water solver of Jensen et al. in [15] is presented as a solution 

to simulating deep ocean waves and interactions. This solver is a hybrid of three di˙erent 

solvers; Fast Fourier Transform (FFT), Navier-Stokes Equations (NSE), and Shallow Water 

Equations (SWE). 

50 



Viscus Fluids In this paper [44] Yongning Zhu and Robert Bridson extending an exist-

ing particle-based ˛uid simulator to accommodate inter-grain and boundary friction thus 

yielding a sand simulator. 

Turbulence Many papers focus on solver ˛uid in its most general cases. This paper 

[18], however, focuses on ˛uid when it's in its most turbulent form speci˝cally focused on 

producing small-scale detail. 

Streams and Flows Here there is a focus on moving water, whether it be as stream 

˛owing down a bank [23] or poured through the air onto a surface [14]. 

51 



Part II 

Implementations 

The rest of the paper will be focusing on simulations based o˙ of the implementation of 

solvers mentioned in the survey part of the paper. Two types of simulations (3D liquid 

surface and 3D liquid volume) will be discussed, using three di˙erent solvers (height ˝eld, 

grid, and particle). 

All implementations were written using DirectX 10.1 using HLSL 4.0 

9 3D Liquid Surface 

9.1 Height Field Solver 

The Height ˝eld solver is by far the simplest of the three implementations described in this 

paper. This solver is based on the work presented by Matthias Müller-Fischer as a part of 

a Game Developers Conference (GDC) in 2008 [28]. Given an initial state, the change in 

the height at each point in the ˝eld can be calculated by taking into account the constant 

speed at which the waves travel and the current height of each point being calculated. The 

equation looks something like the following: 

f = c 2 ∗ (ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j )/h
2 

where c is the constant speed at which waves in the simulation move, u is the height ˝eld, 

h is the width of each ˛uid column, and f is the resultant force. 

9.2 Grid-Based Solver 

This, like the height-˝eld solver, is a simulation of a three dimensional liquid surface. How-

ever, for this implementation, the liquid surface height will not be calculated from it's height 

at a previous time step, but will be inferred from the characteristics of each voxel in the 

solver's domain as ˛uid passes through it. The overarching approach for this implementation 

is very similar to the Chen and Lobo [3] approach where they implement a two dimensional 

52 



grid-based solver and achieve the third dimension of height from the pressure at each voxel 

in the domain. This implementation will follow this approach but will replace the Chen and 

Lobo solver with Stam's Stable Solver. 

9.2.1 Data and Structures 

This implementation takes up linear space in memory relative to the solution grid's domain. 

The liquid solver needs ˝ve bu˙ers of size n, where n is the number of voxels in the domain 

of the solver. 

A top-down view of the voxelized two dimensional surface. 

These bu˙ers are u0, v0, u, v, and p, where u0 and v0 are the velocity in the x and y direction 

(respectively) at time n, and u, v and p are the velocity in the x and y direction and the 

pressure at time n + 1. Two bu˙ers are needed for both the velocity in the x direction and 

velocity in the y direction, because the velocity of each voxel at time n + 1 is calculated 

based of it's velocity at time n. A simple 'ping-pong' method is used for each time step to 

avoid copying of the velocity data. Instead, the bu˙er pointers are simply swapped each 

time step. 

53 



Bu˙ers for the simulator. 

To properly visualize the liquid surface additional data is required � namely mesh data. 

The structure of Stam's solver is very simplistic in that it allows easy integration from a 

one-to-one mapping of vertices to voxels, where each vertex position is a representation of 

the pressure and velocity at that point in the ˝eld (see image below). 

Mesh representation of pressure and velocity at each position (The green is a visualization 

of the liquid surface mesh, while the blue is a visualization of the solver's two dimensional 

domain) 

9.2.2 Implementation of Stam's Solver 

Though near linear time when implementing this solver in the Forier domain is possible 

to achieve, the ability to have boundaries is lost. This isn't very realistic when trying to 

simulate a liquid surface, so for this implementation Forier domain calculations are not used. 

The downside of not simulating in the Forier domain is that the simulation is now a O(n2) 

solver. 

54 



As shown in the survey section of this paper, Stam's solver consists of four steps that 

are executed each frame of the simulation � add force, advect, di˙use, and project. The 

following goes into the implementation of said steps. 

External Forces Adding external forces is easily the simplest step in the solver and 

involves adding in the desired external forces multiplied by the time step of the solver. Note 

that though the liquid surface is three dimensional he liquid solver is a two dimensional 

impementation so all external forces will be represented as two dimensional vectors. 

1 void AddForce ( i n t N, f l o a t ∗x , f l o a t ∗ s , f l o a t dt ) { 
2 f o r ( i n t i = 1 ; i <= N; ++i ) { 
3 f o r ( i n t j = 1 ; j <= N; ++j ) { 
4 x [ IX ( i , j ) ] += s [ IX ( i , j ) ] ∗ dt ; 
5 } 
6 } 
7 } 

Advection For the advection step implement the Method of Characteristics as described 

in Stam's paper. The new velocity at any given voxel can be calculated by tracing a particle 

back a time step by its current velocity. The new velocity will be the interpolation of the 

surrounding voxels. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

void Flu idSo lve r : : Advect ( 
int N, 
int b , 
f loat ∗ d , 
f loat ∗ d0 , 
f loat ∗ u , 
f loat ∗ v , 
f loat dt ) { 

int i , j , i0 , j0 , i1 , j 1 ; 
f loat x , y , s0 , t0 , s1 , t1 , dt0 ; 
dt0 = dt ∗N; 
for ( i = 1; i <= N; i++) { 

for ( j = 1; j <= N; j++) { 
x = i −dt0 ∗u [ IX( i , j ) ] ; 
y = j−dt0 ∗v [ IX( i , j ) ] ; 

i f (x<0.5) x = 0 . 5 ; 
i f (x>N+0.5) x = N + 0 . 5 ; 
i 0 = ( int ) x ; 
i 1 = i 0 + 1 ; 

i f (y<0.5) y = 0 . 5 ; 
i f (y>N+0.5) y = N + 0 . 5 ; 
j 0 = ( int ) y ; 
j 1 = j 0 + 1 ; 

s1 = x−i 0 ; s0 = 1−s1 ; t1 = y−j 0 ; t0 = 1−t1 ; 
d [ IX( i , j ) ] = 

s0 ∗ ( t0 ∗d0 [ IX( i0 , j 0 ) ] + 
t1 ∗d0 [ IX( i0 , j 1 ) ] ) + 

s1 ∗ ( t0 ∗d0 [ IX( i1 , j 0 ) ] + 
t1 ∗d0 [ IX( i1 , j 1 ) ] ) ; 

} 
} 
HandleBoundary (N, b , d ) ; 

} 

Once the new velocity is found boundary conditions must be checked. 

55 



Di˙usion To properly implement the di˙usion step a Poisson solver must be used. For 

this implementation the most straight forward of solutions is used � Gauss-Seidel Relaxation. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

void Di f f u s e ( int N, int b , f loat ∗x , f loat ∗x0 , f loat d i f f , f loat dt ) { 
int i , j , k ; 
f loat a=dt ∗ d i f f ∗N∗N; 
for ( k=0 ; k<2 ; k++ ) { 

for ( i=N ; i>=1 ; i −− ) { 
for ( j=N ; j>=1 ; j−− ) { 

temp [ IX( i , j ) ] = ( x0 [ IX( i , j ) ] + a ∗ ( 
x [ IX( i −1, j )]+ 
x [ IX( i +1, j )]+ 
x [ IX( i , j −1)]+ 
x [ IX( i , j +1)] 

))/(1+4∗ a ) ; 
} 

} 
HandleBoundary ( N, b , temp ) ; 
SWAP( th i s −>temp , x ) ; 

} 
} 

On line four of the source code above one can see that k is set to two. This is the number 

or 'relaxation' steps the solver takes to di˙use. This number can be tweaked to the liking to 

the user, but the higher the number the slower the di˙usion step. Higher than two k values 

yielded insigni˝cant accuracy gains. 

Projection Most Eulerian solvers are subject to the same drawback in that under certain 

conditions they can become unstable and diverge. One of the unique qualities of Stam's 

Stable Solver is that it is unconditionally stable. This is due to its projection step where 

the solution grid is projected onto its divergence free part using Helmholtz-Hodge Decom-

position. 

Recall that the Helmholtz-Hodge Decomposition states: 

w = u + rq 

where w is an initial vector ˝eld and u is mass conserving. Using Helmholtz-Hodge Decom-

position solve the vector ˝eld for u in three steps. First q must be solved for and to do that 

the divergence operator needs to be applied to both sides of the decomposition equation: 

r · w = r · (u + rq) 

56 



1 f o r ( i = 1 ; i <= N; i ++) { 
2 f o r ( j = 1 ; j <= N ; j ++) { 
3 // Store r e s u l t in t h i s as a temp b uf f er 
4 v0 [ IX ( i , j ) ] = −0.5 f ∗ h ∗ ( 
5 u [ IX ( i +1, j ) ] − u [ IX ( i −1, j ) ] + 
6 v [ IX ( i , j +1)] − v [ IX ( i , j − 1)] 
7 ) ; 
8 
9 // Zero t h i s b u f f er so we can ' ping−pong ' with u0 . 
10 u0 [ IX ( i , j ) ] = 0 ; 
11 } 
12 } 

Because u is mass conserving, r · u = 0. This means that after applying the gradient 

operator a Poisson equation is left over, which can be solved, once again, with a Gauss-

Seidel relaxation scheme. 

2 r · w = r q 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

for ( k = 0; k < 2 ; k++) { 
for ( i = N; i >= 1 ; i −−) { 

for ( j = N; j >= 1 ; j −−) { 
temp [ IX( i , j ) ] = ( 

v0 [ IX( i , j ) ] + 
u0 [ IX( i −1, j ) ] + 
u0 [ IX( i +1, j ) ] + 
u0 [ IX( i , j −1)] + 
u0 [ IX( i , j +1)] 

) / 4 .0 f ; 
} 

} 
HandleBoundary ( N, 0 , temp ) ; 
SWAP( th i s −>temp , u0 ) ; 

} 

Now that q has been solved for its gradient can be subtracted from w leaving a mass 

conserving vector ˝eld. 

w −rq = u 

1 for ( i = 1; i <= N; i++) { 
2 for ( j = 1; j <= N; j++) { 
3 u [ IX( i , j ) ] −= 0 .5 f ∗ ( u0 [ IX( i +1, j ) ] − u0 [ IX( i −1, j ) ] ) / h ; 
4 v [ IX( i , j ) ] −= 0 .5 f ∗ ( u0 [ IX( i , j +1)] − u0 [ IX( i , j − 1)]) / h ; 
5 } 
6 } 

9.2.3 Inferring Third Dimension 

In the Chen and Lobo solver, the height of the liquid surface calculated based o˙ the pressure 

at each voxel in the solution domain. Stam's solver, however, does not keep track of a 

pressure value so the height must be obtained from the velocity ˝eld itself. To obtain the 

height at any given voxel, observe the ˛ow of liquid in it's neighboring voxels. If the velocity 

57 



˝eld is ˛owing inward then the pressure must be high resulting in a higher liquid surface. 

Conversely, if the velocity ˝eld is ˛owing outward then the pressure must be low resulting 

in a low surface. 

(Left) liquid ˛owing to center voxel (Right) liquid ˛owing away from center voxel 

Source for calulating pressure ˝eld: 

1 f o r ( i n t i = 1 ; i <= N; i ++) { 
2 f o r ( i n t j = 1 ; j <= N; j ++) { 
3 // Pressure in the x direct io n . 
4 p [ IX ( i , j ) ] = p [ IX ( i , j ) ] + u [ IX ( i − 1 , j ) ] ; 
5 p [ IX ( i , j ) ] = p [ IX ( i , j ) ] − u [ IX ( i + 1 , j ) ] ; 
6 
7 // Pressure in the y direct io n . 
8 p [ IX ( i , j ) ] = p [ IX ( i , j ) ] + v [ IX ( i , j − 1 ) ] ; 
9 p [ IX ( i , j ) ] = p [ IX ( i , j ) ] − v [ IX ( i , j + 1 ) ] ; 
10 } 
11 } 

9.3 Visualization 

There are many visual phenomena that occur when observing liquid. Two of the most 

obvious phenomena being the re˛ection and refraction of light on its surface. In this imple-

mentation a Phong shading model is used along with a three-step rendering pipeline in an 

attempt to recreate the re˛ection and refraction of light on the liquid surface. The steps are 

as follows: 

1. Render static objects to intermediate 'refraction' bu˙er 

2. Copy refraction bu˙er to the back-bu˙er 

3. Render the liquid surface to the back-bu˙er with the 'refraction' bu˙er as an input 

and while making sure to reuse the depth bu˙er from step 1 

58 



It might seem odd to ˝rst render the scene to an intermediate bu˙er and then copy that 

same bu˙er to the back-bu˙er, but DirectX 10.1 (as most graphics APIs) does not allow 

reading from and writing to the same render target. This setup is necessary for proper 

refraction of the scene behind the liquid surface. 

Flow chart of the three step rendering process 

9.3.1 Specular Color 

The liquid surface is made up of three di˙erent e˙ects of which will be explained in more 

detail here. The ˝rst e˙ect is specular lighting. Specular lighting is observed on re˛ective 

materials (liquid for example) when light from a source hits the surface and re˛ects at an 

angle parallel to the viewer's eye. 

59 



Specular lighting diagram 

The value of the specular lighting can be de˝ned as the following: 

i = (r · e)p 

Where r is the direction the light is re˛ecting o˙ of the surface, e is the direction from the 

surface to the viewing eye, p is the intensity property of the surface material, and i the ˝nal 

specular value. Here is some example shader code that demonstrates how to calculate this 

value: 

1 f l o a t 3 p r oj e c t i o n _o f _ i n i t i al _ o n _ n o r m a l = 
2 ( dot ( l i g h t _ d i r , in p u t . normal ) / pow ( l e n g t h ( i n pu t . normal ) , 2 . 0 f ) ) ∗ i np u t . normal ; 
3 
4 f l o a t 3 r e f l e c t i o n = 
5 l i g h t _ d i r + ( 2 . 0 f ∗ ( proj_of_in i t ia l_ on_no rmal − l i g h t _ d i r ) ) ; 
6 
7 f l o a t r e f l e c t i o n _ a t t e n u a t i o n = 
8 pow (max ( 0 . 0 f , dot ( r e f l e c t i o n , camera_dir ) ) , 1 0 0 . 0 f ) ; 

9.3.2 Refractive Color 

The second visual e˙ect simulated in this implementation is the refraction of light of the 

liquid surface. Refraction occurs when a light wave leaves one substance and enters another. 

For example, when a light wave from the sun hits the surface of a body of water, the light 

wave leaves the standard atmosphere and enters the ˛uid substance. Depending on the angle 

of incidence between the light wave and the surface of the liquid, the light wave will change 

directions. 

60 



Two dimensional diagram depicting a light wave refracting as it enters another medium. 

This e˙ect alters how the viewer sees what is behind the ˛uid surface and is what is imitated 

in this simulation. A very simplistic way of imitating this is by simply o˙setting the UV 

coordinate of the refraction bu˙er by the angle of the liquid surface. 

1 
2 
3 

i n c i d en t = normal ize ( po s i t i on _pixe l − posit ion_camera ) ; 
r e f r a c t i o n = i n c i d en t + surface_normal ∗ o f f s e t ; 
c o l o r _re f r a c t i on = SampleWithVector ( r e f r a c t i o n ) ; 

9.3.3 Re˛ective Color 

The ˝nal e˙ect implemented is the re˛ection of the environment o˙ the liquid surface. For 

this e˙ect simply reuse the sky-box texture cube and sample from it using a re˛ection vector 

calculated by re˛ecting the camera view direction o˙ the surface normal. 

61 



9.3.4 Color Composition 

Now that the three colors that make up the ˛uid surface have been found (specular, refraction 

and re˛ection), combine them. To do so, linearly interpolate between the refraction and 

re˛ection color based o˙ the viewing angle � the closer to ninety degrees the more refractive 

color shows up, and the closer to zero the more re˛ective. Finally, add specular color to the 

result. 

1 
2 
3 
4 
5 
6 

// Ref lect sample 
f l o a t 3 camera_to_pixel = normal ize ( input . wor ld _posit ion . xyz − camera _posit ion ) ; 
f loat camera_dot_normal = dot ( camera_to_pixel , normal ize ( input . normal ) ) ; 
f l o a t 3 cube_sample_coords = 

camera_to_pixel − 2 .0 f ∗ camera_dot_normal ∗ input . normal ; 
f l o a t 4 texture_cube_sample = texture_cube . Sample ( sampler3 , cube_sample_coords ) ; 

9.4 Results 

The following two images are screen captures taken from grid and height-˝eld solvers. Both 

solvers are running on a machine with an Intel Core i7-3610QM CPU at 2.30GHz and a 

NVIDIA GeForce GTX 670M graphics card. 

62,500 heights simulated at over 290 frames per second. 

62 



90,000 voxels simulated at just over 40 frames per second. 

10 3D Liquid Volume 

Unlike the 3D liquid surface implementations, this will simulate a free ˛owing volume of 

liquid which means calculating the velocities, pressures and densities of the liquid at all 

points in the volume, not just at the liquid surface. This is done by implementing a particle-

based solver which behaves on the principals of the Navier-Stokes equations using an SPH 

interpolation scheme. 

10.1 Particle-Based Solver 

10.1.1 Overview 

Implementing a `brute force' or `naive' Navier-Stokes solver using SPH would result in a 

very slow simulation. This is because there is set of n particles to simulate and each particle 

must be compared against each other particle in the simulation, resulting in a O(n2) solution 

time. Luckily there are a few things that one can take advantage of to speed up the run-time 

of the algorithm. This implementation has two key features that do just that. 

The ˝rst feature is spatial partitioning. Spatial partitioning is very important when it 

comes to this type of solver. This is because the vast majority of particles don't need to 

be calculated against each other. Some particles are so far away that they have no (or 

negligible) impact. Using this knowledge one can construct a spatial partitioning system 

that organizes each particle so that it only compares particles against those that are close 

63 



and would have a meaningful impact. 

The second feature implemented for this solver is a simple thread pool pattern. Particle-

based ˛uid solvers are extremely parallel in that for each step updating a particle's state 

does not depend on the result of any other particle in the same time step. Taking advantage 

of this fact can yield big gains depending on how well the implementation hardware can 

accommodate the number of threads needed. 

Visualization of how all this works together with the core SPH solver, see the following 

diagram: 

This ˛ow chart illustrates how the core SPH solver works with the spatial partitioning and 

the thread pool systems. 

10.1.2 Grid Partition 

As described in the survey portion of this paper pertaining to SPH. Each particle has a fall 

o˙ radius h which is used to determine how close a neighboring particle needs to be for it 

to be considered as an in˛uence. For this solver the solution domain is split up into voxels, 

each sized so that the x, y, and z extents are exactly equal to a liquid particle's h value. A 

simple way to think of the voxelized domain is to see each voxel as a bucket, and each time 

64 



step some number of particles will fall in the bounds of some number of buckets. When it 

comes time to collide all the particles within the simulation, one can simply collide all the 

particles within a single bucket. This makes ˝nding neighboring particles very simple, see 

the following two diagrams: 

Voxelized solution domain of variable length (x) width (z) and height (y) 

2D slice of solution domain. Note that the radius of in˛uence of each particle is the unit 

length of each voxel. This guarantees that the only particles needed for updating a single 

particle's state are ones found in its voxel or voxels directly neighboring its own. 

This spatial partitioning scheme is implemented using two arrays. The ˝rst array is of size 

65 



l + m, where l is the number of voxels, called buckets, in the solution domain and m is the 

maximum number of particles that could ˝t in each bucket. The second array is of size n, 

where n is the number of particles in the simulation. The idea behind these two arrays is to 

easily be able to take any particle and be able to ˝nd which bucket it is currently in, and, 

on the other hand, be able to take any bucket and quickly be able to ˝nd which particles 

are in side it. 

Simple example of spatial partitioning data structure. The top array consists of four 

buckets each with four particle IDs. The second array consists of sixteen bucket IDs, where 

the index is the ID of the particle. 

10.1.3 Thread Pool 

The thread pool implementation for this solver is actually very simple. There are two types 

of threads, one manager thread and n worker threads, where n is the number of processors 

on the implementation hardware. The thread pool is given a queue of tasks to complete 

and, when told to begin, the workers will grab tasks from the queue and carry them out. 

Once done with their task each worker thread will increment a count, which is monitored 

by the manager thread. Once the manager thread counts all tasks complete it sends out an 

event so that the main application knows to continue in its execution. 

66 



Tasks are sent from the main thread to the pool and blocks until the manager thread counts 

all tasks complete. 

10.1.4 The Core SPH Solver 

Data The most important data for this implementation is that of which makes up the 

liquid particles themselves. For this six bu˙ers are needed, each of size n where n is the 

number of particles in the simulation. These bu˙ers hold the state of each particle in the 

simulation for a particular time step. The state of a particle consists of four vectors: position, 

velocity, acceleration, force and two scalars: density and pressure. The contents of these 

bu˙ers are calculated each update step of the solver. 

67 



Core data bu˙ers for solver. 

Algorithm Implementation of the core SPH solver can be broken up into two steps. 

1. Calculate density and pressure of each particle based o˙ closeness to neighboring par-

ticles 

2. Calculate the forces on each particle due to pressure and viscosity from neighboring 

particles 

Density and Pressure Step 

X ρj
ρS(r) = mj W (r − rj , h) 

j 
ρj 

pS (r) = G ∗ ρi − R 

As one can see from the equation above when density is plugged into the SPH equation 

the two density variables cancel out leaving a very simple summation of all particle position 

interpolations. This will calculate the density at each particle position. Once the density 

for a single particle is calculated, its pressure can then be obtained. 

68 



1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

void DensityPressureMain ( void ∗ args ) { 
unsigned pa r t i c l e _i = r e in t e rp r e t _cas t <unsigned >(args ) ; 

// Zero density from l a s t time 
dens i ty [ pa r t i c l e _i ] = 0 .0 f ; 

// Which bucket i s t h i s par t i c l e in , 
// and how many other par t i c l e s do we need to ca lcu la te against? 
signed bucket_index_i = bucket_index [ pa r t i c l e _i ] ; 
signed ∗ bucket_i = bucket + bucket_index_i ; 
unsigned bucket_count_i = bucket_count [ bucket_index_i / BUCKET_CAPACITY] ; 

// Get posi t ion of the i ' th par t i c l e 
f loat posit ion_i_x = po s i t i o n [X( pa r t i c l e _i ) ] ; 
f loat posit ion_i_y = po s i t i o n [Y( pa r t i c l e _i ) ] ; 
f loat pos it ion_i_z = po s i t i o n [ Z( pa r t i c l e _i ) ] ; 

// I t era te over a l l neighboring par t i c l e s and sum density 
for ( unsigned j = 0 ; j < bucket_count_i ; ++j ) { 

signed pa r t i c l e _j = bucket_i [ j ] ; 

// Get posi t ion of the j ' th par t i c l e 
f loat posit ion_j_x = po s i t i o n [X( pa r t i c l e _j ) ] ; 
f loat posit ion_j_y = po s i t i o n [Y( pa r t i c l e _j ) ] ; 
f loat posit ion_j_z = po s i t i o n [ Z( pa r t i c l e _j ) ] ; 

// Find di f ference between the two par t i c l e posi t ions 
f loat d i f f e r ence _x = posit ion _j_x − posit ion _i_x ; 
f loat d i f f e r ence _y = posit ion _j_y − posit ion _i_y ; 
f loat d i f f e r enc e _z = posit ion _j_z − pos it ion _i_z ; 

// Squared distance 
f loat squared_distance = abs ( 

d i f f e r ence _x ∗ d i f f e r ence _x + 
d i f f e r ence _y ∗ d i f f e r ence _y + 
d i f f e r enc e _z ∗ d i f f e r enc e _z 

) ; 

// Add in smoothed density 
i f (0 <= squared _distance && squared _distance <= KERNEL_WIDTH∗KERNEL_WIDTH) { 

dens i ty [ pa r t i c l e _i ] += PARTICLE_MASS ∗ (SQUARED_POLY_CONSTANT ∗ 
(KERNEL_WIDTH ∗ KERNEL_WIDTH − squared _distance ) ∗ 
(KERNEL_WIDTH ∗ KERNEL_WIDTH − squared _distance ) ∗ 
(KERNEL_WIDTH ∗ KERNEL_WIDTH − squared _distance ) ) ; 

} 
} 

// Use density to ca lcu la te pressure 
pre s su r e [ pa r t i c l e _i ] = GAS_CONSTANT ∗ ( dens i ty [ pa r t i c l e _i ] − RESTING_DENSITY) ; 

} 

Forces Due to Pressure and Viscosity Step 

P Ppi+pj 2 vi−vjrps(r) = j mj rW (r − rj , h) , r vs(r) = j mj rW (r − rj , h)2ρj ρj 

69 



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

void ForcesMain ( void ) { 
unsigned pa r t i c l e _i = r e in t e rp r e t _cas t <unsigned >(args ) ; 

/∗ Calculate forces due to pressure and v i s cos i t y ∗/ { 
// I f t h i s par t i c l e doesn ' t have any density then skip i t 
i f ( ! dens i ty [ pa r t i c l e _i ] ) return ; 

// Which bucket i s t h i s par t i c l e in , 
// and how many other par t i c l e s do we need to ca lcu la te against? 
signed bucket_index_i = bucket_index [ pa r t i c l e _i ] ; 
signed ∗ bucket_i = bucket + bucket_index_i ; 
unsigned bucket_count_i = bucket_count [ bucket_index_i / BUCKET_CAPACITY] ; 

// Get posi t ion of the i ' th par t i c l e 
f loat posit ion_i_x = po s i t i o n [X( pa r t i c l e _i ) ] ; 
f loat posit ion_i_y = po s i t i o n [Y( pa r t i c l e _i ) ] ; 
f loat pos it ion_i_z = po s i t i o n [ Z( pa r t i c l e _i ) ] ; 

// I t era te over a l l neighboring par t i c l e s and sum density 
for ( unsigned j = 0 ; j < bucket_count_i ; ++j ) { 

signed pa r t i c l e _j = bucket_i [ j ] ; 

i f ( ! dens i ty [ pa r t i c l e _j ] ) return ; 

// Get posi t ion of the j ' th par t i c l e 
f loat posit ion_j_x = po s i t i o n [X( pa r t i c l e _j ) ] ; 
f loat posit ion_j_y = po s i t i o n [Y( pa r t i c l e _j ) ] ; 
f loat posit ion_j_z = po s i t i o n [ Z( pa r t i c l e _j ) ] ; 

// Find di f ference between the two par t i c l e posi t ions 
f loat d i f f e r ence _x = posit ion _j_x − posit ion _i_x ; 
f loat d i f f e r ence _y = posit ion _j_y − posit ion _i_y ; 
f loat d i f f e r enc e _z = posit ion _j_z − pos it ion _i_z ; 

// Calculate actual distance (not squared ) 
f loat d i s t ance = sq r t ( 

d i f f e r ence _x ∗ d i f f e r ence _x + 
d i f f e r ence _y ∗ d i f f e r ence _y + 
d i f f e r enc e _z ∗ d i f f e r enc e _z 

) ; 

f loat magnitude = abs ( d i s t ance ) ; 

// Force due to pressure (GradSpiky) 
i f (0 < magnitude && magnitude <= KERNEL_WIDTH) { 

f loat smoothing_x = 
GRAD_SPIKY_CONSTANT ∗ ( d i f f e r ence _x / magnitude ) ∗ 

(KERNEL_WIDTH − magnitude ) ∗ (KERNEL_WIDTH − magnitude ) ; 

f loat smoothing_y = 
GRAD_SPIKY_CONSTANT ∗ ( d i f f e r ence _y / magnitude ) ∗ 

(KERNEL_WIDTH − magnitude ) ∗ (KERNEL_WIDTH − magnitude ) ; 

f loat smoothing_z = 
GRAD_SPIKY_CONSTANT ∗ ( d i f f e r ence _z / magnitude ) ∗ 

(KERNEL_WIDTH − magnitude ) ∗ (KERNEL_WIDTH − magnitude ) ; 

f loat pressure _over _density = 
PARTICLE_MASS ∗ ( 

( p r e s su r e [ pa r t i c l e _j ] + pre s su r e [ pa r t i c l e _i ] ) / 
( 2 . 0 f ∗ dens i ty [ pa r t i c l e _j ] ) 

) ; 

f o r c e [X( pa r t i c l e _i ) ] += pressure _over_density ∗ smoothing_x ; 
f o r c e [Y( pa r t i c l e _i ) ] += pressure _over_density ∗ smoothing_y ; 
f o r c e [ Z( pa r t i c l e _i ) ] += pressure _over_density ∗ smoothing_z ; 

} 

// Force due to v i s cos i t y ( LapViscosity ) 
i f (0 < magnitude && magnitude <= KERNEL_WIDTH) { 

f loat smoothing = 
LAP_VISCOSITY_CONSTANT ∗ (KERNEL_WIDTH − magnitude ) ; 

f o r c e [X( pa r t i c l e _i ) ] += VISCOSITY ∗ PARTICLE_MASS ∗ ( 
( v e l o c i t y [X( pa r t i c l e _j ) ] − v e l o c i t y [X( pa r t i c l e _i ) ] ) / 

dens i ty [ pa r t i c l e _j ] 
) ∗ smoothing ; 

f o r c e [Y( pa r t i c l e _i ) ] += VISCOSITY ∗ PARTICLE_MASS ∗ ( 
( v e l o c i t y [Y( pa r t i c l e _j ) ] − v e l o c i t y [Y( pa r t i c l e _i ) ] ) / 

dens i ty [ pa r t i c l e _j ] 
) ∗ smoothing ; 

f o r c e [ Z( pa r t i c l e _i ) ] += VISCOSITY ∗ PARTICLE_MASS ∗ ( 
( v e l o c i t y [ Z( pa r t i c l e _j ) ] − v e l o c i t y [ Z( pa r t i c l e _i ) ] ) / 

dens i ty [ pa r t i c l e _j ] 
) ∗ smoothing ; 

} 
} 

} 

70 



10.2 Visualization 

Rendering the liquid volume is actually rather complicated with respect to more traditional 

scenes where there are meshes to work with instead of a mass of points. Many implemen-

tations, including the SPH implementation mentioned in this survey, use either a marching 

cubes method where one creates a mesh by 'voxelizing' the liquid volume and building a 

mesh around the outer surface, or by doing some sort of point splatting method by rendering 

oriented quads parallel to the liquid surface. The method for this implementation is similar 

to the point splatting approach but is done in screen space � a technique mentioned in the 

presentation given by NVIDIA at the 2010 Game Developers Conference. 

The overall algorithm can be broken up into four steps each of which will be discussed 

in further detail, but ˝rst see the following ˛ow chart for a general idea of how it works. 

71 



10.2.1 Thickness 

This step calculates the thickness of the liquid volume at each pixel in the scene. This step 

is very important for deciding how the liquid surface coloring and opacity will fade o˙ as 

the viewer looks through varying numbers of liquid particles. For this step the GPU is set 

to a color blending mode where each bit of geometry drawn is additively blended with the 

last. The idea is to render a bunch of billboard quads of some alpha value to the thickness 

texture - the more quads rendered on top of each other the higher the value stored at that 

position of the texture. 

72 



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

_ _ 

ThickVertexOutput ThickVertexMain ( ThickVertexInput input ) { 
ThickVertexOutput output ; 

output . pos i t ion _world = mul ( f l o a t 4 ( input . po s i t i on _loca l , 
output . c o l o r = input . c o l o r ; 
return output ; 

} 

[ maxvertexcount ( 4 ) ] 
void ThickGeometryMain ( 

point ThickVertexOutput input [ 1 ] , 
inout TriangleStream<ThickGeometryOut> stream 

) { 
ThickGeometryOut output = (ThickGeometryOut ) 0 ; 

f l o a t 3 
f l o a t 3 

f l o a t 3 
f l o a t 4 
f l o a t 4 
f l o a t 4 
f l o a t 4 

f l o a t 4 
f l o a t 4 
f l o a t 4 
f l o a t 4 

vertex0 
vertex1 
vertex2 
vertex3 

of f set _up = camera_normal ∗ 4 .0 f ; 
o f f s e t _r i gh t = camera_cross ∗ 4 .0 f ; 

cente r = input [ 0 ] . pos i t ion _world . xyz ; 
vertex0 = f l o a t 4 ( cente r − of f set _up − o f f s e t _r igh t , 
vertex1 = f l o a t 4 ( cente r − of f set _up + o f f s e t _r igh t , 
vertex2 = f l o a t 4 ( cente r + of f set _up − o f f s e t _r igh t , 
vertex3 = f l o a t 4 ( cente r + of f set up + o f f s e t r i gh t , 

vertex0_view = 
vertex1_view = 
vertex2_view = 
vertex3_view = 

= mul ( vertex0_
= mul ( vertex1_
= mul ( vertex2_
= mul ( vertex3_

output . pos i t i on _screen 
output . pos it ion _view = vertex0_view ; 
output . pos i t i on _texture = f l o a t 2 ( 0 . 0 f , 
output . c o l o r = input [ 0 ] . c o l o r ; 
stream . Append( output ) ; 

output . pos i t i on _screen = vertex1 ; 
output . pos it ion _view = vertex1_view ; 
output . pos i t i on _texture = f l o a t 2 ( 1 . 0 f , 
output . c o l o r = input [ 0 ] . c o l o r ; 
stream . Append( output ) ; 

output . pos i t i on _screen = vertex2 ; 
output . pos it ion _view = vertex2_view ; 
output . pos i t i on _texture = f l o a t 2 ( 0 . 0 f , 
output . c o l o r = input [ 0 ] . c o l o r ; 
stream . Append( output ) ; 

output . pos i t i on _screen = vertex3 ; 
output . pos it ion _view = vertex3_view ; 
output . pos i t i on _texture = f l o a t 2 ( 1 . 0 f , 
output . c o l o r = input [ 0 ] . c o l o r ; 
stream . Append( output ) ; 

stream . Res ta r tS t r i p ( ) ; 
} 

mul ( vertex0 , view
mul ( vertex1 , view
mul ( vertex2 , view
mul ( vertex3 , view

view , project ion _ 
view , project ion _ 
view , project ion _ 
view , project ion _ 

= vertex0 ; 

_matrix ) ; 
_matrix ) ; 
_matrix ) ; 
_matrix ) ; 

matr ix ) ; 
matr ix ) ; 
matr ix ) ; 
matr ix ) ; 

1 .0 f ) ; 

1 .0 f ) ; 

0 .0 f ) ; 

0 .0 f ) ; 

1 .0 f ) , world_matrix ) ; 

1 .0 f ) ; 
1 .0 f ) ; 
1 .0 f ) ; 
1 .0 f ) ; 

ThickPixelOutput ThickPixelMain (ThickGeometryOut input ) { 
ThickPixelOutput output ; 

f l o a t 3 normal = 
f l o a t 3 ( input . pos i t i on _texture ∗ 2 .0 f − 1 .0 f , 0 .0 f ) ∗ f l o a t 3 ( 1 . 0 f , −1.0 f , 1 .0 f ) ; 

f loat squared _radius = dot ( normal . xy , normal . xy ) ; 
i f ( squared_radius > 1 .0 f ) d i s ca rd ; 

output . c o l o r = f l o a t 4 (0 . 5 0 f , 0 .0 f , 0 .0 f , 1 .0 f ) ; 
return output ; 

} 

technique10 Thick { 
pass P0 { 

Se tRa s t e r i z e rS t a t e ( Di sab l eCu l l ) ; 
SetDepthStenc i lS tate ( DisableDepth , 0 ) ; 
SetBlendState ( ColorBlend , f l o a t 4 ( 0 . 0 f , 0 .0 f , 0 .0 f , 0 .0 f ) , 0 x f f f f f f f f ) ; 
SetVertexShader ( CompileShader (vs_4_0 , ThickVertexMain ( ) ) ) ; 
SetGeometryShader ( CompileShader (gs_4_0 , ThickGeometryMain ( ) ) ) ; 
SetPixe lShader ( CompileShader (ps_4_0 , ThickPixelMain ( ) ) ) ; 

} 
} 

73 

http:float4(0.0f
http:normal.xy
http:dot(normal.xy


10.2.2 Depth 

This step calculates the screen space depth of the liquid volume at each pixel. This is 

achieved by ˝rst generating billboard quads from the particle positions. The idea is to think 

of these quads as spheres and render their depth out accordingly. Using the UV coordinates 

of each quad and the fact that spheres are symmetrical, this can be achieved. The following 

is the pixel shader code for this step. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

QuadPixelOutput QuadPixelMain (QuadGeometryOut input ) { 
QuadPixelOutput output ; 

// Calculate normal from uv coordinates . 
f l o a t 3 normal = f l o a t 3 ( input . pos i t i on _texture ∗ 2 .0 f − 1 .0 f , 0 .0 f ) ∗ 

f l o a t 3 ( 1 . 0 f , −1.0 f , 1 .0 f ) ; 
f loat squared _radius = dot ( normal . xy , normal . xy ) ; 

// Throw out any p i xe l s outside of the sphere radius 
i f ( squared_radius > 1 .0 f ) d i s ca rd ; 
normal . z = −sq r t ( 1 . 0 f − squared_radius ) ; 

// Use surface normal to ca lcu la te p ixe l depth 
f l o a t 4 pos it ion_view = f l o a t 4 ( input . pos i t ion _view . xyz + normal ∗ 4 .0 f , 1 .0 f ) ; 
f l o a t 4 pos i t i on _pro j e c t i on = f l o a t 4 (mul ( posit ion _view , project ion _matr ix ) ) ; 
f loat depth = po s i t i on _pro j e c t i on . z / pos i t i on _pro j e c t i on .w; 

output . c o l o r = f l o a t 4 ( depth , 0 .0 f , 0 .0 f , 0 .5 f ) ; 
return output ; 

} 

10.2.3 Smoothing 

Smoothing is perhaps the most important part of this surface rendering technique. With-

out any smoothing the liquid volume would simply look like a bunch of spheres. For this 

implementation there are to stages of smoothing. The ˝rst smoothing stage is needed for 

the thickness texture. For this a simple box ˝lter is used. The second stage, however, is 

a little more complicated, because it involves smoothing positional depth values. For the 

depth texture a bilateral ˝lter is used. 

The Box Filter The box ˝lter is perhaps one of the simplest ˝lters one can implement. 

The box ˝lter is a very fast and inexpensive ˝lter, but what it gains in speed and simplicity 

it lacks in quality. The lack of quality is acceptable in this case, however, because smoothing 

the thickness texture beyond fairly low quality thresholds yields virtually unnoticeable gains. 

The algorithm is very simple and involves deciding on a kernel width k and summing all 

texel values within k and then dividing by the number of texels sampled. 

74 

http:normal.xy
http:dot(normal.xy


1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

SmoothThickPixelOutput SmoothThickPixelMainX ( SmoothThickVertexOut input ) { 
SmoothThickPixelOutput output ; 

f loat th i ckne s s = t exture0 . Sample ( pointClampSampler , input . pos i t i on _texture ) . r ; 
f loat texel _width = 1 .0 f / screen_width ∗ 0 .5 f ; 
f loat texe l _height = 1 .0 f / screen _height ∗ 0 .5 f ; 

f loat kernel_width = ThickSIZE / 2 .0 f ; 

for ( int i = −kernel_width ; i < kernel_width ; ++i ) { 
for ( int j = −kernel_width ; j < kernel_width ; ++j ) { 

f l o a t 2 pos i t ion _texture _neighbor = 
input . pos i t i on _texture + f l o a t 2 ( i ∗ texel_width , j ∗ texe l _height ) ; 

f loat th ickness _neighbor = 
t exture0 . Sample ( pointClampSampler , pos i t ion _texture _neighbor ) . r ; 

i f ( th ickness _neighbor ) { 
th i ckne s s += th ickness _neighbor ; 

} 
} 

} 

th i ckne s s /= ( ThickSIZE ∗ ThickSIZE ) ; 

output . c o l o r = f l o a t 4 ( th i cknes s , 0 .0 f , 0 .0 f , 1 .0 f ) ; 
return output ; 

} 

The Bilateral Filter For the depth texture, apply a bilateral ˝lter. A bilateral ˝lter is 

used because it has the quality of a Gaussian ˝lter, which weighs samples based on how close 

they are to the center pixel, but also preserves edges. The problem with simply applying 

a screen space Gaussian ˝lter to the depth texture is that particles that are close to the 

camera but far away from any other particles in the liquid will still get blended with the 

ones behind them resulting in an unrealistic liquid surface. 

This implementation is a separable bilateral ˝lter, which means only k+k texels per pixel 

need to be sampled instead of the normal k ∗ k. To accomplish this, break the smoothing 

into two render passes � one for the x direction and one for the y. The following is shader 

code for a single pass in the x direction. 

75 



1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

SmoothPixelOutput SmoothPixelMainX ( SmoothVertexOut input ) { 
SmoothPixelOutput output ; 

f loat depth_center = t exture0 . Sample ( pointClampSampler , input . pos i t i on _texture ) . r ; 
f loat depth = 0 .0 f ; 
f loat texel _width = 1 .0 f / screen_width ; 
f loat texe l _height = 1 .0 f / screen _height ; 
f loat sum_count = 0 .0 f ; 

for ( int i = −KERNEL_WIDTH2; i < KERNEL_WIDTH2; ++i ) { 
f l o a t 2 pos i t ion _texture _neighbor = 

input . pos i t i on _texture + f l o a t 2 ( texel_width ∗ i , 0 .0 f ) ; 

f loat depth_neighbor = 
t exture0 . Sample ( pointClampSampler , pos i t ion _texture _neighbor ) . r ; 

i f ( depth_neighbor ) { 
f loat spa t i a l _cont r i bu t i on = 

1 .0 f − max(min ( abs ( depth_center − depth_neighbor ) ∗ 1000 .0 f , 1 .0 f ) , 0 .0 f ) ; 
f loat depth_contr ibut ion = FlatKerne l2 [ i + KERNEL_WIDTH2] ; 
depth += depth_neighbor ∗ spa t i a l _cont r i bu t i on ∗ depth _contr ibut ion ; 
sum_count += spa t i a l _cont r i bu t i on ∗ depth _contr ibut ion ; 

} 
} 

i f ( sum_count ) { 
depth /= sum_count ; 

} 

output . c o l o r = f l o a t 4 (max( (min ( depth , 1 .0 f ) ) , 0 .0 f ) , 0 .0 f , 0 .0 f , 1 .0 f ) ; 
return output ; 

} 

10.2.4 Final Composition 

Once the thickness and the depth of the liquid volume at every pixel is known the scene can 

˝nally be rendered. The ˝nal composition consists of calculating three vectors - the liquid 

surface normal, re˛ection vector, and refraction vector. The trickiest of all three being the 

surface normal. This is done by calculating the change in depth at each pixel in comparison 

to its neighboring pixels. Using this technique the surface normal can be approximated. 

Then the surface normal along with the viewing angle can be used to calculate the re˛ection 

and refraction vectors used to index into the sky-box. 

76 



1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 

ScreenPixelOutput ScreenPixelMain ( ScreenVertexOut input ) { 
ScreenPixelOutput output ; 

f l o a t 2 ha l f _screen = f l o a t 2 ( screen_width , screen _height ) ∗ 0 .5 f ; 

f loat pos i t ion _pro jec t ion _z = 
t exture0 . Sample ( pointClampSampler , input . pos i t i on _texture ) . r ; 

i f ( pos i t i on _pro jec t ion _z == 0 .0 f ) d i s ca rd ; 

// Reconstruct project ion posi t ion 
f l o a t 2 pos i t ion _project ion _xy = 

( ( input . pos i t i on _screen . xy − ha l f _screen ) / ha l f _screen ) ∗ f l o a t 2 ( 1 . 0 f , −1.0 f ) ; 

f loat pos it ion _project ion _w = 
−camera_near / ( 

−1.0 f + 
pos i t ion _pro jec t ion _z ∗ 
( ( camera_far − camera_near ) / camera_far ) 

) ; 

f l o a t 4 pos i t i on _pro j e c t i on = f l o a t 4 ( 
pos it ion _project ion _xy , 
pos i t ion _project ion _z , 
1 .0 f 

) ∗ pos it ion _project ion _w ; 

// Transform project ion to world 
f l o a t 4 pos it ion_view = mul ( pos i t i on _pro j e c t i on , project ion_matrix _inv ) ; 
f l o a t 4 pos it ion _world = mul ( posit ion_view , view_matrix_inv ) ; 

// Calculate surface normal from change in world posi t ion 
f l o a t 3 surface_normal = 

normal ize ( c r o s s ( ddx ( pos i t ion _world . xyz ) , ddy ( pos it ion _world . xyz ) ) ) ; 

// Reflect ion skybox sample 
f l o a t 3 camera_to_pixel = normal ize ( pos i t ion _world . xyz − camera_posit ion ) ; 
f loat camera_dot_normal = dot(−camera_to_pixel , surface_normal ) ; 
f l o a t 3 cube_sample_coords = 

camera_to_pixel − 2 .0 f ∗ −camera_dot_normal ∗ surface _normal ; 
f l o a t 4 c o l o r _r e f l e c t i o n = 

texture_cube . Sample ( linearWrapSampler , cube_sample_coords ) ; 

// Refraction skybox sample 
camera_to_pixel = 

normal ize ( pos i t ion _world . xyz − camera_posit ion ) + surface_normal ∗ 0 .05 f ; 
f l o a t 4 c o l o r _re f r a c t i on = texture_cube . Sample ( linearWrapSampler , camera_to_pixel ) ; 

// Interpo late between r e f l e c t i on and re fract ion sample . 
f l o a t 4 c o l o r _re f r e f = 
camera_dot_normal ∗ c o l o r _re f r a c t i on + 
( 1 . 0 f − camera_dot_normal ) ∗ c o l o r _r e f l e c t i o n ; 

// Specular l i g h t i n g 
f l o a t 3 project ion _of _init ia l _on _normal = 

( dot ( l i gh t _di r e c t i on , surface_normal ) / 
pow( length ( surface_normal ) , 2 .0 f ) ) ∗ surface_normal ; 

f l o a t 3 r e f l e c t i o n = 
l i g h t _d i r e c t i on + ( 2 . 0 f ∗ ( project ion_of _init ia l _on _normal − l i g h t _d i r e c t i on ) ) ; 

f loat specular _value = pow(max(0 . 0 f , dot ( r e f l e c t i o n , camera _direct ion ) ) , 20 . 0 f ) ; 

// Sample thickness of l i qu i d for alpha blending . 
f loat th i ckne s s = t exture1 . Sample ( linearWrapSampler , input . pos i t i on _texture ) . r ; 

output . c o l o r = f l o a t 4 ( 
c o l o r _re f r e f . rgb + f l o a t 3 ( 1 . 0 f , 1 .0 f , 1 .0 f ) ∗ specular _value , 
th i ckne s s 

) ; 
return output ; 

} 

10.3 Results 

The images below are screen captures of the particle solver simulating 5000 particles at 

just over 40 frames per second. The simulation was run on a machine with an Intel Core 

i7-3610QM CPU at 2.30GHz and a NVIDIA GeForce GTX 670M graphics card. 

77 

http:float3(1.0f


One might think that maximizing the number of threads working on all possible compu-

tations that could be done in parallel would result in the best results. However, the following 

data found shows that not to be the case. There are many factors when it comes to multi-

threading an application, one big one being the OS' implementation and management of 

threads. The following charts are of data collected while simulating at di˙erent particle 

counts, di˙erent thread counts, and with di˙erent stages of the code using the thread pool. 

Figure 14 

78 



Looking at Figure 14 shows that as the number of particles go up the frames per second 

go down. This makes sense, the more particles the more calculations. However, the more 

threads that are introduced into the simulation the slower the frame rate drops due to 

particle count. So the question becomes, how many threads should be used in a simulation 

in order to maximize both particles and frame rate? Surprisingly, the answer is not as many 

as possible. 

Figure 15 

Figure 16 

79 



For this implementation, frame rates dropping below 30 are considered to be out of the 

realm of real-time. Using this as the absolute bottom line it becomes easy to see the best 

choice. The largest number of particles that gets over 30 fps is 5000, and that is when using 

4 threads. This becomes more obvious when isolating the 5000 particle bars into their own 

graph as in Figure 15. 

Seeing this data brought the question of whether or not there were other non-obvious 

con˝gurations that would lead to better frame rates. Up until now the thread count had 

been modi˝ed for the solver as a whole, but what if di˙erent steps used di˙erent thread 

counts? Figure 16 shows statistics on just that (P1: Density and pressure step, P2: Forces 

due to viscosity and pressure step). The ˝gure shows this does have an impact on the frame 

rate, the most optimal con˝guration being two threads for P1 and four threads for P2. As 

interesting as that is, the point is moot, due to the fact that the highest frame rate achieved 

was still slower than the highest frame rate in Figure 15. 

80 



Part III 

Conclusions and Future Work 

Hopefully this paper has clearly illustrated the complications and fascinations inherent in 

˛uid simulation. There are challenges but when overcome the visuals can be very rewarding. 

Even under real-time constraints physically-based ˛uid simulation can be achieved, as shown 

in the implementations of this thesis. 

The following section will cover some future work that can be done to further improve 

the implementations described in this paper. 

General GPU Programming Due to the advancement of programmable graphics pipelines 

it's becoming less and less abnormal to o˜oad general (non-graphics) computations from the 

CPU to the GPU. Gains have already been shown in the particle-based solver by introducing 

a simple thread pool allowing for c computations to be calculated at the same time where 

c is the number of cores on the implementation hardware. Imagine the performance gains 

when being able to calculate virtually p calculations at the same time where p is the number 

of pixel shaders being executed. With general GPU programming this can be achieved. 

All three implementations shown in the paper could, in fact, bene˝t from signi˝cant 

performance boosts if implemented on the GPU. For more information on this approach 

there are several papers that should be investigated for height-˝elds [30], grid [39] and 

particle [12, 32] implementations. 

Caustics Just as important as the physics that drive the simulation, the visual represen-

tation of the ˛uid can be the thing that makes or breaks the illusion. This is why it is very 

important to apply the proper graphics techniques to the simulation. Most importantly ones 

that trick the brain into thinking its viewing the animation of real ˛uid. One very important 

e˙ect when it comes to simulating liquids is the visualization of caustics. 

Caustics are a lighting e˙ect that can be observed when photons from a light source 

gather on a surface as an e˙ect from passing through some substance and re˛ecting or 

refracting. When talking about liquids the most obvious case of this is when light passes 

81 



through the liquid surface causing photons of light to refract in patterns on surfaces behind 

the liquid volume. See Figure 17 from [34] for an example of this e˙ect. This e˙ect is also 

shown in [2] and [43]. 

Figure 17: Light from the ceiling refracts when entering the liquid and gathers on the ˛oor 

Rigid Body Interactions All ˛uid simulations are only as realistic as the interactions 

between the ˛uid itself and the scene in which the ˛uid is represented. This makes it very 

important for interactions with external objects, such as rigid bodies, to behave properly. 

Realistic external interactions are a natural next step in the implementation of a real-time 

liquid solver like the implementations shown in this thesis. A good example of this is seen 

in [13] (also see Figure 18) where Hirada et al. voxelize rigid bodies into particles so that 

physical interactions seamlessly integrate with a particle-based liquid solver. 

82 



Figure 18: Physically-based liquid interacting with external rigid-bodies 

83 



References 

[1] Allstar network. aeronautics - ˛uid dynamics - level3 - ˛ow equations. 
http://www.allstar.˝u.edu/aero/Flow2.htm, January 29th, 2007. 

[2] Barczak, Josh. Olano, Marc. Interactive Shadowed Caustics Using Hierarchical Light 
Volumes. University of Maryland Baltimore County. 

[3] Chen, Jim X. and Lobo, Niels Da Vitoria. Toward Interactive-Rate Simulation of Fluids 
with Moving Obstacles Using Navier-Stokes Equations. Graphical Models and Image 
Processing Vol. 57, No. 2, March, pp. 107-116, 1995 

[4] Desbrun, Mathieu. Gascuel, Marie-Paule. Smoothed Particles: A new paradigm for ani-
mating highly deformable bodies. Grenoble codex 09. 

[5] Fastest Fourier Transform in the West. http://www.˙tw.org, March 24th, 1997. 

[6] Gauss, Carl Friedrich. Theoria attractionis corporum sphaeroidicorum ellipticorum ho-
mogeneorum methodo nova tractata. 1813. 

[7] Green, Simon. Particle-based Fluid Simulation. NVIDIA 2008. 

[8] Green, Simon. Screen Space Fluid Rendering for Games. Game Developers Conference, 
2010. 

[9] Green, George. An Essay on the Application of Mathematical Analysis to the Theories 
of Electricity and Magnetism, pp 10-12. 1838. 

[10] Greene, Ned. Creating Raster Omnimax Images from Multiple Perspective Views Using 
the EllipticalWeighted Average Filter. IEEE Computer Graphics & Applications, June 
1986. 

[11] Grossman, J.P. Dally, W. Point Sample Rendering. Massachusetts Institute of Technol-
ogy, 1999. 

[12] Harada, Takahiro. Koshizuka, Seiichi. Kwaguchi, Yoichiro. Smoothed Particle Hydro-
dynamics on GPUs. The Visual Computer manuscript. 

[13] Harada, Takahiro. Tanaka, Masayuki. Koshizuka, Seiichi. Kwaguchi, Yoichiro. Real-
time Coupling of Fluids and Rigid Bodies. APCOM 07 in conjunction with EPMESC 
XI, December 3-6, 2007, Kyoto, JAPAN. 

[14] Hoetzlein, Rama. Hollerer, Tobias. Interactive Water Streams with Sphere Scan Con-
version. Association for Computing Machinery, Inc. 2009. 

[15] Jensen, Lasse Sta˙. Golias, Robert. Deep-Water Animation and Rendering. Funcom 
Oslo AS. 

[16] Kass, Michael and Miller, Gavin. Rapid, Stable Fluid Dynamics for Computer Graphics. 
Computer Graphics, Volume 24, Number 4, August 1990. 

[17] Kealager, Micky. Lagrangian Fluid Dynamics Using Smoothed Particle Hydrodynamics. 
Department of Computer Science, University of Copenhagen, 2006. 

84 

http:http://www.�tw.org
http://www.allstar.�u.edu/aero/Flow2.htm


[18] Kim, Janghee. Cha, Deukhyun. Chang, Byungjoon. Koo, Bonki. Ihm, Insung. Practial 
Animation of Turbulent Splashing Water. SIGRAPH 2006. 

[19] Kuhbacher, Christian. Shallow Water Derivation and Applications. Technische Univer-
sitat Dortmund, 2009. 

[20] Lagrange, Joseph-Luis, Nouvelles recherches sur la nature et la propagation du son, 
1762. 

[21] Lorensen, William E. Marching Cubes: A High Resolution Surface Construction Algo-
rithm. ACM Press, 1987. 

[22] L. B. Lucy. A numerical approach to the testing of the sion hypothesis. The Astronom-
ical Journal, 82:10131024, 1977. 

[23] Maes, Marcelo M. Fujimoto, Tadahiro. Chiba, Norishige. E°cient Animation of Water 
Flow on Irregular Terrains. Association for Computing Machinery, Inc. 2006. 

[24] Martin, T.J. Pearce, F.R. Thomas P.A. An Owner's Guide to Smoothd Particle Hydro-
dynamics. Astronomy Centre, Susser University, 1993. 

[25] McLean, William. Poisson Solvers. April 21, 2004. 

[26] Monaghan, J. J. Smoothed Particle Hydrodynamics. Annu. Rev. Astron. Astrophys. 
1992. 30:543-74, 1992. 

[27] Muller, Matthias. Charypar, David. Gross, Markus. Particle-Based Fluid Simulation 
for Interactive Applications. Eurographics/SIGGRAPH Symposium on Computer Ani-
mation. Pages 154-159. Year 2003. 

[28] Muller-Fischer, Matthias. Fast Water Simulation for Games Using Height Fields. Game 
Developers Conference, 2008. 

[29] Muller-Fischer, Matthias. Real Time Fluids in Games. PhysX by ageia, SIGGRAPH 
2006. 

[30] Noe, Karsten O. Implementing Rapid, Stable Fluid Dynamics on the GPU. Fall 2004. 

[31] Perlin, Ken. Ho˙ert, Eric M. Hypertexture. Computer Graphics, Volume 23, Number 
3, July 1989. 

[32] Oat, Christopher. Barczak, Joshua. Shopf, Jeremy. E°cient Spatial Binning on the 
GPU. AMD Technical Report. February 2009. 

[33] Perlin, Ken. An Image Synthesizer. SIGGRAPH, Volume 19, Number 3, 1985. 

[34] Shah, Musawir. Pattanaik, Sumanta. Caustics Mapping: An Image-space Technique for 
Real-time Caustics. School of Engineering and Computer Science, University of Central 
Florida, CS TR 50-07. 

[35] Stam, Jos. A Simple Fluid Solver Based on the FFT. Alias | wavefront 

[36] Stam, Jos. Real-Time Fluid Dynamics for Games. Proceedings of the Game Developer 
Conference, March 2003. 

85 



[37] Stam, Jos. Stable Fluids. SIGGRAPH, Pages 121-128, year 1999. 

[38] Tessendorf, Jerry. Simulating Ocean Water. SIGGRAPH 2004. 

[39] Thibault, Julien C. Senocak, Inanc. CUDA Implementation of a Navier-Stokes Solver 
on Multi-GPU Deskctop Platforms for Incompressible Flows. Boise State University, 
Boise, Idaho, 83725. 

[40] Trevethan, Brian. Physically-Based Fluid Simulation for Computer Graphics. DigiPen 
Institute of Technology, 2004. 

[41] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3d sur-
face construction algorithm. In Proceedings of the 14th annual conference on Computer 
graphics and interactive techniques, pages 163169. ACM Press, 1987. 

[42] Wang, Huamin. Miller, Gavin. Turk, Greg. Solving General Shallow Wave Equations 
on Surfaces. SIGGRAPH 2007. 

[43] Yu, Xuan. Li, Feng. Yu, Jingyi. Department of Computer and Information Sciences 
University of Delaware Newark. 

[44] Zhu, Yongning. Bridson, Robert. Animating Sand as a Fluid. Association for Computing 
Machinery, Inc. 2005. 

[45] Zwicker, Matthias. P˝ster, Hanspeter. Baar, Jeroen van. Gross, Markus. Surface Splat-
ting. SIGGRAPH 2001. 

[46] Zwicker, Matthias. Pster, Hanspeter. Baar, Jeroen van. Gross, Markus. Surface splat-
ting. In Proceedings of the 28th annual conference on Computer graphics and interactive 
techniques, pages 371378. ACM Press, 2001. 

86 


	Table of Contents
	Part 1 Survey
	1 Introduction
	2 Vector Calculus
	2.1 Scalar and Vector Fields
	2.2 Gradient
	2.3 Divergence and Flux
	2.4 Divergence Theorem
	2.5 Computational Fluid Dynamics Equations
	2.6 Conservation of Mass Derivation
	2.7 Conservation of Momentum Derivation
	2.8 External Forces Derivation
	2.9 The Navier Stokes Equations

	3 Toward Interactive Rate Sumulation of Fluids with Moving Obstacles Using the Navier Stokes Equations
	3.1 Implementation
	3.2 Visual Steps
	3.3 Boundary Conditions
	3.4 Streaks Lines and Floating Objects
	3.5 Stability

	4 Rapid Stable Fluid Dynamics for Computer Graphics
	4.1 Shallow Water Equations
	4.2 Discretization
	4.3 Integration
	4.4 The Third Dimension
	4.5 Results

	5 Stable Fluids
	5.1 Basic Equations
	5.2 Method of Solution
	5.2.1 Method of Characteristics

	5.3 Diffusion and Projection in the Fourier Domain
	5.3.1 The Fast Fourier Transform
	5.3.2 Diffusion in the Fourier Domain
	5.3.3 Projection in the Fourier Domain

	5.4 Results

	6 Particle Based Fluid Simulation for Interactive Applications
	6.1 Smoothed Particle Hydrodynamics
	6.2 Modeling Fluids with Particles
	6.3 Pressure
	6.4 Viscosity
	6.5 External Forces
	6.6 Surface Tension
	6.7 Smoothing Kernels
	6.8 Surface Tracking and Visualization
	6.9 Point Splatting
	6.10 Marching Cubes
	6.11 Results

	7 Hypertexture
	7.1 Modeling Hypertexture
	7.2 Base Density Modulation Functions
	7.3 Bias
	7.4 Gain
	7.5 Noise
	7.6 Turbulence
	7.7 Higher Level Functions
	7.8 Results

	8 Worthy Mentions

	Part 2 Implementations
	9 3D Liquid Surface
	9.1 Height Field Solver
	9.2 Grid Based Solver
	9.2.1 Data and Structures
	9.2.2 Implementation of Stam’s Solver
	9.2.3 Inferring Third Dimension

	9.3 Visualization
	9.3.1 Specular Color
	9.3.2 Refractive Color
	9.3.3 Reflective Color
	9.3.4 Color Composition

	9.4 Results

	10 3D Liquid Volume
	10.1 Particle Based Solver
	10.1.1 Overview
	10.1.2 Grid Partition
	10.1.3 Thread Pool
	10.1.4 The Core SPH Solver

	10.2 Visualization
	10.2.1 Thickness
	10.2.2 Depth
	10.2.3 Smoothing
	10.2.4 Final Composition

	10.3 Results


	Part 3 Conclusions and Future Work
	References



