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Chapter 1: Abstract 
 

 

Shadows, subtle though they may be, provide a number of visual cues as to the layout 

and orientation of a scene and its light sources that would otherwise be difficult or impossible 

to convey.  Shadows, which play a vital role in computer graphics, have been a highly active 

area of research from the publication of the first seminal papers in the late 1970's all the way 

to the current day. 

 

This research provides an overview of the techniques that have been developed for 

rendering shadows in real-time applications.  The two most widely used techniques for 

rendering hard-edged shadows are presented and discussed in detail. Additionally, several 

approaches to rendering soft-edged and physically based shadows are discussed, and an 

implementation of several of these techniques is presented in order to compare their 

performance and behavior in real-world applications. 
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Chapter 2: Introduction 
 

 
The role played by shadows in computer graphics is an often subtle but very important 

one.  Shadows provide visual clues to the viewer as to the makeup and layout of a scene, and 

provide information about the geometry of objects casting the shadows and their location 

and distance from other objects in the scene.  Creating realistic shadows is essentially a 

process of determining if each pixel has a view of each light source that is not blocked by any 

object in the scene, which can be a complicated and extremely time consuming process.  As a 

result, shadows were generally left entirely out of earlier games, and more recently they have 

only been represented by crude approximations.  Thanks to new research and fast, highly 

programmable graphics hardware, rendering physically accurate shadows in real-time 

applications may soon be a reality. 

 

 
Figure 1: Shadows convey spatial information about objects in a scene.  Without shadows, the viewer would be 
unable to determine that the sphere on the right was at a further distance from the plane than the sphere on 
the left. 
 

 

2.1 Hard vs. Soft Shadows 
 

The types of shadows that are typically seen in games are usually referred to as “hard” 

shadows, due to their hard and well defined edges.  In a system which uses only hard 

shadows, a given pixel is either being shadowed or is fully lit, with no degrees of gradation in 
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between.  In addition, light sources are represented as a single point, rather than as an object 

with a certain size.  This is, of course, not a very accurate model of how shadows behave in 

real life.  Real shadows all have some degree of “softness,” where the edges have a certain 

degree of fuzziness based on the size of the light source and the distance between the object 

casting the shadow (the occluder) and the object or surface onto which the shadow is cast 

(the receiver).  This soft edge is known as the penumbra region of the shadow, and the inner, 

fully darkened region is called the umbra.  The shadowing in the penumbra is due to the fact 

that, for a real light source that has a certain size, certain parts of the receiver will have a view 

of the light source that is only partially blocked by the occluder, versus the umbra which is 

completely blocked and receives no light from the source at all. 

 

 
Figures 2 and 3: (Left) Umbra and Penumbra regions in 2D, and (Right) in 3D. 
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Chapter3: Hard Shadowing Techniques 
 

3.1 Planar Shadows 
 

Planar shadow rendering is a quick and simple technique first introduced by Jim Blinn 

[Bli88].  As the name implies, the method is used to cast a shadow onto a plane (generally the 

ground plane), and cannot handle arbitrary receiver surfaces or self-shadowing.  The 

technique computes a matrix that is used to project the occluder’s vertices onto a plane, and 

the resulting geometry is then generally rendered with a dark shadow texture.  The projection 

matrix is computed as follows [Li05]: 

 

For a receiver plane defined by  and , where 

 is the normal and  is a point on the plane, and a light source 

positioned at :  Let  be a vector defined by the light’s 

position l  and a vertex v  from the occluder’s mesh.  The projected point is defined as  

 
          (3.1.1) 
 
Plugging this into the plane equation and solving for t, 
 
        (3.1.2) 
 

         (3.1.3) 

 
And plugging equation (2.1.3) back into equation (2.1.1), 
 
       (3.1.4) 
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Separating out each of the x, y, and z components, 
 

   (3.1.5) 

 

 

 

   (3.1.6) 

 

 

 

    (3.1.7) 

 

 

 
 
The transformation matrix is therefore 
 

  (3.1.8) 

 
 
 

3.2 Shadow Mapping 
 

Shadow mapping is an image-space technique that was introduced by Lance Williams 

at Siggraph ’78 *Wil78+.  In an initial pass, the scene, or some subset of the scene’s occluder 

objects, is rendered into a depth buffer (the shadow map) using the light’s position and 

direction as the camera’s position and direction.  This shadow map then contains the 

distances of each pixel to the light in the light’s coordinate system, and can be thought of as a 

representation of the light’s visibility of the scene.  In the following rendering pass, when 

rendering the scene from the camera’s point of view, each pixel is transformed into the light’s 
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coordinate system and its light-space depth at its light-space xy position is compared to the 

depth stored in the shadow map at the corresponding location.  If the pixel’s depth is less 

than or equal to the depth stored in the shadow map at that location, then the pixel is closer 

to the light than any of the occluders in the scene, and is therefore being fully lit.  If the pixel’s 

depth is greater, then it lies behind some occluder and can therefore not be receiving any 

light from that light source (meaning that it is being shadowed). 

 

 
Figures 4-6: (Left) The scene as viewed from the light’s point of view.  (Center) A visualization of the shadow 
map, with darker pixels representing smaller depth values.  (Right) The final image rendered from the camera’s 
point of view. 

 
 

In practice, the light-space depth values only need to be computed per-vertex, and 

that depth value can be interpolated between vertices per-pixel.  For directional light sources, 

the world to light-space transformation is a simple orthographic projection.  For spot light 

sources, the transformation is a projective transformation with the field of view either 

determined by the angle of the light cone or set wide enough to include all occluder 

geometry.  Omnidirectional, or point, light sources require special handling due to the fact 

that they have a 360° field of view.  Omnidirectional lights are typically treated as a cluster of 

six spot light sources each with a 90° field of view and facing directions that are 90° or 180° 
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from each other [ref].  Each of these light sources renders into a separate face of a cube map, 

and the cube map is used for depth lookups.  It is also possible to use a parabolic projection 

and to represent the omnidirectional light’s view of the scene as a pair of back-to-back 

parabolic shadow maps [BAS02] [Ann02]. 

 

3.2.1 Shadow map aliasing artifacts 

One potential problem with rendering shadows using shadow maps is that floating 

point precision problems often cause speckled shadow artifacts on receiver surfaces that are 

unshadowed.  The problem is sometimes referred to as “shadow acne” *Ura05+, and is similar 

to z-fighting.  One way of dealing with this problem is to add a small offset bias to the depth 

values stored in the shadow map.  However, this can lead to “light-leakage,” where the area 

directly underneath an occluder is incorrectly illuminated, if the offset is too large.  Picking an 

appropriate offset value is generally a trial and error process, as this offset can vary from 

scene to scene.  Another option is to only render the back facing polygons into the shadow 

map.  This hides any artifacts that might be present, since back facing geometry should all be 

shadowed anyway.  Woo presented a solution that stores the average depth for each object’s 

front and back facing geometry, which is effectively the depth running through the center of 

the object [Woo92]. 
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Figures 7 and 8: (Left) Shadow acne resulting from using an offset that is too small.  (Right) Light leakage 
resulting from an offset that is too large. 
 
 

Another major issue with shadow maps is aliasing at the shadow’s border, which 

results in shadows with jagged or pixilated edges and which is due to the discrete resolution 

of the shadow map.  There are two cases where this occurs:  Perspective aliasing occurs when 

areas close to the camera correspond to a relatively small area of the shadow map (figure 10), 

and projection aliasing occurs when a surface is nearly parallel to the light direction, which 

causes an area of the shadow map to be stretched over a larger area than other surfaces in 

the scene (figure 11).  Ideally, each pixel in screen space would map to exactly one pixel in the 

shadow map, which would result in zero aliasing of this type.  However, for standard shadow 

mapping in non-trivial scenes this will never be the case.  Over the years a number of 

techniques have been developed to deal with this problem.  Percentage closer filtering hides 

this problem by taking several samples of the shadow map at slightly offset positions and 

averages the visibility results [RSC87].  The resulting shadow has a blurred edge, which makes 

aliased borders less apparent.  NVIDIA graphics chipsets currently perform four-sample 

percentage closer filtering of depth buffers automatically in hardware [Ura05].  Fernando 

introduced a quadtree based data structure called an adaptive shadow map (ASM) which 
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stores sections of the shadow map at varying resolution at each of its nodes [Fer02].  During 

the process of progressively refining the ASM, a new node is created for cells of the shadow 

map that are at the shadow boundary and that occupy a large screen-space area.  Deep 

shadow maps store visibility information at each pixel for a number of depths, and work well 

for scenes containing semi-transparent objects (such as clouds) or objects with very fine and 

layered geometry (such as hair or fur) [LV00].  However, deep shadow maps were designed to 

be used with high quality offline rendering systems and are not applicable to real time 

application using current generation hardware.  Several techniques have been developed 

which warp the shadow map in such a way as to distribute the shadow map pixels so that 

they map more closely to screen pixels, or to distribute the pixels more densely closer to the 

shadow borders or in areas with higher frequency.  Perspective shadow maps avoid aliasing 

by computing the shadow map in the camera’s post-perspective space (normalized device 

coordinate space) *SD02+.  This is done by transforming the scene and the light’s position by 

the camera’s projection matrix and then rendering the shadow map from the light’s point of 

view.  The resulting shadow map has a view of the scene in which objects close to the camera 

appear larger, and so aliasing is avoided because the objects closest to the camera (which are 

the objects most likely to have their shadows affected by aliasing problems) have more pixels 

devoted to them in the shadow map.  However, shadow acne can become a problem with 

perspective shadow mapping because the objects are scaled non-uniformly and therefore 

using a constant bias can produce incorrect results. 
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Figure 9:  (Left) Traditional shadow mapping showing shadow aliasing artifacts.  (Right) Perspective shadow map. 

 
 
 

 
Figure 10:  (Left) A scene with rows of pine trees and a moose model.  The blue region shows the camera 
frustum.  (Right) A view of the shadow map, overlaid with the region sampled when rendered in the blue camera 
frustum at the left.  The red area shows where perspective aliasing will occur due to shadow map under-
sampling. 
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Figure 11:  (Right) Projection aliasing caused by surfaces (the green cones) which are nearly parallel to the 
incoming light direction. 
 

 

3.3 Shadow Volumes 
 

The shadow volume algorithm is a geometry based technique introduced by Franklin 

Crow in 1977 [Cro77].  The basic idea is that a shadow volume is defined to be a volume 

within which every point is in an occluder’s shadow.  In practice, the shadow volume 

technique makes use of the stencil buffer to mask off pixels that can be rendered with or 

without contribution from a particular light source [Hei91]. 

 

To construct the shadow volume, it is first necessary to determine the occluder 

object’s silhouette as seen from the light source.  One way to achieve this is to loop through 

all adjacent pairs of triangles, and if the dot products between each of the triangle’s normals 

and the light source are of opposite sign (meaning that one triangle is front facing and the 

other is back facing), then their shared edge is a silhouette edge and can be stored in a list.  

Another approach is to cull away all back facing geometry and build a list of edges that are 
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only present in one triangle [Kwo02].  This produces a correct silhouette because all interior 

edges will be shared by exactly two triangles (assuming no t-junctions), and any silhouette 

edge will have had the other (back facing) triangle which shared that edge culled away.  Once 

the silhouette is determined, a vertex buffer is created that contains two instances of each 

edge vertex.  One set of each pair of edge vertices is then extruded outwards away from the 

light source, and the resulting quad defined by the four vertices comprises one face of the 

shadow volume.  The resulting geometry is then rasterized into the stencil buffer, where the 

value is incremented for front facing quads if the depth test passes and decremented for back 

facing quads if the depth test passes.  When rendering the scene, any pixel with a stencil 

buffer value that is greater than zero lies within a shadow volume.  Intuitively, a value greater 

than zero indicates that a ray cast from the camera to a certain pixel has entered more 

shadow volumes than it has exited, and is therefore within a shadow volume.  On the other 

hand, a stencil buffer value of zero indicates that the ray has either not entered or exited any 

shadow volumes, or that it has exited every shadow volume that it has entered.  This is 

known as z-pass, and it works fine as long as the camera is not within any shadow volume.  If 

the camera is within a shadow volume, then the count of shadow volume entry and exit will 

be off because the ray described above will not have entered the shadow volume, and in this 

type of situation the shadows are the opposite of what they should be.  The solution to this 

problem is to use a technique called z-fail, or Carmack’s Reverse, which was officially 

documented by Everitt and Kilgard in 2002 [EK02], but which was known by John Carmack 

and others in the game development industry as early as 1999 [AM04b].  Using z-fail, the 

stencil buffer value is incremented for back facing quads that fail the depth test and 
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decremented for front facing quads that fail the depth test.  The effect is that the stencil 

buffer value represents a count of the number of entries and exits for a ray cast from infinity 

to each rendered pixel, and is therefore independent of the camera’s position.  This provides 

an elegant solution, but adds some complexity due to the fact that the shadow volumes 

cannot be open and must be capped with polygons at each end. 

3.3.1 Problems with shadow volumes 

The shadow volume technique produces accurate hard-edged shadows without any of 

the aliasing problems associated with shadow maps, but it tends to be very processor 

intensive and does not scale well with scene complexity.  The main bottleneck associated with 

shadow volumes is that they tend to consume a large amount of the graphics card’s fill rate.  

Fill rate is defined as the number of pixels that can be written into video memory over a given 

period of time.  Because every single piece of shadow volume geometry must be rasterized 

into the stencil buffer and cannot be culled away as in normal rendering, the fill rate becomes 

the limiting factor.  Additionally, calculating the object’s silhouette every frame can use up a 

large number of CPU cycles.  The technique also introduces certain inefficiencies due to the 

fact that the object’s vertex and index buffers must be accessible to the CPU for silhouette 

determination, instead of the more desirable situation of having those buffers only being 

stored and transformed on the graphics card. 
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Figures 10 and 11: (Left) Object silhouette determination: Notice that interior edge I0I1 is shared by triangles A 
and B, and that silhouette edge I0I3 is only present in triangle A.  (Right) A simplified representation of a shadow 
volume. 
 
 
 
 

 
Figures 12 and 13: (Left) Z-Pass.  (Right) Z-Fail. 
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Chapter 4: Offline and Pre-Computed Soft Shadowing Techniques 

 

4.1 Distributed Ray Tracing 
 

Physically accurate soft shadows are relatively simple and straightforward in a ray 

tracer.  For each rendered pixel, cast a number of rays from that pixel to different sample 

points on the area light source, determine if these rays intersect with any other objects in the 

scene, and average the visibility test results to determine the percentage of the light source is 

visible to that pixel and therefore its amount of shadowing.  In practice this requires a fairly 

large number of “shadow feeler” rays to be cast per-pixel in order to prevent banding 

artifacts in the penumbra.  Such an approach would not map well to a real-time renderer, 

although similar approaches have been attempted. 

4.2 Discontinuity Meshing 
 

Another method sometimes used by ray tracers is known as discontinuity meshing 

[Hec92], [LTG92].  Discontinuity meshing involves projecting an occluder’s geometry onto the 

receiver, and then using that projected geometry to construct the umbra and penumbra 

regions.  The projection is similar to that of planar shadows, except generalized to arbitrary 

receiver geometry.  While such an approach is faster than sampling the light sources with 

multiple shadow feelers, it is still much too costly for real-time applications. 
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Figure 14: Discontinuity meshing. 

 

 

Figures 15 and 16: (Left) Pink lines represent the discontinuity mesh.  (Right) The final rendered scene. 
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Chapter 5: Image Space Soft Shadowing Techniques 
 

5.1 Combined Shadow Maps 
 

One simple method of generating soft shadows involves generating a set of shadow 

maps as seen from various points distributed across an area light source and to use this group 

of shadow maps to determine the percentage of visibility for each pixel in the scene [HH97], 

[Her97].  Each of these shadow maps is used to render a light/dark visibility map which 

represents the hard-edged shadow as seen from the camera.  These hard-edged visibility 

maps are then blended together to form a soft-edged visibility map which is used to 

modulate the intensity of the lit pixels in the final rendered image.  This approach is similar to 

casting multiple shadow feelers in ray tracing, and it produces shadows that approach 

physical correctness for large numbers of combined visibility maps.  While this approach can 

take advantage of the graphics hardware and can therefore be more efficient than ray 

tracing, generating many shadow maps is still very computationally expensive and can 

consume a large amount of video memory.  Additionally, the shadows rendered from a small 

number of shadow maps typically have noticeable banding artifacts and areas where the 

shadows are not evenly blended or smoothed.  Due to these limitations, this technique is not 

very practical for real-time applications. 
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Figure 17: (Left) A single visibility map.  (Center) Four visibility maps.  (Right) 64 visibility maps. 
 

5.2 Blurred Visibility Maps 
 

Another simple technique is to generate a single visibility map that is evenly blurred 

by a specified amount before being used to modulate the intensity of the rendered pixels in 

the rendering pass.  The resulting shadow is smooth and visually appealing, but is not 

physically accurate and can only be used in situations where a rough approximation is 

adequate.  The drawbacks of using this technique can be seen in situations where a tall object 

is standing on a roughly planar floor, one common example of which would be a human 

character model standing on flat ground.  In such a situation, the shadow close to the 

character’s feet is just as blurry as the part of the shadow cast by his head, where in reality 

the shadow would have a harder edge near the feet and legs and would gradually become 

softer with increased distance from the character’s base.  Regardless of this glaring 

inaccuracy, this technique is quite common in current generation games. 
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Figure 18: An evenly blurred shadow. 

 

5.3 Percentage Closer Filtering 
 

Another approach is to take several samples of the shadow map at points close to the 

area being shaded, compute the depth test for each of these samples, and then average the 

results to determine the percentage of light received by the point being rendered.  The 

penumbra width and therefore the overall softness of the rendered shadow is determined by 

the area of the shadow map that is sampled, which is the width of the filter kernel being 

applied.  This technique is known as Percentage Closer Filtering [RCS87], and the name 

indicates that the filtered shading result is the percentage of samples that are closer to the 

light source than the point being shaded.  The results of this technique are similar to those of 

evenly blurred visibility maps, but are closer to being physically accurate.  However, this 

approach suffers from banding artifacts with larger penumbra widths.  These artifacts can be 

reduced by increasing the number of samples per pixel, but this can incur a very high runtime 

cost. 
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5.3.1 Variable Kernel Width Percentage Closer Filtering  

Fernando [Fer05] introduced Percentage Closer Filtering using a filter width that is 

variable depending upon the distance of the occluder and receiver from the light source.  

Figure 19 shows the relationship between the occluder, the receiver, the width of the light 

source, and the width of the penumbra.  Using similar triangles and assuming the occluder, 

receiver, and light source are parallel, the width of the penumbra is given by the following 

equation. 

 

     (5.3.1.1) 

 

The light source’s width is constant and the receiver depth is the depth of the point being 

shaded.  For non-planar objects, the occluder’s depth can be estimated by averaging the 

depth over a given area.  This can be achieved by sampling the shadow map and averaging 

the depth results.  These extra samples can be reused when the shadow map is sampled 

again using the computed filter width.  In practice a relatively small number of samples are 

required to estimate the average occluder depth. 

 

Like fixed-width Percentage Closer Filtering, this technique also suffers from banding 

when the shadow map is under-sampled.  This problem is made worse by the fact that, in 

dynamic scenes, the occluder can be brought arbitrarily close to the light source, which in 

turn can produce an arbitrarily large penumbra.  While this technique does produce soft 

shadows that harden on contact, the shadows are still not physically accurate.  This physical 



21 
 

inaccuracy is more apparent for large area light sources, mostly due to the fact that, in 

physically accurate lighting, different ends of a light source “see” different parts of an 

occluder’s geometry, and these different geometries are ultimately combined in the 

occluder’s shadow.  Additional inaccuracies are introduced when there is a large amount of 

depth complexity in the scene.  For example, in a scene with many objects at various depths, 

the initial occluder depth estimate could potentially include several different objects and 

would lead to an incorrect estimate of the penumbra’s width. 

 

 

Figure 19:  The relationship between the occluder, receiver, light source width and penumbra width. 
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Figure 20: Percentage closer soft shadows 
 

 

5.4 Pre-Filtered Shadow Maps 
 

Techniques such as Percentage Closer Filtering that involve sampling the shadow map 

at points around the pixel to be rendered and averaging the results of the depth tests are 

effective and fairly straightforward to implement, but they suffer from one main flaw; they 

require many high-latency texture fetches into the shadow map for each rendered pixel, 

which can be very time consuming for larger penumbra areas or in cases where a very high 

quality soft shadow is desired.  A performance boost could be realized if there was a method 

of pre-filtering the data stored in the shadow map so that only a single shadow map sample 
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per screen pixel would be required at run time.  Unfortunately, simply blurring the shadow 

map itself is not sufficient.  This is because the results of this type of filtering would give the 

average depth over an area of the shadow map, which in the context of a traditional shadow 

mapping technique doesn’t really make sense.  Additionally, using the average depth would 

not produce soft-edged shadows since the depth test for each rendered pixel would still give 

a result of either fully lit or fully shadowed. 

5.4.1 Variance Shadow Maps 

Variance Shadow Maps [DL06] are able to take advantage of such a pre-filtering step 

through the use of probability theory and by storing slightly different data in each shadow 

map texel.  The key insight of Variance Shadow Maps is that the data stored in the shadow 

map represents the distribution of depths at each texel, and to approximate this distribution 

the shadow map stores the first two moments of the depth function, which are the mean 

depth and the mean squared depth.  These two moments are used to compute a bound on 

the fraction of the distribution that is more distant from the light source than the pixel being 

rendered, and this percentage corresponds to the percentage of light the pixel receives. 

 

The first two moments over a given filter region are defined as follows: 

 

        (5.4.1.1) 

       (5.4.1.2) 

 

And from these moments we can compute the mean µ and variance  as follows: 



24 
 

 

         (5.4.1.3) 

       (5.4.1.4) 

 

The variance can be interpreted as being a measure of the width of a distribution, and 

describes how far from the mean a set of values can be distributed.  The upper bound on the 

distribution is stated in Chebychev’s inequality: 

 

       (5.4.1.5) 

 

 is the upper bound on the probability that  is greater than or equal to .  In the 

context of shadow mapping,  is the depth of a pixel stored in the shadow map,  is the depth 

of a pixel being shaded, and  is the probability that the pixel is being shadowed.  If  

is the average depth over an area, then the result of this function is the upper bound on the 

probability that the shadow map texels in that area are shadowing the rendered pixel, which 

can be thought of as a measure of the amount of visibility at that point, and therefore 

 can be used directly as the amount of shading to apply to each pixel.  It should be 

noted that even though equation 5.4.1.5 provides an upper bound on the visibility for 

arbitrary scenes, the inequality reduces to an equality for planar and parallel occluders and 

receivers.  Many scenes nearly satisfy this case over small areas (specifically over the area 

that is being averaged), and as a result the equation works well enough in practice. 
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At runtime, the filtering pass can be performed in a number of different ways.  

Hardware based anti-aliasing and mip-mapping can be utilized for performance, or a custom 

filter can be used in a pixel shader for more control over the results of the filter pass.  

Alternatively, a summed area table can be constructed from the depth and squared depth 

values and used instead of the filtered textures.  If a summed area table is used, the average 

depth is found by looking up the values in the four corners of the filter area.  This introduces 

additional computational costs and increases the number of required texture lookups, but it 

has the advantage of allowing for arbitrarily sized filters.  As a result, this approach can 

produce shadows that harden on contact, since the filter size can be made larger or smaller 

depending upon the relationship between the occluder, the receiver, and the light source as 

described in section 5.3.1.   

 

While Variance Shadow Maps can produce very convincing soft shadows, there are a 

few situations that can lead to artifacts.  The most noticeable artifact is referred to as light 

bleeding, which occurs when a shadow is cast onto several different receivers at varying 

depths.  The result of light bleeding is that the penumbra area that falls on a closer object is 

also incorrectly cast onto a shadowed object further away, which is shown in figures 20 and 

21.  Light bleeding is caused by the fact that near an object’s silhouette there can be a large 

amount of depth variation, and this variation leads to a larger difference between the 

computed upper bound on visibility and the actual visibility.  In other words, the depth 

variation at the silhouettes breaks the assumption that a scene is roughly planar over small 

areas.  Light bleeding can be reduced or eliminated by slicing the scene into layers and using a 
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separate Variance Shadow Map for each layer [LM08].  By dividing the scene into layers, this 

approach avoids the problem by reducing the number of instances of shadows that are cast 

onto multiple objects at different depths. 

 

 

 
Figure 19:  (From left to right)  Standard shadow map, 5x5 percentage closer filtering, bilinear 5x5 percentage 
closer filtering, and variance shadow maps. 
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Figure 20:  The penumbra areas from the tree leaves are incorrectly bleeding through to the shadow below the 
bench. 
 

 

Figure 21:  Receiver orientation that leads to light bleeding 
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4.4.2 Pre-filtering using other methods 

The concept behind Variance Shadow Maps has been extended upon in several new 

techniques that allow pre-filtering by storing different representations of the scene’s depth.  

In Convolution Shadow Maps [AMBSK07] and Exponential Shadow Maps [AMSFK08], the 

shadow test function, which determines whether or not a pixel is in shadow, is represented as 

a binary, or step, function with the pixel depth and shadow map depth as inputs.  Since the 

shadow test is not linear with respect to its input arguments, it cannot be pre-filtered.  

However, approximating the shadow test as a sum of separable terms can turn it into a linear 

function that can be filtered beforehand.  In Convolution Shadow Maps, the step function is 

represented as a Fourier series expansion.  The scene depth is stored as a series of textures 

that store the sine and cosine terms that are filtered and used during rendering to 

reconstruct the values used in the shadow test function.  Unfortunately the method requires 

many textures for the appropriate level of accuracy (16 textures were used in the paper), 

which leads to a high memory cost.  Additionally, Convolution Shadow Maps suffer from 

ringing artifacts which are inherent in Fourier series expansions.  Exponential Shadow Maps 

avoid the high memory and computational costs associated with Convolution Shadow Maps 

by approximating the step function with an exponential function.  The resulting shadows, 

however, tend to look too faint and somewhat washed-out.  Figure 22 shows a comparison 

between Variance Shadow Maps, Convolution Shadow Maps, and Exponential Shadow Maps. 
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Figure 22:  (From left to right) Convolution Shadow Maps, Variance Shadow Maps, and Exponential Shadow 
Maps.  Note the large amount of light bleeding demonstrated in the images rendered using Convolution Shadow 
Maps and Exponential Shadow Maps. 
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Chapter 6: Hybrid Image / Object Space Techniques 

 

6.1 Plateaus 
 

The plateau technique is a simple extension of the planar shadow technique, where 

penumbra regions are added to hard edged planar shadows [Hai01].  These penumbra 

regions are given a smooth shading that fades from full shadow at the border between umbra 

and penumbra to fully lit at the penumbra’s outer edge.  Additionally, the width of these 

penumbra regions is greater for larger distances between occluder and receiver.  The 

technique is fairly straightforward to implement, and the results are reasonably convincing.  

However, the technique is based on the planar shadow technique and therefore shares the 

same weaknesses, most notably being the inability to have shadows that are cast onto 

arbitrary objects and surfaces.  Additionally, because these shadows are simply hard shadows 

with extra penumbra regions tacked on, they are larger than the correct shadow and are 

inadequate for situations where a shadow has sections consisting of only penumbra. 

 

 
Figure 21: Plateaus. 
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6.2 “Smoothies” and Penumbra Maps 
 

These two methods were developed independently and at the same time by two 

separate researchers, and are both essentially the same [CD03], [WH03].  They are an 

object/image space hybrid, where a normal shadow map is generated and extra penumbra 

regions are added and given widths that are based on the depth values stored in the z-buffer.  

These methods are similar to the plateau approach, but can be used with arbitrary receivers 

due to their being extensions of shadow mapping techniques.  However, they also suffer from 

problems with physical inaccuracy because, like the plateau approach, the rendered shadows 

are still simply hard shadows with additional smooth penumbra regions. 

 

 
Figure 22: Images showing rendering with smoothies. 
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Chapter 7: Object Space Techniques 

 

7.1 Penumbra Wedges 
 

This technique, developed recently by Ulf Assarsson [AM02], [ADMA03], [AM03], is an 

extension of the shadow volume technique.  In this technique, each of the vertices of the 

occluder’s silhouette is extruded outward in a cone, instead of just in a straight line as in a 

typical shadow volume approach.  This region, defined by the area between these extruded 

cones, forms the shadow’s penumbra, and the area inside the penumbra forms the shadow’s 

umbra.  In practice, these two regions form two separate shadow volumes that are processed 

independently.  Each are rendered in the same fashion as a typical shadow volume, with the 

exception being that pixels found to lie within a penumbra volume are given an amount of 

shadowing that varies depending upon its position relative to the penumbra region’s front 

and back facing planes.  The visibility calculation is achieved in hardware by finding the 

intersection points of the occluder’s silhouette edge and a square representing the light 

source, and then using these two intersection points to perform a lookup on a 4D texture 

with precomputed visibility data.  This approach is very physically accurate and produces the 

best visual results of any of the previously mentioned real-time techniques.  However, the fill-

rate problem typically associated with shadow volumes is more than doubled by the fact that 

two separate sets of shadow rendering passes are required, and what might otherwise be a 

minor slowdown can actually become a major bottleneck. 
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Figure 23: Computing a pixel’s visibility. 
 
 
 

 
Figures 24 and 25: Two images rendered using penumbra maps. 
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Chapter 8: Future Work 
 

During the course of this research, a new technique based on shadow mapping was 

proposed.  The idea behind the proposed method is similar to rendering multiple shadow 

maps from different points on an area light source, which approaches physical correctness for 

large numbers of shadow maps.  The proposed technique, however, will only require two 

shadow maps.  Figure 25 shows an area light source (top), an occluder (middle), and a 

receiver (bottom).  Figure 26 gives a simplified image of the light’s view frustum in a typical 

shadow mapping algorithm, and figure 27 shows two extents of roughly how the light in a 

physically accurate simulation would behave.  In figure 28, the inner extent is extended above 

the light source, and two separate frustums are formed.  The proposed technique uses the 

two points marked in red in figure 29 as two separate camera locations for rendering two 

separate shadow maps.  The two shadow maps define the borders of the umbra and 

penumbra regions.  A given pixel is completely shadowed if it is obscured by both shadow 

maps, it is completely illuminated if it is not obscured by either of the shadow maps, and it is 

partly shadowed if it is obscured by one shadow map and not the other.  This approach would 

efficiently identify pixels located within the penumbra area, and would only incur twice the 

cost of a standard shadow map render and lookup. 

 

Once the penumbra area is determined, there are several possibilities for determining 

the amount of shading to apply to each pixel.  One option would be to project each edge back 

onto the surface of the light source in order to determine visibility, in a method similar to the 

method used in the penumbra wedge technique.  Another option would be to compute two 
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sets of silhouettes, one from each virtual light source, connect geometry between each edge 

pair, and render the geometry with a gradient texture from inner to outer silhouette edge as 

projected onto a plane some distance from the light sources.  This rendered texture would 

serve as the “penumbra buffer,” which would store the amount of shading for each pixel 

within the penumbra, and would be sampled during the final rendering pass.  A third option 

would be to perform a search of the neighboring texels in each shadow map in order to find 

the closest shadow map texel belonging to a surface that might potentially occlude the 

rendered pixel.  From the relationship between the pixel found, the pixel being rendered, and 

their depths, it could be possible to determine enough information about the scene in order 

to accurately approximate the pixel’s visibility. 

 
 

 
Figures 26 and 27. 
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Figures 28 and 29. 
 

 
Figure 30 
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Chapter 9:  Implementation Details 

 

9.1 Introduction 
 

Several of the hard and soft shadowing algorithms described in this paper were 

implemented in a windows-based application in order to compare their relative performance 

and quality.  The application renders a user-configurable scene consisting of static and 

animated models and a single light source, and the camera, light, and models are all movable 

at run time.  The default scene renders at 800 x 600 in windowed mode.  The application was 

developed on a Windows XP machine with a 2.8 GHz Pentium D processor, 2 GB RAM, and an 

NVidia 8800 GT graphics card with 512 MB of video RAM, and all performance measurements 

and screenshots were taken using this hardware.  All performance measurements were taken 

from a fixed camera position with texturing disabled (lighting only).  The source code was 

built using the November 2008 DirectX 9 SDK under Visual Studio 2008. 

 

9.2 Shadow Map 
 

The shadow map implementation is a standard implementation using a shadow map 

resolution of 2048 x 2048 and a 32-bit single component floating point render target.  Using a 

single component render target allows for the entire range of bits to be used in a single value 

without having to split the depth into separate red, green, blue, and alpha components in the 

pixel shader.  Also, the floating point format allows for more precision and flexibility when 

compared with fixed-point formats.  The shadow map was fitted to exactly match the light’s 

frustum, and no further optimizations based on the layout of the scene were performed.  
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Additionally, only the back facing geometry was rendered into the shadow map in order to 

avoid shadow acne, as described in section 3.2.1. 

 

The benchmark scene rendered at an average of 517 frames per second, which is 

significantly faster than any other technique in this implementation.  By comparison, the 

default unshadowed scene rendered at 739 frames per second. 

 

 

Figure 9.2.1:  Standard shadow mapping technique 

 



39 
 

 
 

9.3 Shadow Volumes 
 

In this shadow volume implementation, all shadow volume extrusion and construction 

was performed on the GPU.  This required a special version of each model’s mesh which is 

constructed once at application startup as follows: 

 

1) Ensure that the mesh is manifold (in particular, each edge must belong to two faces, 

i.e., the model cannot contain any “cracks”).  Patch any open edges if possible. 

2) Build tables that contain adjacency information between triangles and edges 

3) For each triangle in the original mesh 

a. Add new instances of each of the triangle’s vertices to the shadow mesh’s 

vertex buffer 

b. Create a new triangle in the shadow mesh’s index buffer 

4) For each edge between two triangles in the original mesh 

a. Add three new vertices for each of the original edge’s two vertices and add all 

six new vertices to the shadow mesh’s vertex buffer.  Ensure that the 

duplicated vertices use two of the first triangle’s face normals and one of the 

second triangle’s face normals at one end of the edge, and one of the first 

triangle’s face normals and two of the second triangle’s normals at the other 

end of the edge. 

b. Add two new triangles to the shadow mesh’s index buffer such that a 

degenerate quad is formed by these new vertices.  The degenerate quad will 
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lie exactly along the edge.  Ensure that the winding order is such that the 

normal points in the same direction as the normals for the edge’s adjacent 

triangles.  Additionally, the normals from the vertices duplicated in the 

previous step will ensure that each of these two new triangles will have two 

vertex normals from one adjacent triangle and one from the other. 

 

The resulting mesh contains a triangle list of all the original mesh’s triangles plus two 

degenerate triangles with zero area that lie along each edge.  None of the vertices in this 

mesh are shared between triangles, they are all unique.  This mesh is then sent down to the 

graphics card for use at runtime. 

 

The shadow volume is extruded from this specially constructed mesh just before being 

rendered into the stencil buffer as follows:  In the vertex shader, find the dot product 

between the vertex normal and the light direction.  A positive dot product means that the 

geometry is facing towards the light source, and the vertices can be transformed as normal.  

A negative dot product, however, means that the geometry is facing away from the light 

source, and these vertices are first translated by a fixed amount along a vector from the 

vertex to the light source.  This translation effectively pushes all back facing geometry away 

from the light source, while leaving all front facing geometry in place.  As a result, the 

degenerate triangles along the edges between front and back facing geometry are then 

stretched out to form the side sections of the shadow volume.  In other words, the mesh is 
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split in half along the object’s silhouette, and the formerly degenerate triangles are extended 

to fill in the gaps. 

 

The downside to this approach is that there is a large amount of geometry that is 

duplicated and taking up extra space in video RAM.  Additionally, these meshes take extra 

time to compute and to push down to the graphics card, but fortunately this performance hit 

only happens once.  The alternative, which is to compute the object’s silhouette and 

construct the shadow volume geometry on the CPU before pushing it down to the GPU per 

frame, is much, much more costly. 
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Figure 9.3.1:  Shadow Volumes 

 

9.4 Box Filtered Percentage Closer Filtering 
 

All of the following percentage closer filtering implementations are based on the 

standard shadow mapping implementation described above.  The implementations in this 

section are based on 9x9, 13x13, and 19x19 box filters.  For each rendered pixel, the shadow 

map is sampled at 81 points (for a 9x9 filter), 169 points (for a 13x13 filter), and 361 points 

(for 19x19 filters) surrounding the corresponding texel in shadow map space.  These samples 

form a square grid of texels centered at the texel in shadow map space that is being 
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rendered.  A standard shadow map test is performed using the pixel’s depth and the depth of 

each of the samples, and the results are averaged together.  Note that 9x9, 13x13, and 19x19 

filters can produce a maximum of 82, 170, and 362 distinct values, respectively, for each 

shaded pixel.  As a result, using fewer samples will result in a penumbra area with more 

banding artifacts where the transition between the levels of shading becomes sharper and 

more obvious, and more samples will produce smoother transitions and therefore softer 

penumbra.  It should also be noted that larger filter kernels lead to a huge increase in the 

number of times the shadow map is sampled per frame.  Considering the fact that texture 

fetches have a high latency, filtering techniques that sample the shadow map heavily can 

incur a very high runtime costs.  In this implementation, the percentage closer filtering 

technique using a 19x19 box filter ran at only 21.5 frames per second, which put it at the 

bottom of the list in terms of performance. 
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Figure 9.4.1:  Percentage closer shadow map filtering, using a 9x9 box filter. 
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Figure 9.4.2:  Percentage closer shadow map filtering, using a 13x13 box filter. 
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Figure 9.4.3:  Percentage closer shadow map filtering, using a 19x19 box filter. 
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9.5 Gaussian Filtered Percentage Closer Filtering 
 

Gaussian percentage closer filtering is much like percentage closer filtering using a box 

filter, in that the shadow map is sampled in a grid surrounding the corresponding shadow 

map texel and the sampled depths are used with the pixel depth in a depth test.  However, 

instead of taking an average of all the results over the entire filter area, a Gaussian filter 

weights the results before averaging them such that points closer to the center of the filter 

kernel have more of an influence than points further away towards the edges.  The Gaussian 

distribution can be visualized as a bell-shaped curve in two dimensions.  Visually, the filtered 

result is much “rounder” than that of a box filter, and is typically more aesthetically pleasing.  

 

In this implementation, the Gaussian 

weights for each of the filter sizes were 

pre-computed offline in a separate 

application and stored in look-up tables 

which were available to each of the pixel 

shaders.  The rendered shadows were 

more appealing than the shadows that had been filtered using box filters, which appeared 

somewhat more angular and “boxy.”  However, the shadows rendered using a Gaussian filter 

displayed penumbra that were not as wide as the penumbra rendered using a box filter of the 

same size, which is the result of the lower influence of the samples taken near the edges of 

the filter kernel.  A wider Gaussian filter using more samples was therefore required to match 

the shape and penumbra width of a shadow rendered using a box filter of a smaller size.

Figure 9.5.1:  A Gaussian distribution in three dimensions 
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Figure 9.4.3:  Percentage closer shadow map filtering, using a 13x13 Gaussian filter. 
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9.6 Variable Width Percentage Closer Filtering 
 

The following technique is an implementation of the variable width percentage closer 

filtering technique as described in section 5.3.1.  In this implementation, the initial blocker 

search is performed in a 3x3 filter kernel which is 64 texels wide.  The final amount of 

shadowing per pixel is determined by a 5x5 box filter with a width given by equation 5.3.1.1.  

An optimization to the technique is that the initial blocker search also determines whether 

the pixel is fully lit, fully shadowed, or within the penumbra, and then only performs further 

sampling and filtering on the pixels within the penumbra area.  This optimization can 

introduce artifacts in the form of fully lit pixels in the outer penumbra and fully shadowed 

pixels in the inner penumbra when the initial blocker search is incorrect.  However, it can 

provide a significant performance boost when there are a relatively small number of 

penumbra pixels on screen, since the heavy shadow map sampling is restricted to a relatively 

small area.   

 

It should be noted that this technique is the only technique implemented that displays 

correct shadow contact hardening.  However, the disadvantage of this feature is that it 

becomes possible to orient the scene such that shadows are cast with very wide penumbra, 

and wide penumbra make the inevitable banding artifacts much more apparent. 
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Figure 9.6.1:  Percentage closer shadow map filtering, using a variable width filter kernel. 
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9.7 Jittered Percentage Closer Filtering 
 

In the following technique, percentage closer filtering is performed using samples into 

the shadow map taken at random offsets.  This approach effectively trades banding artifacts 

for noise artifacts, and in many situations (such as when the receiver’s texture is relatively 

noisy as well) noise artifacts are much less noticeable to the human eye.  The implementation 

here uses only 32 randomly offset shadow map samples per pixel and achieves a grainy but 

relatively smooth penumbra.  The implementation uses the same optimization described in 

section 9.6, where in this case eight samples are taken to initially determine which pixels are 

within the penumbra and need further shadow map sampling.  Additionally, the results from 

the initial set of samples are averaged into the second set of samples, which means that this 

first set of samples is not wasted. 

 

In this implementation, the random offsets are pre-computed and stored in a three 

dimensional texture.  This pre-computed texture is necessary because current generation 

hardware has no support for random number generators in any stage of the programmable 

pipeline.  The third dimension in the offset texture reduces reoccurring patterns from 

appearing in the noise in the rendered shadows. 
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Figure 9.7.1:  Percentage closer shadow map filtering, using jittered sample offsets. 

 

 

  



6 
 

9.8 Variance Shadow Maps (Unfiltered) 
 

The following sections present several implementations of Variance Shadow Maps, 

which are described in section 5.4.1.  In each of these implementations, the Variance Shadow 

Map is stored as a 64-bit floating point texture with two 32-bit components (one for depth 

and one for depth squared), and an additional texture is required for the pre-filtering stage.  

Pre-filtering requires two textures because the filtering passes cannot be performed in-place 

(reading from and writing to the same texture is not supported by current generation 

hardware).  One texture needs to be set as the source and the second as the destination.  In 

this implementation, the textures are 1024 x 1024 pixels instead of 2048 x 2048.  The smaller 

texture size greatly improves the speed of the pre-filtering phase, and the artifacts introduced 

by the smaller texture size are hidden by the extra amount of softness in the shadows’ edges. 

 

The first implementation uses only hardware antialiasing when rendering the shadow 

map and hardware-based bilinear filtering when sampling from it.  This implementation is 

provided as a reference. 
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Figure 9.8.1:  Variance shadow maps without pre-filtering. 
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9.9 Box Filtered Variance Shadow Maps 
 

The following images show scenes rendered using Variance Shadow Maps that were 

pre-filtered using a box filter.  There are no workarounds for light bleeding, and light bleeding 

artifacts are readily apparent when shadows overlap. 

 

 

Figure 9.9.1:  Variance Shadow Maps pre-filtered using a 9x9 box filter. 
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Figure 9.9.2:  Variance Shadow Maps pre-filtered using a 13x13 box filter. 
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Figure 9.9.3:  Variance Shadow Maps pre-filtered using a 19x19 box filter. 

 
 

  



11 
 

9.10 Gaussian Filtered Variance Shadow Maps 
 

The following images show the scene rendered using Variance Shadow Maps that 

were pre-filtered using a Gaussian filter.  As was the case with percentage closer filtering, the 

shadows filtered using Gaussian filters are more appealing than their box filter counterparts 

but have smaller penumbra widths. 

 

 
 
Figure 9.10.1:  Variance Shadow Maps pre-filtered using a 13x13 Gaussian filter. 
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Figure 9.10.2:  Variance Shadow Maps pre-filtered using a 19x19 Gaussian filter. 
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9.11 Graph of Rendering Time by Technique 
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