
c 2017, Shuo-Wei Chang. All Rights Reserved.

The material presented within this document does not necessarily reflect the opinion of the
Committee, the Graduate Study Program, or DigiPen Institute of Technology.

ENHANCED DETAIL FLUID SIMULATION USING IMPLICIT

DENSITY-INVARIANCE ALGORITHM

BY

Shuo-Wei Chang

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

awarded by DigiPen Institute of Technology
Redmond, Washington
United States of America

August
2017

Thesis Advisor: Barnabas Bede

DIGIPEN INSTITUTE OF TECHNOLOGY

GRADUATE STUDIES PROGRAM

DEFENSE OF THESIS

THE UNDERSIGNED VERIFY THAT THE FINAL ORAL DEFENSE OF THE

MASTER OF SCIENCE THESIS TITLED

Enhanced Detail Fluid Simulation using Implicit Density-Invariance Algorithm

BY

Shuo-Wei Chang

HAS BEEN SUCCESSFULLY COMPLETED ON September 12, 2017.

MAJOR FIELD OF STUDY: COMPUTER SCIENCE.

APPROVED:

Dmitri Volper date Erik Mohrman date

Graduate Program Director Dean of Faculty

Pushpak Karnick date Claude Comair date

Department Chair, Computer Science President

DIGIPEN INSTITUTE OF TECHNOLOGY

GRADUATE STUDIES PROGRAM

THESIS APPROVAL

DATE: September 12, 2017

BASED ON THE CANDIDATE’S SUCCESSFUL ORAL DEFENSE, IT IS

RECOMMENDED THAT THE THESIS PREPARED BY

Shuo-Wei Chang

ENTITLED

Enhanced Detail Fluid Simulation using Implicit Density-Invariance Algorithm

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE

AT DIGIPEN INSTITUTE OF TECHNOLOGY.

Barnabas Bede date Erik Mohrman date Dmitri Volper date

Thesis Committee Chair Thesis Committee Member Thesis Committee Member

Xi Li date

Thesis Committee Member

ABSTRACT

In this thesis, we propose an efficient approach to fluid simulation on the GPU,

by directly solving Navier-Stokes equations, using implicit numerical approaches. Our

method is based on a density-variance algorithm and semi-Lagrangian approach.

Solving directly the mass conversation equation, using central finite difference and

explicit Euler method, leads to a conditionally stable result. We propose a solution

with semi-Lagrangian and an implicit Euler method, using a splitting algorithm to

release the time step restriction based on grid resolution, in addition to removing

unnecessary clamping function that was added to previous methods due to numerical

instability. We also apply a similar technique on the momentum conservation equation

using Jacobi iterations to solve the viscous part of Navier-Stokes equations, this way

reducing visual artifacts.

v

To my family

vi

ACKNOWLEDGMENTS

I would like to thank my thesis advisor for all the supports.

vii

TABLE OF CONTENTS

LIST OF TABLES . xi

CHAPTER 1 Introduction . 1

1. Types of Simulation . 2

2. Thesis Overview . 2

3. Goals . 3

3.1. Fast . 3

3.2. Scalable . 3

3.3. Realistic . 3

CHAPTER 2 Vector Calculus . 4

1. Scalar Field . 4

2. Vector Field . 5

3. Gradient . 5

4. The Divergence . 6

5. The Curl . 7

CHAPTER 3 The Navier–Stokes Equations 8

1. Incompressible Navier–Stokes equations 8

2. Terms in the Navier–Stokes equations 10

2.1. Advection . 10

2.2. Pressure . 10

2.3. Diffusion . 11

viii

2.4. External Forces . 11

3. Material Derivative . 11

3.1. Lagrangian and Eulerian Viewpoints 11

3.2. Material Derivative on Vector Quantities 14

4. Incompressibility . 14

5. The Momentum Equation . 16

CHAPTER 4 Numerical Methods . 19

1. Finite Difference Method . 21

2. Advection Algorithm . 22

2.1. Semi-Lagrangian . 23

3. Fast Fluid Dynamics Simulation on the GPU 25

3.1. The approach . 25

3.2. The Helmholtz-Hodge Decomposition 26

3.3. Viscous Diffusion. 29

4. Simple and Fast Fluids . 30

4.1. Density-Invariance Algorithm 31

4.2. Numerical Approach . 31

CHAPTER 5 Proposed Method . 33

1. Stablize Simple and Fast Fluid GPU Solver 33

1.1. Drawbacks of using explicit integration 33

1.2. Implicit Solver to increase stability 34

ix

1.3. Solving continuity equation using Semi-Lagrangian and Implicit

Euler Integration . 35

1.4. Solving viscous diffusion equation using Jacobi iteration 36

1.5. Summary of Algorithm . 36

1.6. Experimental Results . 39

1.7. Error Analysis . 41

1.8. Limitations and Future work 43

1.9. Summary . 45

CHAPTER 6 Conclusions and Future Research 47

REFERENCES . 49

x

LIST OF TABLES

1. Algorithm comparison . 39

2. Fourier Analysis measured in how much black spaces left out before

and after applying high frequency filter to calculate preserved rates. . 40

xi

CHAPTER 1

Introduction

One of the reasons video games are appealing is the ability to create desirable

virtual world and allowing players to interact with. Fluids appear in several natural

phenomena commonly seen in daily life, such as camp fire, ocean and smoke for

instance. And adding this phenomenon to games allow developers to create realistic,

immersive, and interesting virtual environments. Real-time fluid simulation has been

a hot topic for research over the last decades. Let us recall here that many years

ago, fluids were just simple particles, or animated textures, however, fluids are more

complicated than the systems that these systems can capture. The resulting fluid

behavior using these systems is very limited. Creating fluid effects can be very

challenging and time-consuming, and also, matching real-world fluid behavior is

impossible. In real life, fluids like smoke are governed by physics equations. In

order to achieve realistic simulation in virtual world, we need to model them based

on these equations. Thanks to the improving of hardware and computational power,

and the effort of numerous researchers, we are able to approximate these equations

in interactive frame time with the help of numerical methods.

2

1. Types of Simulation

There are two major fields in fluid simulation. One represents the whole

movement of fluids [2], while the other one only discusses surface movement [12].

Surface movement like wave simulation is commonly done by generating a height map

procedurally [12]. In contrast, tracking the whole fluid body uses a fixed or irregular

grid approach [2,12]. However, above all, these are just different ways to describe

the motion of the fluid. There are studies on other various aspects related to fluid

simulation, for instance, how to render it is another different problem when it comes

to shading the fluid. However, in this thesis, we will primarily focus on solving the

governing equations that describe fluid motion than other extensions. Terminology

we have used so far, we will define later in the thesis.

2. Thesis Overview

Before jumping into the topic, let’s have an overview of this thesis’ structure.

We will first review essential mathematics used in fluid dynamics. Then we will go

through algorithms in the order of solving N-S equations in Lagrangian and Eulerian

point of view, and finally we will present our improvement based on Eulerian’s

viewpoint. We establish necessary material needed through out the thesis before

we introduce our methods, our improvement is based on these ideas, so we will recall

the background first. Our algorithm inspired by [5] and [1] is based on the idea of

temporarily relaxing incompressibility to reduce equation complexity, compared to

[5], but also preserving stability. We will also introduce Cole-Hopf Transformation to

3

solve N-S equations. Finally let us bring up before we start the goals that we want

to meet when thinking of fluid simulation for games.

3. Goals

Again, we want to emphasize that when we talk about fluid simulation in this

thesis, we are talking about putting the simulation in games. Our goal is not only

to run simulations in real-time but to have an algorithm that can be integrated to

games. Here are the goals we want to achieve:

3.1. Fast. First of all, we want our simulation to be fast. It should run in 30

fps or above, and be stable under various time steps.

3.2. Scalable. We want it to be controllable. We want to create different

fluid behaviors. We also want it to be responsive models to player interaction so that

we can create unique user experience.

3.3. Realistic. The approximate result should retain as many details as

possible and be convincing to players at first glance.

That is it for the big picture. Next section we will start with a review on

vector calculus.

CHAPTER 2

Vector Calculus

In this section, basic vector calculus knowledge will be reviewed. This section

is not for thorough review as we will not go through all the proof details, but we

show important concepts, principles and theorems. This review covers the material

needed for the following sections or chapters. We show our examples in a Cartesian

coordinate system.

1. Scalar Field

In mathematics and physics, by definition, when every single point in either

two or three dimensions is associated to a scalar value, we call it a scalar field. These

values are defined by scalar valued functions of positions in space. In fluid dynamics,

these values normally stand for a physical quantity. Take p(x, y) as an example, it

represents pressure at a given point on a two dimension space.

5

2. Vector Field

Before defining vector field, let’s define what is a vector function. Similar to

scalar functions, a vector function is a function that takes a position and returns a

vector, for example v = f(x, y) (We use bold font to represent vectors in this thesis).

And these vectors construct the result of a vector field just as a scalar field. In fluid

dynamics, we have to generate a velocity field, which is a vector field, to track the

flow of fluids.

Next we will review three important vector calculus concepts, gradient,

divergence, and curl. They are important in fluid dynamics. For example, pressure

force can be described as a gradient. Their main role is to help us analyze the net

forces working on fluid.

3. Gradient

A del operator, noted as r, describes spatial partial derivatives. Gradient is

given

∂ ∂ r = (,) (2.1)
∂x ∂y

in two dimensions. You can also extend it to three dimension by adding a z term.

Gradient takes spatial partial derivatives of a given function. Consider a scalar

function f in two dimensions, gradient is defined as the following,

∂f ∂f rf(x, y) = (,) (2.2)
∂x ∂y

6

and it can measure the rate change of the example function along x and y axis, it

points in the increasing direction of the result scalar field. In later chapter, you will

see how it is used to measure pressure force in Navier-Stokes equations. And let’s

have a concrete example before we move on. Let f(x, y) = x2y, find rf(3, 1). The

gradient of f is:

∂f
(x, y) = 2xy (2.3)

∂x

∂f
(x, y) = x 2 (2.4)

∂y

Therefore, the gradient is (6, 9). We can also apply gradient on vector-valued function,

the answer is in a matrix form. Given a vector field f = (u, v, w), the gradient of it

is,

⎤⎡

rf =

⎢⎢⎢⎢⎢⎢⎢⎣

∂u ∂u ∂u
∂x ∂y ∂z

∂v ∂v ∂v
∂x ∂y ∂z

∂w ∂w ∂w
∂x ∂y ∂z

⎥⎥⎥⎥⎥⎥⎥⎦

(2.5)

sometimes known as Jacobian.

4. The Divergence

The concept of divergence is needed to measure how much of the field flows

outward from a given point of a vector-valued function. Given the idea of taking the

dot-product between Del operator and a vector u = (u, v), the result is a scalar value.

Divergence in two dimensions is,

7

∂ ∂ r · u = (,) · (u, v)
∂x ∂y

(2.6)
∂u ∂v

= +
∂x ∂y

5. The Curl

Curl is used to measure the amount of rotation at a given point. Using the

same example in divergence, curl is given as,

∂u ∂v r× u = − (2.7)
∂x ∂y

you will see how to use curl to measure turbulence of fluid in this paper.

CHAPTER 3

The Navier–Stokes Equations

In chapter 2, we have reviewed some vector calculus basics and how individual

operators are defined. In this chapter, we will introduce the famous Navier-Stokes

equations that govern the motion of viscous fluids. They are derived from Newton’s

Second Law of Motion and by Navier, Poisson, Saint-Venant, and Stokes between

1827 and 1845. Navier-Stokes Equations hold throughout the entire simulation in

time and space. We will break equations into pieces to further understand what each

term stands for.

1. Incompressible Navier–Stokes equations

Most fluid simulation done in computer graphics is governed by the famous

incompressible Navier–Stokes equations. We assume incompressible, homogeneous

fluid, which means that the density of fluids stays constant both in time and space.

The following equations describe the flow of incompressible fluid over time,

∂u 1 2 = −(u · r)u − rp + νr u + F
∂t ρ

(3.1)

r · u = 0 (3.2)

9

Equation 3.1 is called the momentum equation. It represents the conservation of

momentum. Equation 3.2 is the incompressibility condition for fluid and stands for

conservation of mass. It is originally derived from the continuity equation,

∂ρ
+ r · (ρu) = 0 (3.3)

∂t

Since we assume incompressible and homogeneous fluid, the first term becomes zero.

∂ρ
= 0 (3.4)

∂t

and also because ρ is a constant value, Equation 3.2 becomes

ρr · u = 0 (3.5)

divided by ρ, we reached equation 3.2. Now let’s look at the definition

of symbols in equation 3.1. u is the fluid velocity, it plays an important role

in transporting substances throughout the simulation. And we can see from the

equations that our goal is to calculate how the velocity field evolves during the

simulation and use it to move fluid such as smoke or fire. ρ is fluid density, for

example, water is roughly 1000kg/m3 . p is the fluid pressure in the unit of force per

unit area. ν is the fluid kinematic viscosity, it describes how sticky fluid is, in other

words, how fast fluid diffuses. F are the external net body forces on a fluid, they can

be regional forces affecting part of fluid or gravity that affects whole fluid. The most

common one is gravity, we can also apply some forces on fluid when it travels through

certain area during the simulation.

10

2. Terms in the Navier–Stokes equations

So far we have some basic ideas of how Navier–Stokes equations look like and

what each symbol stands for. Differential equation 3.1 appears to be difficult to solve

at first glance. We can see that the partial derivative of u respective with t is the sum

up of four elements on the right side of equation 3.1. In this section, we will break it

down into pieces and explain each term in order. Considering equation 3.1 again we

can see that each term is a result caused by a certain force written in acceleration.

After describing what each term stands for, it will give us better idea how to derive

equation 3.1 from Newton’s Second Law of Motion.

2.1. Advection. Advection is a mechanism of transporting substance by the

fluid. In Navier–Stokes equations, the advection term transports velocity from one

location to another on the velocity field. In other words, this term helps velocity field

evolve over time. It represents self-advection of the velocity field.

2.2. Pressure. Fluid might not be spread equally in space. The unit used to

measure how much fluid per given space is called density. The difference of density

throughout the space causes pressure force. High-pressure areas push on low-pressure

areas. Take the negative gradient of the pressure field then we calculate pressure force

to determine which way the fluid should flow. In mathematics, gradient is pointing

to ascent direction. Then, it is obvious that we have to put a negative sign to correct

the result.

11

2.3. Diffusion. The third term is called viscosity. This term tells how sticky

the fluid is. This property can be imagined easily in real life. Think about one pours

different types of liquid on to a wall. Liquids like water would only remain on the

wall for a short time, while liquids like honey would remain on the wall for quite long

time. Another way to think of this phenomenon is by observing how quickly would a

type of fluid diffuses to the environment. We can also think in an way that this is a

force that tries to make a fluid particle to move in average speed of nearby particles.

This way it can prevent fluid from deforming.

2.4. External Forces. The last force that contributes to net forces is due to

external forces. They can be body or local force. Wind force is an example of a local

force, it can be applied to the fluid in some regions of the simulation domain. Gravity,

which is a body force, should be applied to every fluid particles in most cases.

3. Material Derivative

Before we start to derive equation 3.1, we need to know what is material

derivative. For understanding material derivative, we need to learn about the

difference between Lagrangian and Eulerian point of view.

3.1. Lagrangian and Eulerian Viewpoints. These are two different

approaches to track continuous motion. The Lagrangian point of view is what you

are probably most familiar with. It treats fluid dynamics like a particle system.

It considers each point in the fluid simulation as a particle that carries position,

12

velocity, density and so on. Smoothed Particle Hydrodynamics (SPH) is one of

the famous numerical solvers in a Lagrangian framework. In [10], SPH is used to

simulate nonviscous fluids using a particle system where each fluid is treated as a rigid

body carries its own properties. Simulating advection in a Lagrangian framework

is straightforward since we know that equation 4.7 holds true in the momentum

equation, basically, equation 4.7 states that the value carried by a particle remains

the same through out the simulation, so the remaining thing for advection is really

nothing but to do position integration based on velocity. The fact that each fluid is

treated as a particle also helps solving boundary condition and apply body forces to

the fluid. They are merely collision between rigid bodies and numerically integration.

However, enforcing incompressibility is not as easy as advection in Lagrangian point

of view. In addition, handling large numbers of particles is challenging to achieve real

time performance. A hash grid is a common approach to optimize the update for a

large numbers of particles.

One the other hand, the Eulerian approach, commonly used for fluids, takes

a different tactic. Instead of thinking in particles, Eulerian approach measures

fluid properties, such as velocity, density, temperature, etc., in a fixed grid space.

Quantities at those points change in time, they are contributed by fluid flow that

passes through those points. It’s might be not entirely intuitive at first, but we

will show an example to explain it in a better way. Imagine you are measuring a

fixed point’s temperature in air. As warm air moves past followed by cold air, the

temperature reading at that position will raise and then decrease, even though the

13

temperature of any particle in air does not change at all! With the same idea, one

can also measure the wind direction.

Numerically, the Eulerian viewpoint makes it easier to approximate those

spatial derivatives on a fixed grid than on a particle system with arbitrary moving

points, which normally corresponds to the Lagrangian viewpoint. Moreover, as we

progress through the paper, you will find that the data representation in an Eulerian

framework can be parallel processed more easily than in a Lagrangian framework.

However, it is hard to choose a grid approach that works for all resolutions in an

Eulerian framework to achieve significant precision for advection. It requires re-

sampling approximation, which is lossy in general, on a grid during the simulation.

Material Derivative connects the two viewpoints. Consider we want to

measure how a quantity, say density q, changes over time at a fixed point in the

body of the fluid. In Eulerian point of view, given a function of space q(t, x) tells us

the value of q at time t and position x. Since we want to measure the change rate

over time, we take the total derivative:

d ∂q dx
q(t, x) = + rq ·

dt ∂t dt
∂q

= + rq · u
∂t (3.6)
∂q

= + u · rq
∂t
Dq

=
Dt

This is the material derivative! We can also explain this in Lagrangian

viewpoint by considering that a particle that carries quantity q that has a given

14

rate of change over time currently at location x. The first term ∂q/∂t is how fast

q is changing at that fixed point in space. The second term u · rq, also known as

advection, adds how much of that change is due to differences caused by neighbor

fluid. Numerically, advection is effectively automatic in Lagrangian point of view,

while it is harder to solve in Eulerian measurement.

3.2. Material Derivative on Vector Quantities. At this point it might

be still unclear what does the material derivative mean when it applies to vector

quantities mathematically. The meaning is simple: we calculate it with each

component separately. Let’s consider the advection term in Navier-Stokes equations

for practice. We assume the fluid is moving on a velocity field, u, in three dimension.

Taking the material derivative on velocity u = (u, v, w) results in a self-advection

formula.

⎤⎡⎤⎡

Du
Dt

=

⎢⎢⎢⎢⎢⎣

Du/Dt

Dv/Dt

⎥⎥⎥⎥⎥⎦
=

⎢⎢⎢⎢⎢⎣

∂u/∂t + u · ru

∂v/∂t + u · rv

⎥⎥⎥⎥⎥⎦
=

∂u
+ u · ru (3.7)

∂t

Dw/Dt ∂w/∂t + u · rw

Notice that we simply treat to each component separately.

4. Incompressibility

In physics, there are two types of fluids, incompressible and compressible.

Incompressible fluid corresponds to liquid, such as water. On the other hand,

compressible fluid is a gas such as smoke or air in general. We keep in mind that

15

there’s no perfectly incompressible flow, it is simply impossible, otherwise we would

not be able to hear underwater. In real-time computer graphics, or games, it is

common to treat the fluid as incompressible flow. Compressible flow normally adds

more complexity and is more expensive to simulate. Furthermore, compressible flow

contributes little visually and impacts fluid motion in microlevel. Hence, in general, it

is practical to just consider incompressible fluid for both liquid and gas for animation.

In earlier section, we have showed how to reach equation 3.2 by applying

incompressibility condition mathematically, making ρ a constant value. In this

chapter, we will show more concrete details deriving the equation.

Let Ω be an arbitrary and fixed region of space. We define the mass of fluid

M as

Z Z Z
M = ρ (3.8)

Ω

Taking the integral around the boundary of the fluid speed along the surface

normal. The rate at which mass flows in or out of Ω is given by

Z Z
∂M
∂t

= − ρu · n
∂Ω

(3.9)

Expanding M and transforming the right hand side with the help of divergence

theorem, we get

Z Z Z Z Z Z
∂ρ
= − r · (ρu) (3.10)

∂t Ω Ω

Since the equation should hold in any given region Ω, the following equation

16

must also hold true,

∂ρ
+ r · (ρu) = 0 (3.11)

∂t

We observe that this is equation 3.3, termed continuity equation. Assuming

incompressible flow, or in other words, flow with fixed density, we reach the final

incompressibility condition

r · u = 0 (3.12)

5. The Momentum Equation

Now let us gain a deeper understanding of equation 3.1. As we just went

through previously, equation 3.1 can be separated into four pieces and each piece is

not hard to understand. It tells us how different types of forces that form net force

acting on fluid acceleration. We observe that this is in fact just Newton’s equation

F = ma. Starting with material acceleration in two dimensions, which is defined as

following,

Du
a ≡ (3.13)

Dt

In fluid dynamics, it is the acceleration following a fluid particle by definition.

Expanding it in two dimensions using the definition of material derivatives, we have,

∂u ∂u ∂u
a ≡ + u + v (3.14)

∂t ∂x ∂y

17

Applying material acceleration, Newton’s law is now,

Du
F = m() (3.15)

Dt

There are other three types of forces that contribute to fluid motion, pressure,

viscosity, and body forces. We start with body forces, and in our case, we use gravity

as an example. The force of gravity acts the same way as in solid mechanics,

Fgravity = mg = ρgdxdydz (3.16)

Define dxdydz as V , rewrite it to,

ρgdxdydz = ρgV (3.17)

Next is the pressure force, in fluid dynamics, high pressure area pushes low

pressure area. The way to measure imbalance pressure is to take negative gradient of

pressure, define pressure as P , we have,

Fpressure = −rpdxdydz = −rpV (3.18)

The other fluid force is due to viscosity. Using the rate of stress and rate of

strain tensors, we write the viscosity force in each component,

h iFi ∂ ∂ui ∂uj
= η(+) + λδij r · u (3.19)

V ∂xj ∂xj ∂xi

where η is the dynamic viscosity coefficient, λ is the second viscosity coefficient,

δij is the Kronecker delta and j is used to sum up from j = 1, to the number of

18

dimensions we are working on. Using the incompressibility condition, we rewrite

3.19 into a vector form, given,

Fviscosity 2 = ηr u (3.20)
V

r2 is called Laplacian operator. It is defined as follows,

∂2f ∂2f r · rf = + (3.21)
∂x2 ∂y2

Applying this operator on a vector is simply to input each component into the

same calculation. Finally, we almost reach equation 3.1, but first, let’s put everything

together. We then have,

Du
ρV

Dt
= ρgV − V rp + V ηr · ru (3.22)

Rearrange it by dividing each side of equation by V and ρ,

Du 1 1
Dt

= g − rp +
ρ

ηr · ru
ρ

(3.23)

Define the kinematic viscosity as ν = η
ρ to get,

Du 1
= g − rp + νr · ru (3.24)

Dt ρ

Expand material acceleration 3.14, we reach the final momentum equation

describing incompressible Newtonian fluid [7]. Notice that we have g instead of F,

and as you might expect, this term can be the sum of all external body forces. In this

section, we only list one of the common forces, gravity, that always works on fluid.

CHAPTER 4

Numerical Methods

We have basically covered all the essential materials in mathematics, physics

and some basic numerical concepts. Beginning from this chapter, we will start to solve

Navier-Stokes equations with incompressibility conditions numerically. There are

many existing algorithms developed by researchers in the past decades. In [20], they

write Navier-Stokes equations in different form using Reynolds number to describe

viscous forces and alter the number in order to increase numerical stability or certain

effect whereas in true physics, it is a constant value used to describe different flows.

In addition, they solve them with finite difference approach. In [Foster and Metaxas],

their approach also utilize finite difference and they use particles to model surface

tracking. In [5], Jos Stam introduced a real time method that is stable under any given

time step. Based on [5], [15] developed level set method to help track the surface of

the water. Besides this, Smoothed Particle Hydrodynamics solves the incompressible

Navier-Stokes equations in Lagrangian point of view. It is a very natural numerical

approach applying incompressibility condition.

Our approach is based on the idea of [5] and [1] by temporarily loose

20

incompressible condition to solve incompressible Navier-Stokes equations. That

means we actually solve for density and use it as a variable plug-in to the momentum

equation to update velocity that carries fluid around. In this chapter, we will build

up the theory behind [5] and [1] in order to introduce our improvement. However,

instead of talking about [5], we will talk about [9]. [9] is a more modern approach

and runs on GPU, its implementation is alike [5] but on GPU. The main difference

between the two methods is to use finite difference. If we think of the simulation

happening on a 2-D array then we can store the information we need to move fluid,

for example, density, velocity, or pressure. We will have to iterate these arrays by a

certain time step to run the simulation. Furthermore, the reason behind choosing a

GPU implementation is because GPU is good at processing 2-D array like data in

parallel that can make the simulation highly efficient compared with a CPU approach.

It requires more setup on the CPU side in order to access and manipulate data on

GPU. We won’t go too much into details on that except for showing you shader code

snapshot. Usually it is recommended that one implements a new method first on

CPU and move on to GPU.

Before introducing [9] and [1], we will cover common numerical methods used

by the two algorithms. In the beginning of this chapter, we are going to first introduce

how vector calculus is approximated by finite difference method. And then we are

going to introduce two methods for solving Naiver-Stokes equations based on finite

difference method.

21

1. Finite Difference Method

Finite difference method is a popular numerical solution to vector calculus

due to it’s a rather fast and simple approach deriving from Taylor’s polynomial.

The precision of the simulated finite difference method depends on time and space

steps. Generally, smaller steps produce better results. In chapter 2, we covered

important calculus knowledge in fluid simulation. And now, we write them in finite

difference form to show how calculus is approximated by finite difference method.

The method we are about to introduce is called central finite difference, there are

other two methods called backward/forward finite difference methods exists. We will

show them on a two dimension Cartesian grid.

The definition of gradient is

∂f ∂f rf(i, j) = (,) (4.1)
∂x ∂y

Its central finite difference form is

fi+1,j − fi−1,j fi,j+1 − fi,j−1
(,) (4.2)

2δx 2δy

where i,j refer to locations on a Cartesian grid, and δx, δy is grid’s size in x,y

dimension. Given in similar format, divergence is given as

∂u ∂v r · f(i, j) = + (4.3)
∂x ∂y

Where f(i, j) = (u, v), and the central finite difference form is given as

22

ui+1,j − ui−1,j vi,j+1 − vi,j−1
(+) (4.4)

2δx 2δy

Last but not least, Laplacian in calculus is given as,

∂2f ∂2f r 2f(i, j) = + (4.5)
∂x2 ∂y2

Where r2 = r · r, and the central finite difference form is

fi+1,j − 2fi,j + fi−1,j fi,j+1 − 2fi,j + fi,j−1
(,) (4.6)

(δx)2 (δy)2

These form can be extended to three dimension easily by similar ideas. Finite

difference method is a great method to solve fluid dynamics in Eulerian point of view

with second-order accuracy. In other words, we can have a fixed grid that holds all

the data we need during the simulation.

2. Advection Algorithm

The second numerical algorithm that would be used in both approaches is

advection. Recall in Navier-Stokes equations 3.1, the first term on the right side

derived from material derivative refers to advection, which means it helps to transport

velocity on the simulation grid. In order to do so in Eulerian point of view is nontrivial

because we have a fixed grid instead of bunch of free moving particles bouncing

around. It is straightforward to track velocity field through the Lagrangian point of

view because it is carried by particles, so is incompressible condition. On the contrary,

in Eulerian point of view, it takes more effort and analysis to track velocity. In this

23

section, we will introduce a semi-Lagrangian approach to solve any given advection

equation in a stable manner, which means that it is stable under any time step size.

2.1. Semi-Lagrangian. Semi-Lagrangian approach was first introduced by

[3] in the meteorological literature. It is proved that semi-Lagrangain is a first-order

and unconditionally stable numerical method in [6] with the drawback of dissipation

n
i

problem. We will borrow some of the notation [4] used to present the algorithm in

n
i

this section. Given the material derivative,

n
i

Dq/Dt = 0 (4.7)

i

In order to solve it, we first write out the PDE, for example, in one dimenstion:

∂q ∂q
+ u = 0 (4.8)

∂t ∂x

Then replace the above equation with forward Euler and central finite difference

for the spatial derivative, we get:

q n+1 − q q +1 − q −1n
i+ u = 0 (4.9)

Δt 2Δx

Rearrange it into an explicit schema to get the new value of q:

n+1 = q ni − Δtun
i (4.10)qi 2Δx

n
i

n
iq − q+1 −1

Explicit formula is a straightforward and easy to understand and implement,

but probably the least one you want if there’s obviously a better choice with a little

24

more effort. It is because forward Euler is unconditionally unstable in equation 4.10

regardless of how small Δt is. Even if switching to a more stable integration

technique, like, Eulerian Leapfrog, will only give us a conditionally stable result (more

specifically, Courant–Friedrichs–Lewy condition, a.k.a CFL condition). There are still

other issues remain with this spatial discretization. However, we will not go deeper

on this topic but a good reference in this area is [4].

Instead, we take a different approach motivated by physics, unconditionally

stable and was introduced to graphics by [5] called semi-Lagrangian method. The

basic idea of using semi-Lagrangian for advection integration is based on the

approximation of Lagrangian time derivative. We want to find the new value of

q at its current grid point. In order to achieve it, we run backwards through the

velocity field at current point to figure out where it started. And then bring the new

value over to the current point. Let’s define the current position is xi, we would like

to find the new value of q at xi, written as qi
n+1 . The first step is to find the previous

location xp by backtracking along the velocity field.

xp = xi − Δtu(xi) (4.11)

And then look up q value at location xp

qi
n+1 = q(xp) (4.12)

Most likely xp won’t be exactly on the grid, so we won’t have exact value to look

up on the grid. In general, trilinear (bilinear in two dimensions) interpolation is used

25

to approximate the result. Let’s illustrate this, in one dimension, for completeness

before we move on to the next topic. Assuming xp lies between [xj , xj+1], α =

(xP − xj)/Δx be the coefficient for linear interpolation. Then we look up the new

value by

n+1 n q = q(xp) = (1 − α)q + αqn (4.13)i j j+1

In the application, we apply this to velocity field to solve Navier-Stokes

equations and update density field to move the fluid around.

3. Fast Fluid Dynamics Simulation on the GPU

So far we have discussed common numerical schemes used in solving fluid

dynamics equations. Next, we are going to show you some previous works utilizing

the power of modern GPU for fluid calculation. We start from Mark Harris’ work

published in GPU GEM VOLUME 1 [9]. Their work was based on [5]. It is an

unconditionally stable solver using many passes on GPU. The second one is Martin

Guay’s work published in GPU PRO 2 [1]. They presented an efficient way to simulate

Newtonian fluid that only requires a single pass on GPU but the result is conditionally

stable only, with the constraint on choosing a proper time step depending on grid

resolution.

3.1. The approach. To begin with the main idea we just mentioned, this

paper is highly based on the [5]. While [5] has the implementation on CPU, this paper

has their algorithm implemented on modern GPU because this type of computation

26

is well suited on these hardwares. When we simulate fluid in Eulerian’s point of view,

it is important to recall that the computation is performed on a fixed grid of cells.

Array is a great data representation to represent the data, on GPU, we have texture

that is similar to an array as basic data storage unit, and we normally refer a cell as

a pixel. In fact, GPU achieve high performance calculation through parallelism: they

are capable of processing multiple pixels simultaneously.

3.2. The Helmholtz-Hodge Decomposition. The Helmholtz-Hodge

Decomposition, HHD for short, plays an important role applying Incompressible

condition to equation 3.1. It transforms equation 3.1 into a form that is suitable

to apply numerical computation.

3.2.1. Helmholtz-Hodge Decomposition Theorem:

Definition: Given any vector field, it can be decomposed into the sum of two

other vector fields: a divergence-free vector field, and a gradient of a scalar field. In

mathematics, it means that given a vector field w on D, there exist u, p such that

w = u + rp (4.14)

where u has zero divergence and is parallel to ∂D [define], that is, u · n = 0 on

∂D. It also says that the divergence-free field approaches zero at the boundary. For

the proof of the theorem, please refer to [7].

3.2.2. The Projection Operator:

After solving equations 3.1, we get new values of the velocity field, which

is not divergent free. But this result contradicts equation 3.2. So we correct it by

27

rearranging equation 4.14 into,

u = w −rp (4.15)

Secondly, HHD leads to an equation for solving the pressure field, by applying

divergence operator to both side of equations 4.14, we obtain:

r · w = r · (u + rp) = r · u + r 2 p (4.16)

With equation 3.2, it can be simplified to:

r 2 p = r · w (4.17)

which is a Poisson-pressure equation of the fluid. And at this point of the

paper, we have all we need to reach the final divergence-free field u. Lastly, we can

define a projection operator, P, that projects a vector field w onto its divergence-free

component, u. By definition,

Pw = Pu = u (4.18)

based on this definition, applying the projection operator,

Pw = Pu − P(rp) (4.19)

Therefore,

P(rp) = 0 (4.20)

28

Now, applying projection operator to the Navier-Stokes equations, we get

P
∂u

= P(−(u · r)u −
1 rp + νr 2 u + F) (4.21)

∂t ρ

Since u is divergence-free, also realizing that P(rp) = 0. We are left with the

final equation,

∂u
= P(−(u · r)u + νr 2 u + F) (4.22)

∂t

The paper solves it with typical split technique (More information about this

technique is given in [4]). It means that each component in the final equation is a step

that takes a field as input, and produces a new field as output. The author defines

an operator S that is equivalent to the right side of equation 4.22 over a single time

step. Furthermore, S is defined as the composition of operators (using the same idea)

for advection (A), diffusion (D), force application F, and projection (P):

S = P ◦ F ◦ D ◦ A (4.23)

The solver then starts from the rightmost operator to leftmost one, each

component takes velocity from last frame and iterate it over a time step and pass the

intermediate value to the next component as input. For projection operator, updating

the pressure field is required as an additional input as it is shown in equation 4.17.

Now, since we have already seen how semi-Lagrangian works, and it is not hard to

imagine how to implement it with code. Next, we want to take a look at how to solve

diffusion and Poisson equation with Laplacian operator numerically using the idea of

29

finite difference.

3.3. Viscous Diffusion. This property is given as:

∂u
= νr 2 u (4.24)

∂t

This can be solved using explicit integration but we know that it is not as

stable as we want. The paper provides an implicit solution that is stable for arbitrary

time steps and viscosities, given as:

(I − νδr 2)u(x, t + δt) = u(x, t) (4.25)

where I is an identity matrix. This equation shares the same format as

equation 4.17, it is a Poisson equation for velocity. It can be with an iterative

relaxation technique. It is solved with Jacobi iteration, the simplest iterative

technique, in this paper.

3.3.1. Solution of Poisson Equations using Jacobi Iteration:

The Poisson equation is a matrix equation in the form of Ax = b, where

x is the vector of values we are solving (for fluid simulation, we need to solve for

pressure and diffusion), b is a vector of constants, and A is a matrix. [8] provides

proof of Jacobi iteration for general matrix equations. Equation 4.17 and 4.25 can

be discretized using the formulation of finite difference and rewritten in the following

form.

k k k kxi−1,j + xi+1,j + xi,j−1 + xi,j+1 + αβi,j
x k+1 = (4.26)i,j β

30

where α and β are constants. Solving Poisson-pressure and viscous diffusion

equation accordingly. For the Poisson-pressure equation, x represents p, b represents

r · w, α = −(δx)2, and β = 4. For the viscous diffusion equation, both x and b

represent u, α = (δx)2/νδt, and β = 4 + α.

Figure 1. Result

4. Simple and Fast Fluids

In this chapter, we are going to introduce a simple and efficient algorithm

also runs on the GPU but only requires a single pixel shader. This algorithm was

introduced by Martin Guay in [1]. He proposed a method that allows temporarily

relaxing the incompressibility condition, and then solve the full Naiver-Stokes

equations over the domain in a single pass. A single pass algorithm on GPU means

we only need to draw one time to solve the equation.

31

4.1. Density-Invariance Algorithm. The solver algorithm is based on

density invariance, which has proven to be stable for the SPH method. First of

all, observe that Equation 3.11 can be rewritten as

∂ρ
= −rρ · u − ρr · u (4.27)

∂t

It shows the link between the divergence of the vector field and the variation

of the local density. A corrective pressure field is given as

P = K(ρn − ρ0) (4.28)

where ρ0 is the rest (initial) density and where the constant K is based on the

gas-state equation. And since we only care about P’s derivative, the corresponding

correction is then given by

rP = Krρ (4.29)

4.2. Numerical Approach. The paper solves the equations and runs the

simulation by following steps, we will skip boundary conditions because its not our

focus:

1. Solve the mass conservation equation for density by computing the

differential operators with central finite differences and integrating the solution with

the forward Euler method.

2. Solve the momentum conservation equation for velocity in two conceptual

steps: (a) Solve the transport equation using the semi-Lagrangian scheme. (b) Solve

32

the rest of the momentum conservation equation using the same framework as in Step

1.

Conservation of Mass:

This is solved by using central finite difference method, and performing a

forward Euler integration technique in the paper.

ρn+1 n n
i,j,k = ρi,j,k

n +Δt(−ui,j,k · rρi,j,k
n − ρi,j,k

n r · ui,j,k) (4.30)

Conservation of momentum:

The velocity advection is solved exactly the same it is in the previous chapter.

The rest is solved using the same idea for conversation of mass.

n+1 n 2 n ui,j,k = ui,j,k +Δt(−Srρi,j,k
n + g + νr ui,j,k) (4.31)

And the following coefficient is given by the author in the paper. ν :=
ρ
µ
0

and S := K (Δx)2

. S is an experimental scale value that generates better results in 2
Δtρ0

dimension. The stability condition is given

Δx Δy Δz
Δt < max{| |, | |, | |} (4.32)

u v w

Named as Courant-Friedrichs-Lewy (CFL) condition. And this condition must

be satisfied everywhere in the domain.

CHAPTER 5

Proposed Method

1. Stablize Simple and Fast Fluid GPU Solver

1.1. Drawbacks of using explicit integration. The purpose of this

chapter is to stabilize the GPU solver given in [1]. While a simple solution is

represented in [1], and can be simulated by only one pass on GPU, the algorithm

suffers from numerical instability because of using explicit Euler integration. In

order to integrate such a solver into games might be troublesome because it is only

conditionally stable. Recall the constraint in [1], a stable time step has to be based

on grid size. This means that in order to create higher resolution results, the smaller

time steps are needed to achieve stability. So for example, if we are creating a game

with 512 ∗ 512 resolution and we want to put smoke in certain regions, regardless

1of how big is the simulation domain, the solver’s time step has to be below
512

otherwise it becomes unstable. This instability can also lead to graphical artifacts

in the simulation domain [figure 1]. Maintaining such high frame rate is impractical

for games. A single frame rate drop could fail the simulation. Also, a game has to

fulfill the constraint in different resolutions it supports, which means the time step

34

might vary. One way to solve this problem is to relax such condition by reducing

resolution (increasing grid size in other words) in simulation domain, but doing

so could potentially introduce inconsistency throughout the scene, for example, the

smoke might look blurry compared to the character who interacts with it. A more

sophisticated way is to fix the simulation time step in the game loop. This is a

very famous and robust technique used constantly in game physics. However, using

this method may harm the performance under some situations where we keep the

same resolution as our previous example, and the simulation needs to catch up due

to a sudden frame rate drop or merely having high resolution (recall that we just

mentioned that normally games do not have such a high frame rate). In order to

consume accumulated time, it might need to run several integrations to sync with

global game state.

The other issue worth mentioning is the unnatural result from the numerical

solution of the continuity equation using explicit integration. Equation 4.30 can lead

to negative density no matter how small time step is given. That is why the author

in [1] has to clamp the final value in the implementation to prevent it from going

to negative values. Explicit Euler integration also accumulate error over time, so in

practice, we will have to clamp the value from being too big.

1.2. Implicit Solver to increase stability. As mentioned earlier, we

observed that equation 4.30 may lead to negative density value, which is why the

implementation in simple and fast fluid involves clamping after solving the continuity

equation. So our goal is to stabilize [1] using more sophisticated solver and we also

35

want to maintain the simplicity as we rewrite the equations in different forms. Our

algorithm successfully removes the clamp function solving continuity equation and

adds more detail to the fluid compared to [2]. First of all, we follow Stam’s result

in [5] to calculate the viscous diffusion acceleration using Jacobi iteration for 40-80

times. And then, instead of using forward Euler integration to solve the continuity

equation, we present a method that uses the splitting technique in [5] to cut the

equation into two parts,

∂ρ
= −u · rρ (5.1)

∂t

∂ρ
= −ρr · u (5.2)

∂t

1.3. Solving continuity equation using Semi-Lagrangian and Implicit

Euler Integration. Equation 5.1 shows the same form, as equation 4.8, so we can

perform an unconditionally stable Semi-Lagrangian scheme on it.

ρtemp = ρ(x − uδt) (5.3)

Numerical dissipation caused by Semi-Lagrangian can be resolved using higher

order advection algorithms, such as Back and Forth Error Compensation and

Correction (BFECC) [16]. In our approach, we use this intermediate velocity as

input of equation 5.2 by following a splitting technique. Equation 5.2 can be solved

by using implicit Euler scheme. The equation can be derived as:

36

ρn+1 − ρtemp

= −ρn+1 r · u (5.4)
δt

ρn+1 = ρtemp − ρn+1 r · uδt (5.5)

which gives,

ρtemp

ρn+1 = (5.6)
1 + (r · u)δt

This solution allows us to completely remove clamping.

1.4. Solving viscous diffusion equation using Jacobi iteration. After

solving the continuity equation, in order to simulate viscous fluid, we have to solve

for the viscosity term in order to get accurate results. We followed the results in [5]

by solving the equation in implicit form and using Jacobi iteration (equation 4.26).

Doing this will introduce more computational time, and according to [9] that normally

requires 40-80 iterations to get the result to converge.

1.5. Summary of Algorithm. So far in the previous sections in this chapter,

we again broke down N-S equations into parts and solved them individually. This

section, we are going to summarize the algorithm and show a step-by-step pseudo

code. We will then do an analysis of our method compare to the original method in

[1] in the experimental section.

37

1.5.1. Algorithm Overview. During initialization, it is important to set up a

rest density value for the type of fluid we want to simulate, then we can proceed to the

simulation loop. First of all, we calculate the new density value using semi-Lagrangian

followed by the implicit Euler method.

ρtemp = ρ(x − uδt) (5.7)

ρtemp

ρn+1 = (5.8)
1 + (r · u)δt

Second, given the new value of density, we use it in the equation below to solve

for the current velocity within the grid.

n+1 n u = u +Δt(−Srρn (5.9) i,j,k i,j,k i,j,k + g)

Next, we solve for the viscosity forces contribution using Jacobi iterations:

∂u
= νr 2 u (5.10)

∂t

For smoke simulation, we need to track an additional temperature field T to

apply Buoyancy defined as

fbuoyancy = (−kd + σ(T − T0))ĵ (5.11)

Where T0 is a given ambient temperature, and d stands for the smoke density

advected by the velocity field. k and σ are constants scale factors. In order to simulate

obstacles, we use Neumann boundary conditions:

38

∂f
= 0 (5.12)

∂n

To keep fluid from entering the obstacle cell. Lastly, we need to visualize the

fluid. In order to do so, we simply create another density field tracking moving fluids.

Since we already solved the velocity field, we update fluids using semi-Lagrangian

algorithm and write to the final texture and draw it.

Algorithm 1 Implicit GPU Solver

1: Update loop
2: for all grid cell do
3: Initialize simulation domain
4: for all gird cell do
5: Solve continuity equation

6: if is viscous fluid then
7: for all i such that 0 ≤ i ≤ 40 ∼ 80 do
8: for all gird cell do
9: Solve diffusion term if you are simulating viscous fluids

10: for all gird cell do
11: Solve momentum equation using corrective pressure, viscous forces and

external forces
12: if is smoke then
13: for all gird cell do
14: Solve temperature and add buoyancy

15: for all grid cell do
16: Update density field and output as a texture for visualization

1.5.2. The Proposed Method Pseudo Algorithm.

39

1.6. Experimental Results. We tested our method using Intel(R)

Core(TM) i7-6700K CPU @ 4.00GHz 4.01GHz with Geforce GTX980 Ti. We found

that using this method to solve the continuity equation we ended up having similar

result as [5]. The simulation has to follow CFL condition (equation 4.32) as it

is mentioned in [1]. It is only stable under the condition using correct time step

constraint. The following table is a quick comparison of our proposed method and

the other two.

Table 1. Algorithm comparison

Method GPU Memory Usage GPU Passes
Stable Fluid 8*floating point 4
Simple and Fast Fluid 6*floating point 1
Proposed Method 6*floating point 2

By a visual comparison, we can see how Jacobi iteration smooths out the result,

but it doesn’t loose much details, Figure 2.

Figure 2. Jacobian smooth out the result

Figure 3 shows dye in water simulation with constant gravity pulling the water

40

down using our proposed method compare to simple and fast fluid, and Stable fluid

by capturing the same frame in our framework. Our proposed method provides

more details than Stable fluid [2] and the fluids stay more active than simple and

fast fluid [1]. But our method is only stable under CFL condition, if it fails to

meet the constraint it will dissipate and become unstable. Figure 4 shows average

frame time comparison simulating viscous fluids as you can see our method runs

two times faster than stable fluid at the same time capturing more details of fluids.

Figure 5 shows that the proposed method also allocates less video memory than

Stable fluid. Furthermore, in order to compare how much of the high frequency

details each algorithm can preserve, we used Fourier analysis. First, we apply Fourier

transform on the image we captured [Figure 8], to generate a frequency spectrum

image. Secondly, apply a high pass filter on the frequency spectrum image to filter

out the low frequency components. Finally, apply inverse Fourier transform [Figure 8]

and compare the results [Figure 10]. We can see from the remaining white color, that

both our algorithm and simple and fast fluid preserve high frequency components

better than stable fluid. Table 2 shows how much details get preserved through

Fourier Analysis with approximately 80 pixels filter radius. The measurement takes

places by directly analyzing the result images’ red, green and blue channel.

Table 2. Fourier Analysis measured in how much black spaces left out before and
after applying high frequency filter to calculate preserved rates.

Method Before After Preserved Rate(%)
Stable Fluid 0.43 0.85 ∼25
Simple and Fast Fluid 0.29 0.61 ∼55
Proposed Method 0.34 0.67 ∼50

41

Figure 3. Starting from left is proposed method, simple and fast fluid, and stable
fluid simulating dye in water using a 1/512 time step in a 512*512 simulation domain

Figure 4. Average frame rate in multiple resolution

1.7. Error Analysis. First we perform error analysis for semi-Lagrangian.

Consider the continuity equation,

∂ρ
= −rρ · u − ρr · u (5.13)

∂t

The proposed semi-Lagrangian scheme in equation 5.3, according to [25], obeys

the following error estimate:

42

Figure 5. VRAM footage under different resolution measured based on table 1

2Δx|ρtemp − ρtrue| ≤ C1(δt +) (5.14)
u2δt

if Δ
u
x ≤ C2(δt) then we get:

|ρtemp − ρtrue| ≤ Cδt (5.15)

Secondly, we take a look at proposed Implicit Euler 5.6, well known results

in numerical differential equation prove that local truncation error for Implicit Euler

(backward) satisfy

|ρn+1 − ρtrue| ≤ Cδt (5.16)

In conclusion, if Δ
u
x is comparable with δt, then the local truncation error

converges to zero for this step, and the proposed algorithm provides a good

approximation for the solution of the continuity equation.

43

Figure 6. Starting from left is proposed method, simple and fast fluid, and stable
fluid simulating dye in water using a 1/512 time step in a 512*512 simulation domain,
testing against obstacles in water

1.8. Limitations and Future work. Our approach successfully smooth out

the final image and achieve similar result as [5] by using less computational time and a

more straightforward solver compared to [5]. We also reduced memory footage for the

simulation [figure 5]. However, numerical instability caused by temporary relaxing

incompressible condition cannot be resolved by simply using implicit integration. The

problem comes down to integrate such solver into games as we mentioned previously.

Under high resolution such as 512*512 in 2D, our method is restricted to proper time

step. However, our best result shows that under a 200*200 grid, we can run the

simulation in 60fps. In order to integrate our method properly into a game engine,

we need to apply a proper and fixed time step integration to keep our solver stable.

To do so in high resolution grid like 256*256, developers might have to accumulate

delta time from each game update loop, and if the accumulated time is bigger than

the fixed-time step defined for the simulation, we update the fluid one time or several

times by subtracting the simulation time step until accumulated time is smaller than

44

Figure 7. Starting from left is proposed method, simple and fast fluid, and stable
fluid simulating smoke using a 1/512 time step in a 512*512 simulation domain

Figure 8. Result after applying Fourier transform

the simulation time step. This might cause issue to maintain the frame rate for a

game, for example, here we keep the same environment 512*512 in 2D, if the rest of the

game state has advanced 1/60 millisecond, the simulation has to catch up the game

state by integrating the solver about 8-9 times. This might hurt the performance as

we saw in the above table describing how much time each update can take in average.

In contrast, Stam’s stable fluid can be stable under any time step. For future work,

we would like to see if we can find a better numerical method that helps us solve N-S

45

Figure 9. Applying a high pass filter and do a inverse Fourier transform

Figure 10. Result from figure 7

equations directly in a better way.

1.9. Summary. Although we did not succeed in making the solver

unconditionally stable. Our method does not need clamping function under correct

time step. By observation, our final result is similar to [5] but requires less

computational time by fusing the advantages in [5] and [1]. We are also able to smooth

the result in [1]. Our method successfully sustain stability by solving continuity

equation using Semi-Lagrangian and implicit Euler integration although this step

46

requires one extra pass when compared to [1] because we need to wait until all the

density get solved then use the result to get correct pressure force by using central

finite difference. For viscous liquids, we apply Jacobi iteration on implicit diffuse

term just like what it is done in [9]. The result [figure 4] shows that we are desired to

sacrifice some computational time to trade off stability and smoothness for the final

rendered image.

CHAPTER 6

Conclusions and Future Research

Several numerical methods of simulating fluids have been presented in this

paper. Mainly we focus on physically based fluid simulations in Eulerian point of

view. Our work starts from Stable Fluids [5], and Simple and Fast Fluid [1] and

compared our approach with above discussed methods. Experimental results show

that our method preserves high frequency details at the same time removes unnatural

clamping when solving the continuity equation. Our method shares the same amount

of memory footprint as simple and fast fluid, which is less than required by the method

in Stable fluid, and it is more efficient compared to Stable fluid. We also showed

how important the splitting technique is when solving complicated partial differential

equations. However, this is not the end of the line, there are other directions of fluid

simulation that should be studied. For example, level set method [15] is good at

tracking water surface while vortex particles [24] are used to simulate turbulence in

fluids. Furthermore, in our simulation, we only talked about water and smoke but

there’s also fire and viscous fluid types. In order to simulate those types of fluids, [4]

gives a nice overview of how each type of them works.

48

For future work, we would like to make the simulation more stable under

arbitrary time steps. Currently if the time step fails to meet the stability condition,

we get the final result with some obvious artifact. We would also like to explore

betters numerical methods to help solve numerically Navier-Stokes equations in the

future.

REFERENCES

[1] M. Guay, F. Colin, and R. Egli, Simple and Fast Fluid, GPU Pro 2, 2011.

[2] J. Stam, Real-Time Fluid Dynamics for Games, GDC, 2003.

[3] R. Courant, E. Isaacson, and M. Rees, On the solution of nonlinear

hyperbolic differential equations by finite differences, Communications on

Pure and Applied Mathematics, 5:243255, 1952.

[4] R. Bridson, Fluid Simulation for Computer Graphics, 2008

[5] J. Stam, Stable Fluids, In Proceedings of SIGGRAPH, 1999.

[6] M. Lentine, J. Gretarsson, and R. Fedkiw, An Unconditionally Stable Fully

Conservative Semi-Lagrangian Method, 2010

[7] Chorin, A.J., and J.E. Marsden, A Mathematical Introduction to Fluid

Mechanics, 1993, 3rd ed. Springer.

[8] Golub, G.H., and C.F. Van Loan, Matrix Computations, 1996, 3rd ed. The

Johns Hopkins University Press.

50

[9] Mark J. Harris, Fast Fluid Dynamics Simulation on the GPU, GPU GEMS

VOLUME 1

[10] M. Kelager, Lagrangian Fluid Dynamics Using Smoothed Particle

Hydrodynamics, 2006

[11] Kim, Theodore, et al., Wavelet turbulence for fluid simulation, ACM

Transactions on Graphics (TOG). Vol.27. No.3. ACM, 2008

[12] J. Tessendorf, Simulating Ocean Water, SIGGRAPH, 2001

[13] A. Gorguis, A reliable approach to the solution of Navier-Stokes equations,

Appl. Math. Lett. 25 (2012) 2015-2017

[14] TAREK M. A. EL-MISTIKAWY, Note on ”A. Gorguis, A reliable approach

to the solution of Navier-Stokes equations, Appl. Math. Lett. 25 (2012)

2015-2017” , Department of Engineering Mathematics and Physics, Cairo

University, Giza 12211, Egypt

[15] SONG, O.-Y., SHIN, H., and Ko, H.-S. Stable but nondissipative water.

ACM Trans Graph 24, 1 (2005), 81-97.

[16] Kim, B., Liu, Y., Llamas, I., Rossignac, J., Flowfixer: Using BFECC

for fluid simulation, Proceedings of the First Eurographics Conference on

Natural Phenomena NPH05, pp. 5156. Eurographics Association, Aire-la-

Ville (2005)

51

[17] Braley, C., Sandu, A., and Tech, V., Fluid Simulation for Computer

Graphics: a Tutorial in Grid Based and Particle Based Methods, 2009

[18] Mller, M., Charypar, D., and Gross, M. (2003). Particle-Based

Fluid Simulation for Interactive Applications. Proceedings Of the ACM

SIGGRAPH/Eurographics Symposium on Computer Animation, 154159.

[18] Mark F., Cyan W., Effective Water Simulation from Physical Models, GPU

GEMS VOLUME 1

[19] Kim, Theodore and Thürey, Nils and James, Doug and Gross, Markus,

Wavelet Turbulence for Fluid Simulation, ACM SIGGRAPH 2008 Papers,

2008

[20] Chen, Jim X. and Lobo, Niels da Vitoria and Hughes, Charles E. and

Moshell, J. Michael, Real-Time Fluid Simulation in a Dynamic Virtual

Environment, IEEE Comput. Graph. Appl., May 1997

[21] Ronald Fedkiw and Jos Stam and Henrik Wann Jensen, Visual simulation

of smoke, SIGGRAPH, 2001

[22] Clavet, Simon and Beaudoin, Philippe and Poulin, Pierre, Particle-

based Viscoelastic Fluid Simulation, Proceedings of the 2005 ACM

SIGGRAPH/Eurographics Symposium on Computer Animation, 2005

[23] Takamatsu, Kenji; Kanai, Takashi, A Fast and Practical Method for

52

Animating Particle-Based Viscoelastic Fluids, International Journal of

Virtual Reality . 2011, Vol. 10 Issue 1, p29-35.

[24] Selle, Andrew and Rasmussen, Nick and Fedkiw, Ronald, A vortex particle

method for smoke, water and explosions, ACM Trans. Graph., SIGGRAPH

’05, 2005, p910-914.

[25] Maurizio Falcone and Roberto Ferretti, Semi-Lagrangian Approximation

Schemes for Linear and HamiltonJacobi Equations, SIAM, 2013

	Copyright
	Title Page
	Abstract
	Table of Contents
	List of Tables
	Chapter 1 Introduction
	1 Types of Simulation
	2 Thesis Overview
	3 Goals

	Chapter 2 Vector Calculus
	1 Scalar Field
	2 Vector Field
	3 Gradient
	4 The Divergence
	5 The Curl

	Chapter 3 The Navier-Stokes Equations
	1 Incompressible Navier Stokes equations
	2 Terms in the Navier Stokes equations
	2.1 Advection
	2.2 Pressure
	2.3 Diffusion
	2.4 External Forces

	3 Material Derivative
	3.1 Langrangian and Eulerian Viewpoints
	3.2 Material Derivative on Vector Quantities

	4 Incompressibility
	5 The Momentum Equation

	Chapter 4 Numerical Methods
	1 Finite Difference Method
	2 Advection Algorithm
	2.1 Semi-Lagrangian

	3 Fast Fluid Dynamics Simulation on the GPU
	3.1 The approach
	3.2 Helmholtz Hodge Decomposition
	3.3 Viscous Diffusion

	4 Simple and Fast Fluids
	4.1 Density Invariance Algorithm
	4.2 Numerical Approach

	Chapter 5 Proposed Method
	1 Stablize Simple and Fast Fluid GPU Solver
	1.1 Drawbacks of using explicit integration
	1.2 Implicit Solver to increase stability
	1.3 Solving continuity equation using Semi-Legrangian and Implicit Euler Integration
	1.4 Solving vicous diffusion equation using Jacobi interation
	1.5 Summary of Algorithm
	1.6 Experimental results
	1.7 Error Analysis
	1.8 Limitations and Future work
	1.9 Summary

	Chapter 6 Conclusions and Future Research
	References

