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ABSTRACT 

In this thesis, we propose an efficient approach to fluid simulation on the GPU, 

by directly solving Navier-Stokes equations, using implicit numerical approaches. Our 

method is based on a density-variance algorithm and semi-Lagrangian approach. 

Solving directly the mass conversation equation, using central finite difference and 

explicit Euler method, leads to a conditionally stable result. We propose a solution 

with semi-Lagrangian and an implicit Euler method, using a splitting algorithm to 

release the time step restriction based on grid resolution, in addition to removing 

unnecessary clamping function that was added to previous methods due to numerical 

instability. We also apply a similar technique on the momentum conservation equation 

using Jacobi iterations to solve the viscous part of Navier-Stokes equations, this way 

reducing visual artifacts. 
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CHAPTER 1 

Introduction 

One of the reasons video games are appealing is the ability to create desirable 

virtual world and allowing players to interact with. Fluids appear in several natural 

phenomena commonly seen in daily life, such as camp fire, ocean and smoke for 

instance. And adding this phenomenon to games allow developers to create realistic, 

immersive, and interesting virtual environments. Real-time fluid simulation has been 

a hot topic for research over the last decades. Let us recall here that many years 

ago, fluids were just simple particles, or animated textures, however, fluids are more 

complicated than the systems that these systems can capture. The resulting fluid 

behavior using these systems is very limited. Creating fluid effects can be very 

challenging and time-consuming, and also, matching real-world fluid behavior is 

impossible. In real life, fluids like smoke are governed by physics equations. In 

order to achieve realistic simulation in virtual world, we need to model them based 

on these equations. Thanks to the improving of hardware and computational power, 

and the effort of numerous researchers, we are able to approximate these equations 

in interactive frame time with the help of numerical methods. 
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1. Types of Simulation 

There are two major fields in fluid simulation. One represents the whole 

movement of fluids [2], while the other one only discusses surface movement [12]. 

Surface movement like wave simulation is commonly done by generating a height map 

procedurally [12]. In contrast, tracking the whole fluid body uses a fixed or irregular 

grid approach [2,12]. However, above all, these are just different ways to describe 

the motion of the fluid. There are studies on other various aspects related to fluid 

simulation, for instance, how to render it is another different problem when it comes 

to shading the fluid. However, in this thesis, we will primarily focus on solving the 

governing equations that describe fluid motion than other extensions. Terminology 

we have used so far, we will define later in the thesis. 

2. Thesis Overview 

Before jumping into the topic, let’s have an overview of this thesis’ structure. 

We will first review essential mathematics used in fluid dynamics. Then we will go 

through algorithms in the order of solving N-S equations in Lagrangian and Eulerian 

point of view, and finally we will present our improvement based on Eulerian’s 

viewpoint. We establish necessary material needed through out the thesis before 

we introduce our methods, our improvement is based on these ideas, so we will recall 

the background first. Our algorithm inspired by [5] and [1] is based on the idea of 

temporarily relaxing incompressibility to reduce equation complexity, compared to 

[5], but also preserving stability. We will also introduce Cole-Hopf Transformation to 
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solve N-S equations. Finally let us bring up before we start the goals that we want 

to meet when thinking of fluid simulation for games. 

3. Goals 

Again, we want to emphasize that when we talk about fluid simulation in this 

thesis, we are talking about putting the simulation in games. Our goal is not only 

to run simulations in real-time but to have an algorithm that can be integrated to 

games. Here are the goals we want to achieve: 

3.1. Fast. First of all, we want our simulation to be fast. It should run in 30 

fps or above, and be stable under various time steps. 

3.2. Scalable. We want it to be controllable. We want to create different 

fluid behaviors. We also want it to be responsive models to player interaction so that 

we can create unique user experience. 

3.3. Realistic. The approximate result should retain as many details as 

possible and be convincing to players at first glance. 

That is it for the big picture. Next section we will start with a review on 

vector calculus. 



CHAPTER 2 

Vector Calculus 

In this section, basic vector calculus knowledge will be reviewed. This section 

is not for thorough review as we will not go through all the proof details, but we 

show important concepts, principles and theorems. This review covers the material 

needed for the following sections or chapters. We show our examples in a Cartesian 

coordinate system. 

1. Scalar Field 

In mathematics and physics, by definition, when every single point in either 

two or three dimensions is associated to a scalar value, we call it a scalar field. These 

values are defined by scalar valued functions of positions in space. In fluid dynamics, 

these values normally stand for a physical quantity. Take p(x, y) as an example, it 

represents pressure at a given point on a two dimension space. 
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2. Vector Field 

Before defining vector field, let’s define what is a vector function. Similar to 

scalar functions, a vector function is a function that takes a position and returns a 

vector, for example v = f(x, y) (We use bold font to represent vectors in this thesis). 

And these vectors construct the result of a vector field just as a scalar field. In fluid 

dynamics, we have to generate a velocity field, which is a vector field, to track the 

flow of fluids. 

Next we will review three important vector calculus concepts, gradient, 

divergence, and curl. They are important in fluid dynamics. For example, pressure 

force can be described as a gradient. Their main role is to help us analyze the net 

forces working on fluid. 

3. Gradient 

A del operator, noted as r, describes spatial partial derivatives. Gradient is 

given 

∂ ∂ r = ( , ) (2.1)
∂x ∂y 

in two dimensions. You can also extend it to three dimension by adding a z term. 

Gradient takes spatial partial derivatives of a given function. Consider a scalar 

function f in two dimensions, gradient is defined as the following, 

∂f ∂f rf(x, y) = ( , ) (2.2)
∂x ∂y 
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and it can measure the rate change of the example function along x and y axis, it 

points in the increasing direction of the result scalar field. In later chapter, you will 

see how it is used to measure pressure force in Navier-Stokes equations. And let’s 

have a concrete example before we move on. Let f(x, y) = x2y, find rf(3, 1). The 

gradient of f is: 

∂f 
(x, y) = 2xy (2.3)

∂x

∂f 
(x, y) = x 2 (2.4)

∂y 

Therefore, the gradient is (6, 9). We can also apply gradient on vector-valued function, 

the answer is in a matrix form. Given a vector field f = (u, v, w), the gradient of it 

is, 

⎤⎡ 

rf = 

⎢⎢⎢⎢⎢⎢⎢⎣ 

∂u ∂u ∂u 
∂x ∂y ∂z 

∂v ∂v ∂v 
∂x ∂y ∂z 

∂w ∂w ∂w 
∂x ∂y ∂z 

⎥⎥⎥⎥⎥⎥⎥⎦ 

(2.5) 

sometimes known as Jacobian. 

4. The Divergence 

The concept of divergence is needed to measure how much of the field flows 

outward from a given point of a vector-valued function. Given the idea of taking the 

dot-product between Del operator and a vector u = (u, v), the result is a scalar value. 

Divergence in two dimensions is, 



7 

∂ ∂ r · u = ( , ) · (u, v)
∂x ∂y 

(2.6) 
∂u ∂v 

= + 
∂x ∂y 

5. The Curl 

Curl is used to measure the amount of rotation at a given point. Using the 

same example in divergence, curl is given as, 

∂u ∂v r× u = − (2.7)
∂x ∂y 

you will see how to use curl to measure turbulence of fluid in this paper. 



CHAPTER 3 

The Navier–Stokes Equations 

In chapter 2, we have reviewed some vector calculus basics and how individual 

operators are defined. In this chapter, we will introduce the famous Navier-Stokes 

equations that govern the motion of viscous fluids. They are derived from Newton’s 

Second Law of Motion and by Navier, Poisson, Saint-Venant, and Stokes between 

1827 and 1845. Navier-Stokes Equations hold throughout the entire simulation in 

time and space. We will break equations into pieces to further understand what each 

term stands for. 

1. Incompressible Navier–Stokes equations 

Most fluid simulation done in computer graphics is governed by the famous 

incompressible Navier–Stokes equations. We assume incompressible, homogeneous 

fluid, which means that the density of fluids stays constant both in time and space. 

The following equations describe the flow of incompressible fluid over time, 

∂u 1 2 = −(u · r)u − rp + νr u + F 
∂t ρ 

(3.1) 

r · u = 0 (3.2) 
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Equation 3.1 is called the momentum equation. It represents the conservation of 

momentum. Equation 3.2 is the incompressibility condition for fluid and stands for 

conservation of mass. It is originally derived from the continuity equation, 

∂ρ 
+ r · (ρu) = 0 (3.3)

∂t 

Since we assume incompressible and homogeneous fluid, the first term becomes zero. 

∂ρ 
= 0 (3.4)

∂t 

and also because ρ is a constant value, Equation 3.2 becomes 

ρr · u = 0 (3.5) 

divided by ρ, we reached equation 3.2. Now let’s look at the definition 

of symbols in equation 3.1. u is the fluid velocity, it plays an important role 

in transporting substances throughout the simulation. And we can see from the 

equations that our goal is to calculate how the velocity field evolves during the 

simulation and use it to move fluid such as smoke or fire. ρ is fluid density, for 

example, water is roughly 1000kg/m3 . p is the fluid pressure in the unit of force per 

unit area. ν is the fluid kinematic viscosity, it describes how sticky fluid is, in other 

words, how fast fluid diffuses. F are the external net body forces on a fluid, they can 

be regional forces affecting part of fluid or gravity that affects whole fluid. The most 

common one is gravity, we can also apply some forces on fluid when it travels through 

certain area during the simulation. 
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2. Terms in the Navier–Stokes equations 

So far we have some basic ideas of how Navier–Stokes equations look like and 

what each symbol stands for. Differential equation 3.1 appears to be difficult to solve 

at first glance. We can see that the partial derivative of u respective with t is the sum 

up of four elements on the right side of equation 3.1. In this section, we will break it 

down into pieces and explain each term in order. Considering equation 3.1 again we 

can see that each term is a result caused by a certain force written in acceleration. 

After describing what each term stands for, it will give us better idea how to derive 

equation 3.1 from Newton’s Second Law of Motion. 

2.1. Advection. Advection is a mechanism of transporting substance by the 

fluid. In Navier–Stokes equations, the advection term transports velocity from one 

location to another on the velocity field. In other words, this term helps velocity field 

evolve over time. It represents self-advection of the velocity field. 

2.2. Pressure. Fluid might not be spread equally in space. The unit used to 

measure how much fluid per given space is called density. The difference of density 

throughout the space causes pressure force. High-pressure areas push on low-pressure 

areas. Take the negative gradient of the pressure field then we calculate pressure force 

to determine which way the fluid should flow. In mathematics, gradient is pointing 

to ascent direction. Then, it is obvious that we have to put a negative sign to correct 

the result. 
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2.3. Diffusion. The third term is called viscosity. This term tells how sticky 

the fluid is. This property can be imagined easily in real life. Think about one pours 

different types of liquid on to a wall. Liquids like water would only remain on the 

wall for a short time, while liquids like honey would remain on the wall for quite long 

time. Another way to think of this phenomenon is by observing how quickly would a 

type of fluid diffuses to the environment. We can also think in an way that this is a 

force that tries to make a fluid particle to move in average speed of nearby particles. 

This way it can prevent fluid from deforming. 

2.4. External Forces. The last force that contributes to net forces is due to 

external forces. They can be body or local force. Wind force is an example of a local 

force, it can be applied to the fluid in some regions of the simulation domain. Gravity, 

which is a body force, should be applied to every fluid particles in most cases. 

3. Material Derivative 

Before we start to derive equation 3.1, we need to know what is material 

derivative. For understanding material derivative, we need to learn about the 

difference between Lagrangian and Eulerian point of view. 

3.1. Lagrangian and Eulerian Viewpoints. These are two different 

approaches to track continuous motion. The Lagrangian point of view is what you 

are probably most familiar with. It treats fluid dynamics like a particle system. 

It considers each point in the fluid simulation as a particle that carries position, 
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velocity, density and so on. Smoothed Particle Hydrodynamics (SPH) is one of 

the famous numerical solvers in a Lagrangian framework. In [10], SPH is used to 

simulate nonviscous fluids using a particle system where each fluid is treated as a rigid 

body carries its own properties. Simulating advection in a Lagrangian framework 

is straightforward since we know that equation 4.7 holds true in the momentum 

equation, basically, equation 4.7 states that the value carried by a particle remains 

the same through out the simulation, so the remaining thing for advection is really 

nothing but to do position integration based on velocity. The fact that each fluid is 

treated as a particle also helps solving boundary condition and apply body forces to 

the fluid. They are merely collision between rigid bodies and numerically integration. 

However, enforcing incompressibility is not as easy as advection in Lagrangian point 

of view. In addition, handling large numbers of particles is challenging to achieve real 

time performance. A hash grid is a common approach to optimize the update for a 

large numbers of particles. 

One the other hand, the Eulerian approach, commonly used for fluids, takes 

a different tactic. Instead of thinking in particles, Eulerian approach measures 

fluid properties, such as velocity, density, temperature, etc., in a fixed grid space. 

Quantities at those points change in time, they are contributed by fluid flow that 

passes through those points. It’s might be not entirely intuitive at first, but we 

will show an example to explain it in a better way. Imagine you are measuring a 

fixed point’s temperature in air. As warm air moves past followed by cold air, the 

temperature reading at that position will raise and then decrease, even though the 
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temperature of any particle in air does not change at all! With the same idea, one 

can also measure the wind direction. 

Numerically, the Eulerian viewpoint makes it easier to approximate those 

spatial derivatives on a fixed grid than on a particle system with arbitrary moving 

points, which normally corresponds to the Lagrangian viewpoint. Moreover, as we 

progress through the paper, you will find that the data representation in an Eulerian 

framework can be parallel processed more easily than in a Lagrangian framework. 

However, it is hard to choose a grid approach that works for all resolutions in an 

Eulerian framework to achieve significant precision for advection. It requires re-

sampling approximation, which is lossy in general, on a grid during the simulation. 

Material Derivative connects the two viewpoints. Consider we want to 

measure how a quantity, say density q, changes over time at a fixed point in the 

body of the fluid. In Eulerian point of view, given a function of space q(t, x) tells us 

the value of q at time t and position x. Since we want to measure the change rate 

over time, we take the total derivative: 

d ∂q dx 
q(t, x) = + rq · 

dt ∂t dt 
∂q 

= + rq · u 
∂t (3.6)
∂q 

= + u · rq
∂t 
Dq 

= 
Dt 

This is the material derivative! We can also explain this in Lagrangian 

viewpoint by considering that a particle that carries quantity q that has a given 
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rate of change over time currently at location x. The first term ∂q/∂t is how fast 

q is changing at that fixed point in space. The second term u · rq, also known as 

advection, adds how much of that change is due to differences caused by neighbor 

fluid. Numerically, advection is effectively automatic in Lagrangian point of view, 

while it is harder to solve in Eulerian measurement. 

3.2. Material Derivative on Vector Quantities. At this point it might 

be still unclear what does the material derivative mean when it applies to vector 

quantities mathematically. The meaning is simple: we calculate it with each 

component separately. Let’s consider the advection term in Navier-Stokes equations 

for practice. We assume the fluid is moving on a velocity field, u, in three dimension. 

Taking the material derivative on velocity u = (u, v, w) results in a self-advection 

formula. 

⎤⎡⎤⎡ 

Du 
Dt 

= 

⎢⎢⎢⎢⎢⎣ 

Du/Dt 

Dv/Dt 

⎥⎥⎥⎥⎥⎦ 
= 

⎢⎢⎢⎢⎢⎣ 

∂u/∂t + u · ru 

∂v/∂t + u · rv 

⎥⎥⎥⎥⎥⎦ 
= 

∂u 
+ u · ru (3.7)

∂t 

Dw/Dt ∂w/∂t + u · rw 

Notice that we simply treat to each component separately. 

4. Incompressibility 

In physics, there are two types of fluids, incompressible and compressible. 

Incompressible fluid corresponds to liquid, such as water. On the other hand, 

compressible fluid is a gas such as smoke or air in general. We keep in mind that 
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there’s no perfectly incompressible flow, it is simply impossible, otherwise we would 

not be able to hear underwater. In real-time computer graphics, or games, it is 

common to treat the fluid as incompressible flow. Compressible flow normally adds 

more complexity and is more expensive to simulate. Furthermore, compressible flow 

contributes little visually and impacts fluid motion in microlevel. Hence, in general, it 

is practical to just consider incompressible fluid for both liquid and gas for animation. 

In earlier section, we have showed how to reach equation 3.2 by applying 

incompressibility condition mathematically, making ρ a constant value. In this 

chapter, we will show more concrete details deriving the equation. 

Let Ω be an arbitrary and fixed region of space. We define the mass of fluid 

M as 

Z Z Z 
M = ρ (3.8) 

Ω 

Taking the integral around the boundary of the fluid speed along the surface 

normal. The rate at which mass flows in or out of Ω is given by 

Z Z 
∂M 
∂t 

= − ρu · n 
∂Ω 

(3.9) 

Expanding M and transforming the right hand side with the help of divergence 

theorem, we get 

Z Z Z Z Z Z 
∂ρ 
= − r · (ρu) (3.10)

∂t Ω Ω 

Since the equation should hold in any given region Ω, the following equation 
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must also hold true, 

∂ρ 
+ r · (ρu) = 0 (3.11) 

∂t 

We observe that this is equation 3.3, termed continuity equation. Assuming 

incompressible flow, or in other words, flow with fixed density, we reach the final 

incompressibility condition 

r · u = 0 (3.12) 

5. The Momentum Equation 

Now let us gain a deeper understanding of equation 3.1. As we just went 

through previously, equation 3.1 can be separated into four pieces and each piece is 

not hard to understand. It tells us how different types of forces that form net force 

acting on fluid acceleration. We observe that this is in fact just Newton’s equation 

F = ma. Starting with material acceleration in two dimensions, which is defined as 

following, 

Du 
a ≡ (3.13)

Dt 

In fluid dynamics, it is the acceleration following a fluid particle by definition. 

Expanding it in two dimensions using the definition of material derivatives, we have, 

∂u ∂u ∂u 
a ≡ + u + v (3.14)

∂t ∂x ∂y 
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Applying material acceleration, Newton’s law is now, 

Du 
F = m( ) (3.15)

Dt 

There are other three types of forces that contribute to fluid motion, pressure, 

viscosity, and body forces. We start with body forces, and in our case, we use gravity 

as an example. The force of gravity acts the same way as in solid mechanics, 

Fgravity = mg = ρgdxdydz (3.16) 

Define dxdydz as V , rewrite it to, 

ρgdxdydz = ρgV (3.17) 

Next is the pressure force, in fluid dynamics, high pressure area pushes low 

pressure area. The way to measure imbalance pressure is to take negative gradient of 

pressure, define pressure as P , we have, 

Fpressure = −rpdxdydz = −rpV (3.18) 

The other fluid force is due to viscosity. Using the rate of stress and rate of 

strain tensors, we write the viscosity force in each component, 

h iFi ∂ ∂ui ∂uj
= η( + ) + λδij r · u (3.19)

V ∂xj ∂xj ∂xi 

where η is the dynamic viscosity coefficient, λ is the second viscosity coefficient, 

δij is the Kronecker delta and j is used to sum up from j = 1, to the number of 
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dimensions we are working on. Using the incompressibility condition, we rewrite 

3.19 into a vector form, given, 

Fviscosity 2 = ηr u (3.20)
V 

r2 is called Laplacian operator. It is defined as follows, 

∂2f ∂2f r · rf = + (3.21)
∂x2 ∂y2 

Applying this operator on a vector is simply to input each component into the 

same calculation. Finally, we almost reach equation 3.1, but first, let’s put everything 

together. We then have, 

Du 
ρV 

Dt 
= ρgV − V rp + V ηr · ru (3.22) 

Rearrange it by dividing each side of equation by V and ρ, 

Du 1 1 
Dt 

= g − rp + 
ρ 

ηr · ru 
ρ 

(3.23) 

Define the kinematic viscosity as ν = η
ρ to get, 

Du 1 
= g − rp + νr · ru (3.24)

Dt ρ 

Expand material acceleration 3.14, we reach the final momentum equation 

describing incompressible Newtonian fluid [7]. Notice that we have g instead of F, 

and as you might expect, this term can be the sum of all external body forces. In this 

section, we only list one of the common forces, gravity, that always works on fluid. 



CHAPTER 4 

Numerical Methods 

We have basically covered all the essential materials in mathematics, physics 

and some basic numerical concepts. Beginning from this chapter, we will start to solve 

Navier-Stokes equations with incompressibility conditions numerically. There are 

many existing algorithms developed by researchers in the past decades. In [20], they 

write Navier-Stokes equations in different form using Reynolds number to describe 

viscous forces and alter the number in order to increase numerical stability or certain 

effect whereas in true physics, it is a constant value used to describe different flows. 

In addition, they solve them with finite difference approach. In [Foster and Metaxas], 

their approach also utilize finite difference and they use particles to model surface 

tracking. In [5], Jos Stam introduced a real time method that is stable under any given 

time step. Based on [5], [15] developed level set method to help track the surface of 

the water. Besides this, Smoothed Particle Hydrodynamics solves the incompressible 

Navier-Stokes equations in Lagrangian point of view. It is a very natural numerical 

approach applying incompressibility condition. 

Our approach is based on the idea of [5] and [1] by temporarily loose 
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incompressible condition to solve incompressible Navier-Stokes equations. That 

means we actually solve for density and use it as a variable plug-in to the momentum 

equation to update velocity that carries fluid around. In this chapter, we will build 

up the theory behind [5] and [1] in order to introduce our improvement. However, 

instead of talking about [5], we will talk about [9]. [9] is a more modern approach 

and runs on GPU, its implementation is alike [5] but on GPU. The main difference 

between the two methods is to use finite difference. If we think of the simulation 

happening on a 2-D array then we can store the information we need to move fluid, 

for example, density, velocity, or pressure. We will have to iterate these arrays by a 

certain time step to run the simulation. Furthermore, the reason behind choosing a 

GPU implementation is because GPU is good at processing 2-D array like data in 

parallel that can make the simulation highly efficient compared with a CPU approach. 

It requires more setup on the CPU side in order to access and manipulate data on 

GPU. We won’t go too much into details on that except for showing you shader code 

snapshot. Usually it is recommended that one implements a new method first on 

CPU and move on to GPU. 

Before introducing [9] and [1], we will cover common numerical methods used 

by the two algorithms. In the beginning of this chapter, we are going to first introduce 

how vector calculus is approximated by finite difference method. And then we are 

going to introduce two methods for solving Naiver-Stokes equations based on finite 

difference method. 
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1. Finite Difference Method 

Finite difference method is a popular numerical solution to vector calculus 

due to it’s a rather fast and simple approach deriving from Taylor’s polynomial. 

The precision of the simulated finite difference method depends on time and space 

steps. Generally, smaller steps produce better results. In chapter 2, we covered 

important calculus knowledge in fluid simulation. And now, we write them in finite 

difference form to show how calculus is approximated by finite difference method. 

The method we are about to introduce is called central finite difference, there are 

other two methods called backward/forward finite difference methods exists. We will 

show them on a two dimension Cartesian grid. 

The definition of gradient is 

∂f ∂f rf(i, j) = ( , ) (4.1)
∂x ∂y 

Its central finite difference form is 

fi+1,j − fi−1,j fi,j+1 − fi,j−1
( , ) (4.2)

2δx 2δy 

where i,j refer to locations on a Cartesian grid, and δx, δy is grid’s size in x,y 

dimension. Given in similar format, divergence is given as 

∂u ∂v r · f(i, j) = + (4.3)
∂x ∂y 

Where f(i, j) = (u, v), and the central finite difference form is given as 
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ui+1,j − ui−1,j vi,j+1 − vi,j−1
( + ) (4.4)

2δx 2δy 

Last but not least, Laplacian in calculus is given as, 

∂2f ∂2f r 2f(i, j) = + (4.5)
∂x2 ∂y2 

Where r2 = r · r, and the central finite difference form is 

fi+1,j − 2fi,j + fi−1,j fi,j+1 − 2fi,j + fi,j−1
( , ) (4.6)

(δx)2 (δy)2 

These form can be extended to three dimension easily by similar ideas. Finite 

difference method is a great method to solve fluid dynamics in Eulerian point of view 

with second-order accuracy. In other words, we can have a fixed grid that holds all 

the data we need during the simulation. 

2. Advection Algorithm 

The second numerical algorithm that would be used in both approaches is 

advection. Recall in Navier-Stokes equations 3.1, the first term on the right side 

derived from material derivative refers to advection, which means it helps to transport 

velocity on the simulation grid. In order to do so in Eulerian point of view is nontrivial 

because we have a fixed grid instead of bunch of free moving particles bouncing 

around. It is straightforward to track velocity field through the Lagrangian point of 

view because it is carried by particles, so is incompressible condition. On the contrary, 

in Eulerian point of view, it takes more effort and analysis to track velocity. In this 
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section, we will introduce a semi-Lagrangian approach to solve any given advection 

equation in a stable manner, which means that it is stable under any time step size. 

2.1. Semi-Lagrangian. Semi-Lagrangian approach was first introduced by 

[3] in the meteorological literature. It is proved that semi-Lagrangain is a first-order 

and unconditionally stable numerical method in [6] with the drawback of dissipation 

n
i

problem. We will borrow some of the notation [4] used to present the algorithm in 

n
i

this section. Given the material derivative, 

n
i 

Dq/Dt = 0 (4.7) 

i

In order to solve it, we first write out the PDE, for example, in one dimenstion: 

∂q ∂q 
+ u = 0 (4.8)

∂t ∂x 

Then replace the above equation with forward Euler and central finite difference 

for the spatial derivative, we get: 

q n+1 − q q +1 − q −1n
i+ u = 0 (4.9)

Δt 2Δx 

Rearrange it into an explicit schema to get the new value of q: 

n+1 = q ni − Δtun
i (4.10)qi 2Δx 

n
i

n
iq − q+1 −1 

Explicit formula is a straightforward and easy to understand and implement, 

but probably the least one you want if there’s obviously a better choice with a little 
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more effort. It is because forward Euler is unconditionally unstable in equation 4.10 

regardless of how small Δt is. Even if switching to a more stable integration 

technique, like, Eulerian Leapfrog, will only give us a conditionally stable result (more 

specifically, Courant–Friedrichs–Lewy condition, a.k.a CFL condition). There are still 

other issues remain with this spatial discretization. However, we will not go deeper 

on this topic but a good reference in this area is [4]. 

Instead, we take a different approach motivated by physics, unconditionally 

stable and was introduced to graphics by [5] called semi-Lagrangian method. The 

basic idea of using semi-Lagrangian for advection integration is based on the 

approximation of Lagrangian time derivative. We want to find the new value of 

q at its current grid point. In order to achieve it, we run backwards through the 

velocity field at current point to figure out where it started. And then bring the new 

value over to the current point. Let’s define the current position is xi, we would like 

to find the new value of q at xi, written as qi
n+1 . The first step is to find the previous 

location xp by backtracking along the velocity field. 

xp = xi − Δtu(xi) (4.11) 

And then look up q value at location xp 

qi
n+1 = q(xp) (4.12) 

Most likely xp won’t be exactly on the grid, so we won’t have exact value to look 

up on the grid. In general, trilinear (bilinear in two dimensions) interpolation is used 
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to approximate the result. Let’s illustrate this, in one dimension, for completeness 

before we move on to the next topic. Assuming xp lies between [xj , xj+1], α = 

(xP − xj )/Δx be the coefficient for linear interpolation. Then we look up the new 

value by 

n+1 n q = q(xp) = (1 − α)q + αqn (4.13)i j j+1 

In the application, we apply this to velocity field to solve Navier-Stokes 

equations and update density field to move the fluid around. 

3. Fast Fluid Dynamics Simulation on the GPU 

So far we have discussed common numerical schemes used in solving fluid 

dynamics equations. Next, we are going to show you some previous works utilizing 

the power of modern GPU for fluid calculation. We start from Mark Harris’ work 

published in GPU GEM VOLUME 1 [9]. Their work was based on [5]. It is an 

unconditionally stable solver using many passes on GPU. The second one is Martin 

Guay’s work published in GPU PRO 2 [1]. They presented an efficient way to simulate 

Newtonian fluid that only requires a single pass on GPU but the result is conditionally 

stable only, with the constraint on choosing a proper time step depending on grid 

resolution. 

3.1. The approach. To begin with the main idea we just mentioned, this 

paper is highly based on the [5]. While [5] has the implementation on CPU, this paper 

has their algorithm implemented on modern GPU because this type of computation 
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is well suited on these hardwares. When we simulate fluid in Eulerian’s point of view, 

it is important to recall that the computation is performed on a fixed grid of cells. 

Array is a great data representation to represent the data, on GPU, we have texture 

that is similar to an array as basic data storage unit, and we normally refer a cell as 

a pixel. In fact, GPU achieve high performance calculation through parallelism: they 

are capable of processing multiple pixels simultaneously. 

3.2. The Helmholtz-Hodge Decomposition. The Helmholtz-Hodge 

Decomposition, HHD for short, plays an important role applying Incompressible 

condition to equation 3.1. It transforms equation 3.1 into a form that is suitable 

to apply numerical computation. 

3.2.1. Helmholtz-Hodge Decomposition Theorem: 

Definition: Given any vector field, it can be decomposed into the sum of two 

other vector fields: a divergence-free vector field, and a gradient of a scalar field. In 

mathematics, it means that given a vector field w on D, there exist u, p such that 

w = u + rp (4.14) 

where u has zero divergence and is parallel to ∂D [define], that is, u · n = 0 on 

∂D. It also says that the divergence-free field approaches zero at the boundary. For 

the proof of the theorem, please refer to [7]. 

3.2.2. The Projection Operator: 

After solving equations 3.1, we get new values of the velocity field, which 

is not divergent free. But this result contradicts equation 3.2. So we correct it by 
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rearranging equation 4.14 into, 

u = w −rp (4.15) 

Secondly, HHD leads to an equation for solving the pressure field, by applying 

divergence operator to both side of equations 4.14, we obtain: 

r · w = r · (u + rp) = r · u + r 2 p (4.16) 

With equation 3.2, it can be simplified to: 

r 2 p = r · w (4.17) 

which is a Poisson-pressure equation of the fluid. And at this point of the 

paper, we have all we need to reach the final divergence-free field u. Lastly, we can 

define a projection operator, P, that projects a vector field w onto its divergence-free 

component, u. By definition, 

Pw = Pu = u (4.18) 

based on this definition, applying the projection operator, 

Pw = Pu − P(rp) (4.19) 

Therefore, 

P(rp) = 0 (4.20) 
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Now, applying projection operator to the Navier-Stokes equations, we get 

P
∂u 

= P(−(u · r)u − 
1 rp + νr 2 u + F) (4.21)

∂t ρ 

Since u is divergence-free, also realizing that P(rp) = 0. We are left with the 

final equation, 

∂u 
= P(−(u · r)u + νr 2 u + F) (4.22) 

∂t 

The paper solves it with typical split technique (More information about this 

technique is given in [4]). It means that each component in the final equation is a step 

that takes a field as input, and produces a new field as output. The author defines 

an operator S that is equivalent to the right side of equation 4.22 over a single time 

step. Furthermore, S is defined as the composition of operators (using the same idea) 

for advection (A), diffusion (D), force application F, and projection (P): 

S = P ◦ F ◦ D ◦ A (4.23) 

The solver then starts from the rightmost operator to leftmost one, each 

component takes velocity from last frame and iterate it over a time step and pass the 

intermediate value to the next component as input. For projection operator, updating 

the pressure field is required as an additional input as it is shown in equation 4.17. 

Now, since we have already seen how semi-Lagrangian works, and it is not hard to 

imagine how to implement it with code. Next, we want to take a look at how to solve 

diffusion and Poisson equation with Laplacian operator numerically using the idea of 
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finite difference. 

3.3. Viscous Diffusion. This property is given as: 

∂u 
= νr 2 u (4.24)

∂t 

This can be solved using explicit integration but we know that it is not as 

stable as we want. The paper provides an implicit solution that is stable for arbitrary 

time steps and viscosities, given as: 

(I − νδr 2)u(x, t + δt) = u(x, t) (4.25) 

where I is an identity matrix. This equation shares the same format as 

equation 4.17, it is a Poisson equation for velocity. It can be with an iterative 

relaxation technique. It is solved with Jacobi iteration, the simplest iterative 

technique, in this paper. 

3.3.1. Solution of Poisson Equations using Jacobi Iteration: 

The Poisson equation is a matrix equation in the form of Ax = b, where 

x is the vector of values we are solving (for fluid simulation, we need to solve for 

pressure and diffusion), b is a vector of constants, and A is a matrix. [8] provides 

proof of Jacobi iteration for general matrix equations. Equation 4.17 and 4.25 can 

be discretized using the formulation of finite difference and rewritten in the following 

form. 

k k k kxi−1,j + xi+1,j + xi,j−1 + xi,j+1 + αβi,j 
x k+1 = (4.26)i,j β 
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where α and β are constants. Solving Poisson-pressure and viscous diffusion 

equation accordingly. For the Poisson-pressure equation, x represents p, b represents 

r · w, α = −(δx)2, and β = 4. For the viscous diffusion equation, both x and b 

represent u, α = (δx)2/νδt, and β = 4 + α. 

Figure 1. Result 

4. Simple and Fast Fluids 

In this chapter, we are going to introduce a simple and efficient algorithm 

also runs on the GPU but only requires a single pixel shader. This algorithm was 

introduced by Martin Guay in [1]. He proposed a method that allows temporarily 

relaxing the incompressibility condition, and then solve the full Naiver-Stokes 

equations over the domain in a single pass. A single pass algorithm on GPU means 

we only need to draw one time to solve the equation. 
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4.1. Density-Invariance Algorithm. The solver algorithm is based on 

density invariance, which has proven to be stable for the SPH method. First of 

all, observe that Equation 3.11 can be rewritten as 

∂ρ 
= −rρ · u − ρr · u (4.27)

∂t 

It shows the link between the divergence of the vector field and the variation 

of the local density. A corrective pressure field is given as 

P = K(ρn − ρ0) (4.28) 

where ρ0 is the rest (initial) density and where the constant K is based on the 

gas-state equation. And since we only care about P’s derivative, the corresponding 

correction is then given by 

rP = Krρ (4.29) 

4.2. Numerical Approach. The paper solves the equations and runs the 

simulation by following steps, we will skip boundary conditions because its not our 

focus: 

1. Solve the mass conservation equation for density by computing the 

differential operators with central finite differences and integrating the solution with 

the forward Euler method. 

2. Solve the momentum conservation equation for velocity in two conceptual 

steps: (a) Solve the transport equation using the semi-Lagrangian scheme. (b) Solve 
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the rest of the momentum conservation equation using the same framework as in Step 

1. 

Conservation of Mass: 

This is solved by using central finite difference method, and performing a 

forward Euler integration technique in the paper. 

ρn+1 n n 
i,j,k = ρi,j,k 

n +Δt(−ui,j,k · rρi,j,k 
n − ρi,j,k

n r · ui,j,k) (4.30) 

Conservation of momentum: 

The velocity advection is solved exactly the same it is in the previous chapter. 

The rest is solved using the same idea for conversation of mass. 

n+1 n 2 n ui,j,k = ui,j,k +Δt(−Srρi,j,k 
n + g + νr ui,j,k) (4.31) 

And the following coefficient is given by the author in the paper. ν := 
ρ
µ 
0 

and S := K (Δx)2 

. S is an experimental scale value that generates better results in 2 
Δtρ0 

dimension. The stability condition is given 

Δx Δy Δz 
Δt < max{| |, | |, | |} (4.32) 

u v w 

Named as Courant-Friedrichs-Lewy (CFL) condition. And this condition must 

be satisfied everywhere in the domain. 



CHAPTER 5 

Proposed Method 

1. Stablize Simple and Fast Fluid GPU Solver 

1.1. Drawbacks of using explicit integration. The purpose of this 

chapter is to stabilize the GPU solver given in [1]. While a simple solution is 

represented in [1], and can be simulated by only one pass on GPU, the algorithm 

suffers from numerical instability because of using explicit Euler integration. In 

order to integrate such a solver into games might be troublesome because it is only 

conditionally stable. Recall the constraint in [1], a stable time step has to be based 

on grid size. This means that in order to create higher resolution results, the smaller 

time steps are needed to achieve stability. So for example, if we are creating a game 

with 512 ∗ 512 resolution and we want to put smoke in certain regions, regardless 

1of how big is the simulation domain, the solver’s time step has to be below 
512 

otherwise it becomes unstable. This instability can also lead to graphical artifacts 

in the simulation domain [figure 1]. Maintaining such high frame rate is impractical 

for games. A single frame rate drop could fail the simulation. Also, a game has to 

fulfill the constraint in different resolutions it supports, which means the time step 
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might vary. One way to solve this problem is to relax such condition by reducing 

resolution (increasing grid size in other words) in simulation domain, but doing 

so could potentially introduce inconsistency throughout the scene, for example, the 

smoke might look blurry compared to the character who interacts with it. A more 

sophisticated way is to fix the simulation time step in the game loop. This is a 

very famous and robust technique used constantly in game physics. However, using 

this method may harm the performance under some situations where we keep the 

same resolution as our previous example, and the simulation needs to catch up due 

to a sudden frame rate drop or merely having high resolution (recall that we just 

mentioned that normally games do not have such a high frame rate). In order to 

consume accumulated time, it might need to run several integrations to sync with 

global game state. 

The other issue worth mentioning is the unnatural result from the numerical 

solution of the continuity equation using explicit integration. Equation 4.30 can lead 

to negative density no matter how small time step is given. That is why the author 

in [1] has to clamp the final value in the implementation to prevent it from going 

to negative values. Explicit Euler integration also accumulate error over time, so in 

practice, we will have to clamp the value from being too big. 

1.2. Implicit Solver to increase stability. As mentioned earlier, we 

observed that equation 4.30 may lead to negative density value, which is why the 

implementation in simple and fast fluid involves clamping after solving the continuity 

equation. So our goal is to stabilize [1] using more sophisticated solver and we also 
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want to maintain the simplicity as we rewrite the equations in different forms. Our 

algorithm successfully removes the clamp function solving continuity equation and 

adds more detail to the fluid compared to [2]. First of all, we follow Stam’s result 

in [5] to calculate the viscous diffusion acceleration using Jacobi iteration for 40-80 

times. And then, instead of using forward Euler integration to solve the continuity 

equation, we present a method that uses the splitting technique in [5] to cut the 

equation into two parts, 

∂ρ 
= −u · rρ (5.1)

∂t 

∂ρ 
= −ρr · u (5.2)

∂t 

1.3. Solving continuity equation using Semi-Lagrangian and Implicit 

Euler Integration. Equation 5.1 shows the same form, as equation 4.8, so we can 

perform an unconditionally stable Semi-Lagrangian scheme on it. 

ρtemp = ρ(x − uδt) (5.3) 

Numerical dissipation caused by Semi-Lagrangian can be resolved using higher 

order advection algorithms, such as Back and Forth Error Compensation and 

Correction (BFECC) [16]. In our approach, we use this intermediate velocity as 

input of equation 5.2 by following a splitting technique. Equation 5.2 can be solved 

by using implicit Euler scheme. The equation can be derived as: 
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ρn+1 − ρtemp 

= −ρn+1 r · u (5.4)
δt 

ρn+1 = ρtemp − ρn+1 r · uδt (5.5) 

which gives, 

ρtemp 

ρn+1 = (5.6)
1 + (r · u)δt 

This solution allows us to completely remove clamping. 

1.4. Solving viscous diffusion equation using Jacobi iteration. After 

solving the continuity equation, in order to simulate viscous fluid, we have to solve 

for the viscosity term in order to get accurate results. We followed the results in [5] 

by solving the equation in implicit form and using Jacobi iteration (equation 4.26). 

Doing this will introduce more computational time, and according to [9] that normally 

requires 40-80 iterations to get the result to converge. 

1.5. Summary of Algorithm. So far in the previous sections in this chapter, 

we again broke down N-S equations into parts and solved them individually. This 

section, we are going to summarize the algorithm and show a step-by-step pseudo 

code. We will then do an analysis of our method compare to the original method in 

[1] in the experimental section. 
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1.5.1. Algorithm Overview. During initialization, it is important to set up a 

rest density value for the type of fluid we want to simulate, then we can proceed to the 

simulation loop. First of all, we calculate the new density value using semi-Lagrangian 

followed by the implicit Euler method. 

ρtemp = ρ(x − uδt) (5.7) 

ρtemp 

ρn+1 = (5.8)
1 + (r · u)δt 

Second, given the new value of density, we use it in the equation below to solve 

for the current velocity within the grid. 

n+1 n u = u +Δt(−Srρn (5.9) i,j,k i,j,k i,j,k + g) 

Next, we solve for the viscosity forces contribution using Jacobi iterations: 

∂u 
= νr 2 u (5.10)

∂t 

For smoke simulation, we need to track an additional temperature field T to 

apply Buoyancy defined as 

fbuoyancy = (−kd + σ(T − T0))ĵ (5.11) 

Where T0 is a given ambient temperature, and d stands for the smoke density 

advected by the velocity field. k and σ are constants scale factors. In order to simulate 

obstacles, we use Neumann boundary conditions: 
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∂f 
= 0 (5.12)

∂n 

To keep fluid from entering the obstacle cell. Lastly, we need to visualize the 

fluid. In order to do so, we simply create another density field tracking moving fluids. 

Since we already solved the velocity field, we update fluids using semi-Lagrangian 

algorithm and write to the final texture and draw it. 

Algorithm 1 Implicit GPU Solver 

1: Update loop 
2: for all grid cell do 
3: Initialize simulation domain 
4: for all gird cell do 
5: Solve continuity equation 

6: if is viscous fluid then 
7: for all i such that 0 ≤ i ≤ 40 ∼ 80 do 
8: for all gird cell do 
9: Solve diffusion term if you are simulating viscous fluids 

10: for all gird cell do 
11: Solve momentum equation using corrective pressure, viscous forces and 

external forces 
12: if is smoke then 
13: for all gird cell do 
14: Solve temperature and add buoyancy 

15: for all grid cell do 
16: Update density field and output as a texture for visualization 

1.5.2. The Proposed Method Pseudo Algorithm. 
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1.6. Experimental Results. We tested our method using Intel(R) 

Core(TM) i7-6700K CPU @ 4.00GHz 4.01GHz with Geforce GTX980 Ti. We found 

that using this method to solve the continuity equation we ended up having similar 

result as [5]. The simulation has to follow CFL condition (equation 4.32) as it 

is mentioned in [1]. It is only stable under the condition using correct time step 

constraint. The following table is a quick comparison of our proposed method and 

the other two. 

Table 1. Algorithm comparison 

Method GPU Memory Usage GPU Passes 
Stable Fluid 8*floating point 4 
Simple and Fast Fluid 6*floating point 1 
Proposed Method 6*floating point 2 

By a visual comparison, we can see how Jacobi iteration smooths out the result, 

but it doesn’t loose much details, Figure 2. 

Figure 2. Jacobian smooth out the result 

Figure 3 shows dye in water simulation with constant gravity pulling the water 
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down using our proposed method compare to simple and fast fluid, and Stable fluid 

by capturing the same frame in our framework. Our proposed method provides 

more details than Stable fluid [2] and the fluids stay more active than simple and 

fast fluid [1]. But our method is only stable under CFL condition, if it fails to 

meet the constraint it will dissipate and become unstable. Figure 4 shows average 

frame time comparison simulating viscous fluids as you can see our method runs 

two times faster than stable fluid at the same time capturing more details of fluids. 

Figure 5 shows that the proposed method also allocates less video memory than 

Stable fluid. Furthermore, in order to compare how much of the high frequency 

details each algorithm can preserve, we used Fourier analysis. First, we apply Fourier 

transform on the image we captured [Figure 8], to generate a frequency spectrum 

image. Secondly, apply a high pass filter on the frequency spectrum image to filter 

out the low frequency components. Finally, apply inverse Fourier transform [Figure 8] 

and compare the results [Figure 10]. We can see from the remaining white color, that 

both our algorithm and simple and fast fluid preserve high frequency components 

better than stable fluid. Table 2 shows how much details get preserved through 

Fourier Analysis with approximately 80 pixels filter radius. The measurement takes 

places by directly analyzing the result images’ red, green and blue channel. 

Table 2. Fourier Analysis measured in how much black spaces left out before and 
after applying high frequency filter to calculate preserved rates. 

Method Before After Preserved Rate(%) 
Stable Fluid 0.43 0.85 ∼25 
Simple and Fast Fluid 0.29 0.61 ∼55 
Proposed Method 0.34 0.67 ∼50 
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Figure 3. Starting from left is proposed method, simple and fast fluid, and stable 
fluid simulating dye in water using a 1/512 time step in a 512*512 simulation domain 

Figure 4. Average frame rate in multiple resolution 

1.7. Error Analysis. First we perform error analysis for semi-Lagrangian. 

Consider the continuity equation, 

∂ρ 
= −rρ · u − ρr · u (5.13)

∂t 

The proposed semi-Lagrangian scheme in equation 5.3, according to [25], obeys 

the following error estimate: 
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Figure 5. VRAM footage under different resolution measured based on table 1 

2Δx|ρtemp − ρtrue| ≤ C1(δt + ) (5.14) 
u2δt

if Δ
u
x ≤ C2(δt) then we get: 

|ρtemp − ρtrue| ≤ Cδt (5.15) 

Secondly, we take a look at proposed Implicit Euler 5.6, well known results 

in numerical differential equation prove that local truncation error for Implicit Euler 

(backward) satisfy 

|ρn+1 − ρtrue| ≤ Cδt (5.16) 

In conclusion, if Δ
u
x is comparable with δt, then the local truncation error 

converges to zero for this step, and the proposed algorithm provides a good 

approximation for the solution of the continuity equation. 
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Figure 6. Starting from left is proposed method, simple and fast fluid, and stable 
fluid simulating dye in water using a 1/512 time step in a 512*512 simulation domain, 
testing against obstacles in water 

1.8. Limitations and Future work. Our approach successfully smooth out 

the final image and achieve similar result as [5] by using less computational time and a 

more straightforward solver compared to [5]. We also reduced memory footage for the 

simulation [figure 5]. However, numerical instability caused by temporary relaxing 

incompressible condition cannot be resolved by simply using implicit integration. The 

problem comes down to integrate such solver into games as we mentioned previously. 

Under high resolution such as 512*512 in 2D, our method is restricted to proper time 

step. However, our best result shows that under a 200*200 grid, we can run the 

simulation in 60fps. In order to integrate our method properly into a game engine, 

we need to apply a proper and fixed time step integration to keep our solver stable. 

To do so in high resolution grid like 256*256, developers might have to accumulate 

delta time from each game update loop, and if the accumulated time is bigger than 

the fixed-time step defined for the simulation, we update the fluid one time or several 

times by subtracting the simulation time step until accumulated time is smaller than 
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Figure 7. Starting from left is proposed method, simple and fast fluid, and stable 
fluid simulating smoke using a 1/512 time step in a 512*512 simulation domain 

Figure 8. Result after applying Fourier transform 

the simulation time step. This might cause issue to maintain the frame rate for a 

game, for example, here we keep the same environment 512*512 in 2D, if the rest of the 

game state has advanced 1/60 millisecond, the simulation has to catch up the game 

state by integrating the solver about 8-9 times. This might hurt the performance as 

we saw in the above table describing how much time each update can take in average. 

In contrast, Stam’s stable fluid can be stable under any time step. For future work, 

we would like to see if we can find a better numerical method that helps us solve N-S 
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Figure 9. Applying a high pass filter and do a inverse Fourier transform 

Figure 10. Result from figure 7 

equations directly in a better way. 

1.9. Summary. Although we did not succeed in making the solver 

unconditionally stable. Our method does not need clamping function under correct 

time step. By observation, our final result is similar to [5] but requires less 

computational time by fusing the advantages in [5] and [1]. We are also able to smooth 

the result in [1]. Our method successfully sustain stability by solving continuity 

equation using Semi-Lagrangian and implicit Euler integration although this step 
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requires one extra pass when compared to [1] because we need to wait until all the 

density get solved then use the result to get correct pressure force by using central 

finite difference. For viscous liquids, we apply Jacobi iteration on implicit diffuse 

term just like what it is done in [9]. The result [figure 4] shows that we are desired to 

sacrifice some computational time to trade off stability and smoothness for the final 

rendered image. 



CHAPTER 6 

Conclusions and Future Research 

Several numerical methods of simulating fluids have been presented in this 

paper. Mainly we focus on physically based fluid simulations in Eulerian point of 

view. Our work starts from Stable Fluids [5], and Simple and Fast Fluid [1] and 

compared our approach with above discussed methods. Experimental results show 

that our method preserves high frequency details at the same time removes unnatural 

clamping when solving the continuity equation. Our method shares the same amount 

of memory footprint as simple and fast fluid, which is less than required by the method 

in Stable fluid, and it is more efficient compared to Stable fluid. We also showed 

how important the splitting technique is when solving complicated partial differential 

equations. However, this is not the end of the line, there are other directions of fluid 

simulation that should be studied. For example, level set method [15] is good at 

tracking water surface while vortex particles [24] are used to simulate turbulence in 

fluids. Furthermore, in our simulation, we only talked about water and smoke but 

there’s also fire and viscous fluid types. In order to simulate those types of fluids, [4] 

gives a nice overview of how each type of them works. 
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For future work, we would like to make the simulation more stable under 

arbitrary time steps. Currently if the time step fails to meet the stability condition, 

we get the final result with some obvious artifact. We would also like to explore 

betters numerical methods to help solve numerically Navier-Stokes equations in the 

future. 
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