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Abstract 

This paper is aimed at introducing the reader to a variety of techniques used in hardware triangle 

rasterization. While the rasterization process involves many additional steps (such as texturing, 

shading, visibility culling, anti-aliasing, shadowing…), we will be focusing on the core triangle 

rasterization algorithm and what can be done in this context to improve these additional sub-

processes. Specifically, this paper will focus on algorithms that are suitable for current graphics 

hardware which is why a brief overview of the underlying hardware architecture is first 

presented. Triangle rasterization has been an active area of research since the early beginning of 

Computer Graphics. It is still an active topic and is continuously being optimized to suit the 

needs of current hardware technology. Our goal is to propose two new faster triangle 

rasterization algorithms, one suited to SISD hardware architectures and the other tailored to 

SIMD hardware architectures. However, unlike the many other papers and dissertations we have 

read, this paper is not geared towards specific systems (such as Pixel Planes 4, Pixel Planes 5, 

RealityEngine Graphics…). Rather, we will focus on the actual algorithms and not on the 

hardware specific implementation details. This implies that our proposed algorithms will work 

on any hardware system (consumer graphics card processors, handheld devices processors, 

dedicated rasterization processors…). 
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1. Introduction 

1.1. Background 

I am a student at DigiPen Institute of Technology which is the leading institute in 

teaching game development. I major in Real Time Interactive Simulation. Ever since 

I studied the classical triangle rasterizer during my second year of undergraduate 

studies, I have been intrigued in developing new more efficient ways to handle this 

process. Therefore I chose this topic for my Master‟s thesis dissertation and I hope I 

can contribute to the ever-growing computer graphics community. 

1.2. Purpose 

Some programmers might wonder why reinvent the wheel when it‟s already been 

invented. Indeed, triangle rasterizers have been, since the early beginnings of 

computer graphics, the “wheel” behind all modern technology in this field. First, 

let‟s answer an obvious question that comes to mind “Why triangles?” I‟m sure you 

all know that a triangle is formed by three points and that three non-collinear points 

are the minimum number of points required to define a plane. It is from this simple 

definition that a triangle is considered the base element from which any arbitrary 2D 

or 3D shape may be formed of. Furthermore, triangles can be rasterized fairly 

quickly and offer an attractive way of efficiently interpolating arbitrary attributes 

along the surface (colors, depth, normals, tangents, binormals…).  

Now back to our original question, we reinvent the wheel for two reasons: 

1- To understand how it works: imagine an F1 driver who doesn‟t know 

his “wheels” 



2- To make it better: it‟s obvious that we tend to continuously evolve and 

create something new 

As you might imagine, reinventing the wheel is not exactly a walk in the park. There 

are lots of technical details involved in triangle rasterization. In this survey, we try to 

cover as much of these details as possible as a prerequisite step to reach the level of 

understanding needed to optimize the triangle rasterizer. 

1.3. Motivation 

Yet another question that comes to mind is “Why Bother?” and this is a perfectly 

valid question. It is true that with current graphics accelerator cards, a huge number 

of triangles throughput (hundreds of millions per second) may be achieved. 

However, there are many reasons why optimizing the triangle rasterizer may prove 

very advantageous. First of all, imagine a device not having a graphics accelerator 

(such as a handheld device), displaying 3D graphics on this kind of devices requires 

a lot of optimization to squeeze out every bit of available processing power. Now 

some might claim that, with the advancements made in manufacturing computer 

chips, such devices will soon get their graphics accelerator and still maintain a 

reasonable price. It is true that some handheld devices already have graphics 

accelerators, and next generation cell phones technology will focus on this aspect. 

However, it is equally true that other devices will soon exhibit the need for 

displaying 3D (or at least 2D) graphics without the extra cost of having graphics 

accelerators (it would be nice for your home microwave to display some kind of 

visual representation of the food being heated rotating on a virtual platter and 

displaying visual cues of heat levels). The second reason is more oriented towards 



real time simulations (notably games). With the advent of GPGPUs, it is possible to 

exploit the GPU hardware technology to perform general tasks. Why not create a 

really fast triangle rasterizer and use it in your simulation engine? Such a rasterizer 

would help in virtually every graphics task (and if you are creative in other tasks 

also, such as generating surface points to be used in collision engines, portal 

visibility determination, physics simulations…) A concrete example would be the 

shadow map building pass. Having highly tessellated models would hurt 

performance in this pass even though no heavy vertex or fragment shaders are 

running. So if we have 100,000 triangles render limit per frame into the shadow 

map, a 30% more optimized triangle rasterizer would allow us to render up to 

130,000 triangles which is significantly more. So instead of lowering the models 

level of detail in the shadow map building phase, we can retain these details by using 

the optimized triangle rasterizer. Now imagine having three or four of such passes in 

one frame of your simulation (such as the initial depth fill pass (depth peeling), 

stencil fill passes, other shadow map passes for shadow casting lights or even multi-

pass object rendering effects…) the gain of the optimized rasterizer scales even 

further. 

1.4.  Terms and Abbreviations 

The following is a table listing the terms used in this paper with their respective 

definitions: 

 

 



 

 

  

 

 

The following is a table listing all the abbreviations used in this paper: 

 

 

 

 

 

 

 

1.5. Overview 

This survey will be organized into four sections: 

1- The first section will go over the mathematical background needed to 

understand triangle rasterization. The level of required math knowledge is not 

Rasterization 

The process of mapping infinitesimal points into a finite set of 

image pixels 

Scan Conversion Another term used for Rasterization 

Vertex Triangle point 

Pixel Picture Element 

Tessellation Surface subdivision 

2D Two Dimensional 

3D Three Dimensional 

GPU Graphics Processing Unit 

GPGPU General Purpose Graphics Processing Unit 

SIMD Single Instruction – Multiple Data 

SISD Single Instruction – Single Data 

MISD Multiple Instructions – Single Data 

MIMD Multiple Instructions – Multiple Data 

DDA Digital Differential Analyzer 



very advanced. Therefore, readers who feel comfortable with the math may 

skim through this section or even skip it. 

2- The second section will present current hardware architectures and the 

influence of their underlying technology on the triangle rasterization process. 

Also presented is the general 3D pipeline to fully “draw the big picture”. 

3- The third section will cover existing triangle rasterizer algorithms. We will 

particularly focus on hardware implementations, however the presented 

concepts also map to software implementations. 

4- The fourth section will present two new approaches to triangle rasterization, 

each suited to a particular class of hardware. Since this paper is intended to be 

a survey, this section will be brief and geared only towards giving the general 

ideas. 

2. Mathematical Background 

2.1. What Is A Pixel? 

A common misconception is to think of a Pixel as a little square. Another 

misconception is to think of it as a little dot on the display monitor. Let‟s first attack 

the second misconception which is easier to refute. There is no fixed mapping 

between the monitor‟s dots and pixels, since most graphics cards support a variety of 

display resolutions (320x240, 640x480, 800x600, 1024x768…) but monitors may 

physically have only a fixed number of dots. Now for the first misconception, we all 

know that a pixel is a picture element but then what is a picture element? A picture 

element is a point sample and exists only as a point [1]. This leads us to define an 

image as an array of point samples discretized by a sampling filter. This filter‟s 



shape determines the actual contributions to the pixel‟s color and that shape does not 

have to be a box (in fact most high quality filters are not box shaped). However, for 

the sake of speed, we will simplify and not use any filtering or anti-aliasing. These 

two rasterization simplifications are natural since our primary focus is the core 

triangle traversal and rasterization. All we have to do now, given these 

simplifications, is map real world geometric surface data into corresponding pixels. 

Technically, this means mapping floating-point quantities into integral quantities. 

Two methods exist to perform this mapping: 

1- Truncation is achieved by keeping the integral part of the point coordinate i.e 

1.2 -> 1 and 1.7 -> 1. The truncate operation takes the floor of the floating-

point number. It is important to note that simply type casting the value to 

integer might not yield the desired result since the compiler may generate 

code to actually round the type casted number. 

 

 

 

 

 

 

2- Rounding is achieved by taking the closest integral number to the point 

coordinate i.e 1.2 -> 1 and 1.7 -> 2. The round operation is achieved by first 

shifting the floating-point number by 0.5 and taking the floor of the result. 

 



 

 

2.2. Edge Functions 

An Edge function [2] is called a half-space function since it subdivides the space into 

two “half” regions based on the considered edge. An edge function is defined by a 

line in its implicit form: 

E(x, y) = ax + by + c where (a, b) is the line normal and c is the line‟s distance from 

the center along its normal. The function yields three possible outputs based on the 

input point P(x, y): 

- E(x, y) = 0 if point P is on the line 

- E(x, y) > 0 if point P is on the positive line half-space which the line normal 

points to 

- E(x, y) < 0 if point P is on the negative line half-space which the line normal 

points opposite to 

So if we consider a triangle edge formed between points P1 and P2 with normal (a, 

b) as in the following figure: 

 

 

 

 

 

 



 

We can easily see that the edge function is computed by setting: 

- a = - (y1  - y0) 

- b = (x1 – x0) 

- c = - (a * x0 + b * y0) 

Once the edge function is computed, we can test any arbitrary point P as depicted in 

the following figure: 

 

 

 

 

 

 

 

Now having three edges that define a triangle, we can test if a point P is inside the 

triangle given a consistent edge orientation. If we consider a counterclockwise edge 

orientation, then the point is inside if all three tests yield a positive result. 

This is illustrated in the following figure: 

 

 

 

 

 



So we now have a way to check whether the pixel is inside the rasterized triangle 

which will come in handy when we look at the tile-based triangle rasterizer (more on 

this later). 

2.3. Digital Differential Analyzer (DDA) 

A common technique to minimize heavy arithmetic operations is the DDA method. 

For example, the “Edge Walking” based triangle rasterizers that we are going to see 

later in section 3 rely on DDA to incrementally update the position along the triangle 

edges. Let‟s consider an explicit line equation yi = m * xi + b where i denotes the 

current iteration. Assuming we want the value when y is incremented by 1 (which is 

the case in the “Edge Walking” algorithms), then we need xi+1. Let‟s replace in the 

explicit line equation yi + 1 = m * xi+1 + b  xi+1 = (yi – b) / m + 1 / m but xi = (yi – 

b) / m  xi+1 = xi + 1 / m. This last equation means that given the current value of x 

we can get the next value at y + 1 by simply adding the inverse slope of the line 

segment. So instead of performing a multiplication and an addition (evaluating the 

line equation), we only have to perform an addition. This might not seem like a lot of 

optimization, but imagine having a huge number of triangles rendered at a high 

enough resolution. The number of saved multiplications quickly builds up and 

becomes significant.  

Taking this concept a bit further, it can easily be shown that we can obtain any value 

of x offset by ∆y from a given reference value. So we obtain xi +∆y = x + ∆y / m. This 

simple equation will prove very useful in the final section where we propose a new 

approach for rasterizing triangles. It is important to note that DDA is not only used 

to incrementally update spatial coordinates, but also any kind of attribute as we will 



see in the next section. Also note that DDA may also work with integer arithmetic 

where an accumulator is used to track the floating point digits. 

2.4. Barycentric Coordinates 

Barycentric coordinates are actually used to find the center of mass for a geometric 

object [3]. We are interested in a subset of Barycentric coordinates called 

homogenous barycentric which are normalized such that they become the areas of 

the sub-triangles [4] as seen in the following figure where u, v, w are the barycentric 

coordinates of point P in the triangle ABC. 

  

 

 

 

 

 

 

These coordinates are normalized by the entire triangle area. A consequence of this 

normalization is that any point inside the triangle has barycentric coordinates 

bounded between zero and one and that the sum of these coordinates must be equal 

to one (if they were not normalized it would be equal to the actual triangle area). So 

we have the equation:  

- u + v + w = 1 for P inside the triangle 

Areal coordinates [5] are another name for homogenous barycentric coordinates 

which verify the above equation. 



The importance of areal coordinates in triangle rasterization lies in the fact that they 

provide a consistent way of interpolating vertex attributes independent of the triangle 

orientation. Another possible use of barycentric coordinates is that, similar to edge 

functions, they provide a way to check if a point P is inside the triangle (if all 

homogenous coordinates are within the range [0,1]). We will be using barycentric 

coordinates to interpolate vertex attributes. Assuming we are interpolating an 

arbitrary attribute S specified at each vertex SA, SB, SC the value of S at point P 

would be: 

- SP = u * SA + v * SB + w * SC 

All we need to do now is to actually find u, v and w for point P. This can easily be 

done by realizing that the area of the triangle is the half cross product of two 

consecutive triangle edges: 

- Area(ABC) = |AB ^ AC| / 2 

And by definition we have: 

- u = Area(ABP) / Area(ABC) 

- v = Area(BCP) / Area(ABC) 

- w = Area(CAP) / Area(ABC) or also w = 1 – u – v 

So the result: 

- Let d = (xB - xA) * (yC - yA) - (xC - xA) * (yB - yA) 

- u = ((xB – xA) * (yP – yA) - (xP – xA) * (yB – yA)) / d 

- v = ((xC – xB) * (yP – yB) - (xP – xB) * (yC – yB)) / d 

- w = ((xA – xC) * (yP – yC) - (xP – xC) * (yA – yC)) / d 



Computing these coordinates per pixel is very costly. Therefore, we need a way to 

incrementally update them along every xStep and yStep. We do that by first noticing 

that only xP and yP vary along the triangle surface. That means that the value of “d” 

is constant, and since division is expensive we can precompute 1/d. Another 

consequence is that for every xStep: 

- The value of u is updated by xStep  * (yB – yA) 

- The value of v is updated by xStep  * (yC – yB) 

- The value of w is updated by xStep  * (yA – yC) 

Similarly, for every yStep: 

- The value of u is updated by yStep  * (xB – xA) 

- The value of v is updated by yStep  * (xC – xB) 

- The value of w is updated by yStep  * (xA – xC) 

It is clear that by using this DDA method we can greatly optimize the computation 

of our areal coordinates. 

2.5. Perspective Correction 

Whenever perspective projection is used, we need to perform perspective correction 

for the interpolated attributes to account for the perspective foreshortening effect. 

 

 

The reason we need this kind of correction is that, from a high level perspective, we 

are interpolating eye space coordinates in projected screen space. This may be 

acceptable for some attributes (like color) but may lead to severe artifacts in some 

other attributes (like texture coordinates) as shown in the following figure: 



 

 

 

 

 

 

 

In order to remedy this problem, we need to understand its source. Perspective 

projection is not an affine transformation since it involves a division by z 

(perspective divide). That means that screen space quantities are linear with respect 

to 1/z. As a consequence, we need to interpolate the barycentric coordinates along 

1/z. We do that by first dividing the coordinates by the respective triangle vertices z 

(projection transform), and interpolate using the derived formula in the previous 

section. But we now need to recover the actual areal coordinates u, v and w. It 

becomes clear that we need to interpolate 1/z per pixel: 

- 1/z = u / zA + v / zB + w / zC 

All we need to do now is to divide by 1/z which is really multiplying by z, the 

perspective correct interpolated quantity S is then: 

- Sp = ((u * SA / zA)  + (v * SB / zB) + (w * SC / zC)) / (1/z) 

Some methods have been developed to help reduce the cost of division by 1/z such 

as using table lookups [6]. 



3. Underlying Technology 

3.1. 3D Graphics Pipeline 

A view of the classical 3D graphics pipeline is presented in the following figure: 

 

 

 

 

 

 

 

 

More and more stages of this pipeline have found their way into special purpose 

hardware over the past few years. This is a big evolution from the early days of 

graphics where the display was memory mapped and the general purpose CPU wrote 

pixels directly into the frame buffer. The hardware implementations have started 

from the Display Rasterization stage and gradually risen up to include all the 

pipeline stages except for the Application stage where the CPU feeds data into the 

graphics processor. Even more technological advancement was made with the 

development of micro-programmable processors. Developers can now write their 

own vertex and fragment programs (even geometry programs recently with DX10). 

Currently, General Purpose Graphics Processing Units (or GPGPUs) are being 

developed and promise a blend of efficiency and full programmability. However, all 

that is only for devices that support a heavy amount of power usage, big enough 



hardware integration space, powerful cooling systems and cost efficiency. But since 

not all devices are created equally, we sometimes fall back to older technologies in 

some cases such as handhelds. 

3.2. Hardware Architectures 

The most popular nomenclature for the classification of hardware architectures is the 

one proposed by Flynn[7] in 1966. We are interested in Flynn‟s classification since 

he chose not to examine the explicit structure of the hardware, but rather how 

instructions and data flow through it. Flynn‟s taxonomy identifies whether there are 

single or multiple streams for data and for instructions in the hardware architectures. 

The term “stream” refers to a sequence of either data or instructions. 

Flynn identifies four categories of hardware architectures: 

- SISD Single Instruction Single Data 

- SIMD Single Instruction Multiple Data 

- MISD Multiple Instruction Single Data 

- MIMD Multiple Instruction Multiple Data 

A brief study of each of these architectures is presented. 

3.2.1. SISD 

SISD based processors are conventional serial architectures that can process 

only one stream of instructions on one stream of data. SISD architectures are 

also called Von Neumann models since they suffer from the Von Neumann 

bottleneck which is essentially the bottleneck between processors and 

memory as in the following figure: 

 



The architecture is illustrated in the following figure: 

In this kind of architectures, instructions may be overlapped by pipelining. 

Additional functional units may be provided such as arithmetic coprocessors, 

vector units, I/O units…  

Some examples of SISD machines: 

- CDC 6600 which is not pipelined but has multiple functional units,

may be considered as the first supercomputer.

- CDC 7600 which has a pipelined arithmetic unit.

- Amdhal 470/6 which has pipelined instruction processing.

- Cray-1 which supports vector processing.

3.2.2. SIMD 

In this kind of architectures, a single control processor acts as a supervisor 

for multiple identical inter-connected processors executing the same program 

with different data inputs. These inter-connected processors are said to 

operate in “lock-step”. Note that each processor has its own memory from 



which it works on its own data, which means that multiple processors have 

different data streams. 

The architecture is illustrated in the following figure: 

 

 

 

 

 

 

 

Each processor completes its instruction before the next instruction is loaded 

leading to a synchronous mode of operation. 

Some examples of SIMD machines: 

- Illiac - IV 

- BSP 

- STARAN 

- MPP 

- DAP  

- CM-1 and CM-2 

3.2.3. MISD 

MISD architectures have multiple processing elements each executing a 

different stream of instructions but on the same set of data.  

The architecture is illustrated in the following figure: 



 

 

 

 

 

This model is not very useful or at least no useful way of using this model 

has been discovered yet. It has only been implemented in C.mmp which is 

built by Carnegie-Mellon University. This computer is reconfigurable and 

can operate in SIMD, MISD and MIMD modes. 

3.2.4. MIMD 

MIMD architectures have multiple processing units each executing a 

different stream of instructions on a different stream of data. The instructions 

executed by different processors may start and finish at different times so no 

lock-stepping is used as in SIMD architectures. This leads to an 

asynchronous mode of operation. 

The architecture is illustrated in the following figure: 

 

 

 

 

 

 

 



MIMD architectures are common in today‟s most powerful supercomputers. 

The only problem with this model is the synchronization overhead between 

different processors. 

Some examples of MIMD machines: 

- C.mmp 

- Tandem/16 

- S1 

- Cray-2 

- Cray X-MP 

- Burroughs D825 

- BBN Butterfly 

- FPS T/40000 

- iPSC 

- HEP 

3.3. Target Architectures 

The SISD architecture is still being used in today‟s low-end devices such as 

handhelds for reasons of power saving and cost-efficiency. We will propose an 

optimized triangle rasterizer specific to this kind of architectures where triangle 

traversal speed is essential and parallel pixel processing is not needed. 

Furthermore, the SIMD architecture is currently dominating consumer level graphics 

cards (mainly because of being more cost efficient than MIMD), we will also 

propose another optimized triangle rasterizer that exploits this architecture‟s 



capabilities and allows multiple pixels to be handled in parallel based on the number 

of available stream processors. 

4. Existing Triangle Rasterizers 

4.1. Overview 

Triangle rasterizers can be broadly categorized into two approaches: 

- Edge Walking 

- Edge Function Testing 

The first approach “walks” on the triangle edges to find successive horizontal spans 

to fill, whereas the second approach relies on edge functions (see first section) to 

determine whether a point is inside the triangle and needs rasterization. At first 

glance, the edge walking algorithm seems much more efficient than the second more 

“brute force” approach. However, due to hardware efficiency issues I will cover in 

this section, the second approach is currently being used in contemporary graphics 

cards since it allows for “tile-based” rasterization where a tile is a block of m*n (or 

usually n*n) pixels. 

4.2. Edge Walking 

Sometimes referred to as the classical triangle rasterizer, it offers very efficient 

triangle traversal which is why it is still being used in today‟s low end consumer 

devices such as handhelds. Its only downside is that it doesn‟t allow finding multiple 

pixels at the same time, therefore no parallel pixel processing may be executed 

which is why its main use is in SISD architectures. 



In this section, we will outline the entire edge walking algorithm subdivided into its 

various steps [11]. 

4.2.1. Vertex Sorting 

Our goal is to identify the top, middle and bottom vertices. Also we need to 

determine whether the middle vertex is to the left or to the right. If the 

triangle vertices are assumed to be in a counter-clockwise order, there are 

only six possible vertex configurations shown in the following figures: 

 

 

 

 

 

 

 

 

 

 

 

 

 

By laying out these cases, it is possible to determine the input vertex 

configuration by performing two checks on the y-values of the triangle 

vertices. The following pseudo code illustrates these checks: 



  If (P0y < P1y) 

  If (P2y < P0y) 

   Top = 2 

   Middle = 0 

   Bottom = 1 

   MiddleIsLeft = 1 

  Else 

   Top = 0 

   If (P1y < P2y) 

    Middle = 1 

    Bottom = 2 

    MiddleIsLeft = 1 

   Else 

    Middle = 2 

    Bottom = 1 

    MiddleIsLeft = 0 

 Else 

  If (P2y < P1y) 

   Top = 2 

   Middle = 1 

   Bottom = 0 

   MiddleIsLeft = 0 

 



  Else 

   Top = 1 

   If (P0y < P2y) 

    Middle = 0 

    Bottom = 2 

    MiddleIsLeft = 0 

   Else 

    Middle = 2 

    Bottom = 0 

    MiddleIsLeft = 1 

4.2.2. Top-Bottom Split 

The triangle must be rasterized from top to bottom, it is split into two along 

the horizontal line passing by the middle vertex since a slope transition is 

needed between these two parts as shown in the following figure: 

 

 

 

 

 

 

 



4.2.3. Update By Inverse Slopes 

Using the DDA method, at each downward y step we update the x value by 

the inverse slope of the respective edge. The slopes are easily computed by 

setting: 

InverseSlopeEdge0 = (PBottomx - PTopx) / (PBottomy - PTopy) 

InverseSlopeEdge1 = (PMiddlex - PTopx) / (PMiddley - PTopy) 

InverseSlopeEdge2 = (PBottomx – PMiddlex) / (PBottomy – PMiddley) 

Note that at any given time, we only have two active edges, one left and the 

other right as in the following figure where xL is current left x and xR is 

current right x. 

 

 

 

4.2.4. Fill Spans 

At every y step we have a left x value and a right x value. All we need to do 

is fill the horizontal span given by these two values as shown in the following 

figure: 

 

 

 

 

 



Note that any number of attributes may be interpolated (see section 1) and 

determined per pixel so that they may be used in finding the final rasterized 

pixel color. 

4.3. Edge Function Testing 

Currently implemented in high end consumer graphics cards, or more precisely the 

tile based variant of this algorithm [12] is the one that‟s actually implemented since 

the raw algorithm is simply considered as a brute force method of finding pixels 

inside in the triangle. In this section, we will outline the basic edge function testing 

algorithm then present a highly optimized tile based version of it. 

4.3.1. Basic Algorithm 

The first step is to determine the triangle edges testing functions assuming we 

have a triangle formed by three points P0(x0, y0), P1(x1, y1) and P2(x2, y2): 

- Edge 1: (x1 - x2) * (y - y1) - (y1 - y2) * (x - x1) 

- Edge 2: (x2 - x3) * (y - y2) - (y2 - y3) * (x - x2) 

- Edge 3: (x3 - x1) * (y - y3) - (y3 - y1) * (x - x3) 

Next we need to determine which pixels actually need to be tested. Surely it 

would not be efficient to test all the screen pixels against these edge 

functions per triangle. The answer is to simply use the triangle bounding box 

computed as such: 

- MinX = min(x1, x2, x3) 

- MinY = min(y1, y2, y3) 

- MaxX = max(x1, x2, x3) 



- MaxY = max(y1, y2, y3) 

So we now have the structure of a working triangle rasterizer as shown in the 

following pseudo-code: 

Loop Vertical Extent MinY to MaxY 

Loop Horizontal Extent MinX to MaxX 

 If  EdgeFunction1(CurrentX, CurrentY) >= 0 && 

  EdgeFunction2(CurrentX, CurrentY) >= 0 && 

  EdgeFunction3(CurrentX, CurrentY) >= 0 

   SetPixel(CurrentX, CurrentY) 

However the above rasterizer is not robust at all, it does not account for the 

Top-Left Fill rule nor does it account for the Shared Vertex issue (more on 

these two topics in the next section).  Aside from the robustness issues which 

will be addressed later, this algorithm is not efficient since each per-pixel 

edge function test requires two multiplications and five subtractions making 

for a total of six multiplications and fifteen subtractions for the three edge 

function tests. The solution is to use the DDA method. It turns out that the 

update per horizontal and vertical step is exactly the same as the one for 

barycentric coordinates (see section 2), for convenience the results are 

summarized by the following: 

For every xStep: 

- The value of EdgeFunction1 is updated by xStep  * (y2 – y1) 

- The value of EdgeFunction2 is updated by xStep  * (y3 – y2) 

- The value of EdgeFunction3 is updated by xStep  * (y1 – y3) 



For every yStep: 

- The value of EdgeFunction1 is updated by yStep  * (x2 – x1) 

- The value of EdgeFunction2 is updated by yStep  * (x3 – x2) 

- The value of EdgeFunction3 is updated by yStep  * (x1 – x3) 

It is clear that by using this DDA method we can greatly optimize the 

computation of our areal coordinates. 

4.3.2. Tile-Based Rasterizer 

Rasterizing tiles instead of pixels is the main goal behind using the edge 

function testing method. The reason for this is that current SIMD hardware 

handles tiles very efficiently (a single instruction is executed on multiple 

pixels inside the tiles). The Tile‟s size currently varies from 2*2 to 8*8 

depending on the number of stream processors available in hardware. 

Furthermore, visibility detection efficiency, cache hit rates and texture 

throughput are increased by using tiles [16]. All we need to do is determine 

whether a tile is fully inside, fully outside or partially intersecting with the 

triangle. A simple way would be to check the tile‟s extremity points against 

the edge functions as in the following pseudo-code: 

Loop Vertical Extent MinY to MaxY Inc by Tile Size 

Loop Horizontal Extent MinX to MaxX Inc by Tile Size 

MinTileX = CurrentX 

MinTileY = CurrentY 

MaxTileX = CurrentX + TileSize 

MaxTileX = CurrentY + TileSize 



 If TileInside(MinTileX, MinTileY, MaxTileX, MaxTileY) 

   Set All Tile Pixels 

Else If TileOutside(MinTileX, MinTileY, MaxTileX, MaxTileY) 

   Skip Tile 

Else Tile Partially Covered 

 Test For and Set Tile Covered Pixels 

The following figure shows a numbered tile traversal of a rasterized triangle: 

 

 

 

 

 

 

 

 

However this algorithm may be greatly optimized since it turns out that only 

one tile edge needs to be tested against one respective edge function instead 

of four [15]. Indeed, consider the following figure [16]: 

 

 

 

 

 



By projecting the tile‟s corners onto the normal of the tested edge, we can 

determine that, in this case, testing the top left corner is sufficient to indicate 

whether the tile is either fully outside or fully or partially inside the triangle. 

However, for efficiency, we effectively do not perform any projection, 

instead we pre-calculate an offset from the bottom left tile corner to the 

corner that needs to be tested in the triangle setup phase. The tile offsets T(w, 

h) are computed based on the edge normal N(x, y) where “w” is the tile width 

and “h” is tile‟s height: 

- Tx = w if Nx >= 0 

- Tx = 0 if Nx < 0 

- Ty = h if Ny >= 0 

- Ty = 0 if Ny < 0 

These offsets need to be calculate during triangle setup for every triangle 

edge so we would have T1(w, h), T2(w, h) and T3(w, h). Furthermore, we 

can calculate corresponding edge offsets for both tile full rejection and full 

acceptance checks (reverse normal) to optimize both during tile testing. 

Another possible major optimization is to change the triangle traversal order. 

Instead of fully traversing the entire triangle bounding box, we can adapt a 

zigzag traversal scheme as proposed by [2] and later described in more detail 

by [17]. 

 

 

 



One scan-line is traversed at a time and the traversal order is altered every 

scan-line. The order is flipped whether a fully not covered tile is found as 

shown in the following figure: 

 

 

 

 

 

 

 

 

This traversal scheme visits less tiles but does not necessarily fully eliminate 

redundancy as can be seen in the last rasterized scan-line in the above figure. 

4.4. Achieving Robustness 

We have deferred the discussion of a number of important issues to this section. 

These issues allow for more robust and consistent triangle rasterization. 

4.4.1. Top-Left Fill Rule 

Assume we have two triangles sharing the same edge. The shared edge will 

be drawn twice as each triangle is rasterized. This is both inefficient and 

inconsistent since it causes problems with alpha blending and stenciling 

operations. A simple solution to this is to only draw the top-left edges and 

leave the bottom right edges. That way, all connected triangle strip edges will 

be drawn consistently. Applying this rule in the Edge Walking triangle 



rasterizer is fairly straightforward (simply subtract 1 from the right-bottom 

edge horizontal and vertical spans). It is however not as straightforward in 

the Edge Function Testing triangle rasterizer. The following figure illustrates 

the directed edges of a triangle (all triangles must have consistent orientation) 

[16]: 

 

 

 

 

 

 

 

Let every edge have its corresponding normal N(a, b). McCool‟s tie-breaking 

rule follows [18]: 

 

 

 

 

 

This check relies on excluding points to the right of the triangle (a<0) and to 

its bottom (b<0) based on the edge normal. However observe that we can 

improve performance by pre-computing the constants check results as 

suggested by Owens [19]. 



Let Boolean EdgeCheck be: 

- EdgeCheck = bool(a > 0) if a != 0 

- Else EdgeCheck = bool(b > 0) 

The Inside test is then reduced to: 

 

 

4.4.2. Shared Vertex 

The same problem as edge sharing arises when two or more triangles share 

the same vertex as shown in the following figure: 

 

 

 

 

 

 

The solution is to choose an inclusion direction, any direction will work but 

we must be consistent. Then only the triangle having the inclusion direction 

totally inside will be the one that owns the shared vertex as in the following 

figure: 

 

 

 

 



However, as the triangle fan rotates, vertex ownership will shift between 

triangles. 

Another more aggressive solution would be to have a screen sized bit array 

which denotes the rasterized triangle vertices. A triangle vertex is only 

rasterized if its corresponding position in the bit array is zero then this 

position is set to 1. That way the triangles rasterization order determines the 

vertices to be rasterized. 

4.4.3. Fixed Point Arithmetic 

A fixed point number is an integral number representing a floating-point 

quantity. The number is said to be in i.f form [20] where “i” is the number of 

bits used to represent the integer part and “f” is the number of bits used to 

represent the fractional part. The following table sets the relation between “f” 

and the fixed point number resolution [12]: 

 

 

 

 

 

 

 

 

 

 



Fixed point arithmetic is used in low end devices to reduce the 

implementation cost of accelerated floating-point instructions. Furthermore, 

using fixed point in some rasterizer operations such as edge function testing 

proves to be necessary to avoid holes or cracks in the final rendered mesh. 

The reason for this is that edge functions involve multiplications and 

subtractions which build up cumulative errors in the floating-point 

representation. Fixed point arithmetic, on the other hand, does not suffer 

much from this kind of error build-up. 

5. Proposed Triangle Rasterizers 

5.1. Idea 

The main idea behind both proposed triangle rasterizers is to exploit successive span 

coherence as in the following figure: 

 

 

 

 

 

 

 

 

 

 



In fact, two successive spans only vary by the sum of the absolute value of the 

inverse slopes of their two active edges. 

5.2. The Eight Cases 

We have observed that triangles may be classified into eight cases (four by four 

symmetric based on middle vertex classification) according to their horizontal span 

coherence. Our classification is based on the DeltaX value of each triangle edge. 

Since there are two states per edge (<0 or >=0) there are 2
3 

potential combinations 

per each middle vertex classification (either middle to the left or to the right). But 

since we are assuming CCW triangle orientation, these cases are split into half 

leaving us with a total of 4 cases when the middle is on the left and 4 other cases 

when the middle is on the right. 

This section will outline the proposed classification: 

5.2.1. Edge Indexing 

Assuming the triangle‟s vertex ordering is determined as explained in the 

Edge Walking algorithm setup phase, the edge indexing we will follow is 

shown in the following figure: 

 

 

 

 

 

 

 



5.2.2. Middle On The Left 

Four cases occur when the middle vertex is on the left: 

- Case 1: 

 DeltaX[0] < 0 

 DeltaX[1] < 0 (Implied because middle is on the left) 

 DeltaX[2] > 0 

The case is shown in the following figure: 

 

 

 

 

 

 

- Case 2: 

 DeltaX[0] < 0 

 DeltaX[1] < 0 (Implied because middle is on the left) 

 DeltaX[2] < 0 

The case is shown in the following figure: 

 

 

   

    

    



- Case 3: 

 DeltaX[0] > 0 

 DeltaX[1] < 0  

 DeltaX[2] > 0 (Implied because middle is on the left)  

The case is shown in the following figure: 

 

 

 

 

 

 

- Case 4: 

 DeltaX[0] > 0 

 DeltaX[1] > 0  

 DeltaX[2] > 0 (Implied because middle is on the left)  

The case is shown in the following figure: 

 

 

 

 

 

 

 



5.2.3. Middle On The Right 

Four cases occur when the middle vertex is on the right: 

- Case 5: 

 DeltaX[0] < 0 

 DeltaX[1] > 0  

 DeltaX[2] < 0 (Implied because middle is on the right)  

The case is shown in the following figure: 

 

 

 

 

 

 

- Case 6: 

 DeltaX[0] < 0 

 DeltaX[1] < 0  

 DeltaX[2] < 0 (Implied because middle is on the right)  

The case is shown in the following figure: 

 

 

 

    

    



- Case 7: 

 DeltaX[0] > 0 

 DeltaX[1] > 0 (Implied because middle is on the right) 

 DeltaX[2] < 0 

The case is shown in the following figure: 

 

 

 

 

 

 

- Case 8: 

 DeltaX[0] > 0 

 DeltaX[1] > 0 (Implied because middle is on the right) 

 DeltaX[2] > 0 

The case is shown in the following figure: 

 

 

 

 

 

 

 



5.3. Triangle Setup 

A slightly different triangle setup is needed in order to determine the triangle case. 

This setup is an extension to the one presented in the traditional Edge Walking 

rasterizer section. The following pseudo-code illustrates the new setup: 

 If (P0y < P1y) 

  If (P2y < P0y) 

   Top = 2 

   Middle = 0 

   Bottom = 1 

   MiddleIsLeft = 1 

  Else 

   Top = 0 

   If (P1y < P2y) 

    Middle = 1 

    Bottom = 2 

    MiddleIsLeft = 1 

   Else 

    Middle = 2 

    Bottom = 1 

    MiddleIsLeft = 0 

 Else 

  If (P2y < P1y) 

   Top = 2 



   Middle = 1 

   Bottom = 0 

   MiddleIsLeft = 0 

  Else 

   Top = 1 

   If (P0y < P2y) 

    Middle = 0 

    Bottom = 2 

    MiddleIsLeft = 0 

   Else 

    Middle = 2 

    Bottom = 0 

    MiddleIsLeft = 1 

 If (MiddleIsLeft) 

  If(Dx[0] < 0) 

   Common Span Top Left X to Bottom Right X 

   If(Dx[2] > 0) 

    Set Update Flag for Left Edge in Second Half 

  Else  

   If(Dx[1] < 0) 

    Common Span Top Left X to Top Right X 

    Set Update Flag for Left Edge in Second Half 

   Else 



    Common Span Bottom Left X to Top Right X 

Else 

 If(Dx[0] < 0) 

   If(Dx[1] > 0) 

    Common Span Top Left X to Top Right X 

    Set Update Flag for Right Edge in Second Half 

   Else 

    Common Span Top Left X to Bottom Right X 

 Else 

  Common Span Bottom Left X to Top Right X 

   If(Dx[2] < 0) 

    Set Update Flag for Right Edge in Second Half 

As can be seen, practically only two extra branches have been added during triangle 

setup wich is an acceptable cost. 

5.4. Proposed Edge Walking Rasterizer 

The propose Edge Walking rasterizer first determines the triangle case during 

triangle setup. Then, similar to the double step line rasterizer, it walks on span pairs, 

rasterizes the common span first then the two residual spans as shown in the 

following figure (successive spans are spaced apart for better visualization): 

 

 

 

 



 

 

 

 

The gain is less range checking and better cache usage. In fact, the first 

implementation of this algorithm (with color interpolation) shows a 35% 

improvement over the traditional Edge Walking algorithm. 

5.5. Proposed Tile-Based Rasterizer 

The proposed Tile-Based algorithm is envisioned as some kind of a hybrid between 

the discussed Tile-Based algorithm in the previous section and the proposed 

optimized Edge Walking algorithm.  

A good consequence of this hybrid walking scheme is that we do not encounter any 

redundant “ghost” tiles which is a step further from traversal schemes such as the 

presented zigzag method. Furthermore, since no (or little) edge function testing is 

used, we save up to three tests per tile (comparing with the most optimized one tile 

test per edge algorithm – see section 3). These two optimizations are expected to 

significantly boost the traditional Tile-Based rasterizer performance. But this 

algorithm is left as future work. 

 



6. Implementation 

6.1. Language Choice 

First we needed to choose the most suitable programming language for the task. The 

choice was between C or C++. On one hand, the C++ implementation would be both 

well-structured and elegant. On the other hand, the C implementation would have 

little overhead in dealing with the C++ language complexities so it would be easier 

for the compiler to optimize the rasterizer code therefore yielding better 

performance. We chose to sacrifice elegance for performance as we are only 

implementing a triangle rasterizer not a full engine where code design and 

structuring is crucial. 

The next step was to reach an optimal implementation of the normal triangle 

rasterizer so we can have something to compare the algorithm with.  

6.2. Floating-Point Edge Walking Rasterizer 

Since we are interested in getting the pure triangle traversal speed-up, we have not 

included any shading or texturing in the implementation. The first few 

implementations of the normal edge walking rasterizer performed well and were 

based on using floating-point arithmetic. We incrementally optimized this rasterizer 

by looking at the generated disassembly code. The major problem was that the 

compiler generated a „rep stos‟ instruction to fill an entire span. That is due to the 

span having the same color since no color interpolation was being performed. The 

„rep stos‟ instruction is used by the CPU to quickly fill memory by a uniform value 

(used in memset). This would be an unrealistic scenario for a triangle rasterizer 



unless flat shading was being used. Further, we needed to emulate the per-pixel 

branching due to z-buffering. The following pseudo-code fragment is the result of 

fixing both of these issues: 

Get VideoBuffer Pointer At Current Scan Line 

Loop Through Scan Line 

 Set Color 

Interpolate some value and apply non-logic changing conditional to it 

The Interpolate value is a dummy value that emulates color variation. The 

conditional emulates z-buffering. The reason why we didn‟t fully implement color 

interpolation and z-buffering is simply because we‟re interested in keeping the color 

filling as light as possible to focus on the actual traversal speed gains. 

The final implementation of the floating-point rasterizer is the Triangle_Float() 

function found in the Appendix. 

6.3. Integer Edge Walking Rasterizer 

Although the floating-point rasterizer was performing very well, we wanted to try to 

implement a rasterizer that runs exclusively on the CPU without any FPU 

intervention. With current technology, floating-point arithmetic on the FPU is as 

fast, if not faster, than integer arithmetic on the CPU, however when both processors 

communicate and synchronise with each other, vital cycles are lost. 

The integer edge walking implementation turned out to be faster than the floating-

point implementation. Looking at the dissassembly code, the compiler was keeping 

more variables in the high-speed CPU registers and no FPU synchronization 

instructions were being used. 



6.4. Fast Floating-Point Edge Walking Rasterizer 

The first attempt at implementing the previously discussed optimization ideas was 

on the floating-point rasterizer. First, we implemented the code to determine the 

triangle case (one of the eight above mentioned cases). Once the case is determined, 

it was crucial to avoid unecessary branching based on the case. we came up with the 

idea of keeping two consecutive spans along with their common and uncommon 

span indices. The following pseudo-code is used to determine the triangle case: 

/*Setting leftEdge, rightEdge, Common and Uncommon edges indices*/ 

 If Middle Is On the Left 

  /*Left and Right edges*/ 

  leftEdge=1; 

  rightEdge=0; 

  If dx[0]<0 

/*What's sure in this case is that dx[1]<0 because the middle is on 

the left*/ 

   ucL=1;cL=0; 

   ucR=0;cR=1; 

   If dx[2]>0 

    /*Update Value is for left edge*/ 

    eUpdate=1; 

   Else 

    /*No Update Needed*/ 

    eUpdate=0; 



  Else 

/*What's sure in this case is that dx[2]>0 because the middle is on 

the left*/ 

   cR=0;ucR=1; 

   If dx[1]<0 

    ucL=1;cL=0; 

    /*Update Value is for left edge*/ 

    eUpdate=1; 

   Else 

    ucL=0;cL=1; 

    /*No Update Needed*/ 

    eUpdate=0; 

 Else 

  /*Left and Right edges*/ 

  leftEdge=0; 

  rightEdge=1; 

  if dx[0]<0 

   ucL=1;cL=0; 

/*What's sure in this case is that dx[2]<0 because the 

middle is on the right*/ 

   If dx[1]>0 

    ucR=1;cR=0; 

    /*Update Value is for right edge*/ 



    eUpdate=1; 

   Else 

    ucR=0;cR=1; 

    /*No Update Needed*/ 

    eUpdate=0; 

  Else 

/*What's sure in this case is that dx[1]>0 because the 

middle is on the right*/ 

   ucL=0;cL=1; 

   ucR=1;cR=0; 

   if dx[2]<0 

    /*Update Value is for right edge*/ 

    eUpdate=1; 

   Else 

    /*No Update Needed*/ 

    eUpdate=0; 

The variables „ucL‟ and „cL‟ stand for uncommon left and common left respectively. 

Similarily the variables „ucR‟ and „cR‟ stand for uncommon right and common right 

respectively. Further, since the triangle is being split into two parts based on its 

middle point, the „eUpdate‟ variable is used to actually update the edges indices 

when moving to the second part without having to re-check for the triangle case 

again. The following pseudo-code shows some clever binary manipulation to avoid 

branching during the edge indices update: 



 /*Updating the leftEdge, rightEdge, Common and Uncommon indices*/ 

 leftEdge<<=1;rightEdge<<=1; 

 cL+=eUpdate&MidIsLeft;ucL-=eUpdate&MidIsLeft; 

 cR+=eUpdate&!MidIsLeft;ucR-=eUpdate&!MidIsLeft; 

It would be hard to clearly understand the logic behing these indices and updates and 

the way to imagine how it works is to take concrete examples of triangles. We 

considered all possible triangle cases in the above code and made sure they were all 

handled correctly while optimizing speed as much as possible. 

After this phase, the rasterizer now knows the common and uncommon spans by 

indexing without explicitly checking for them at every span. The spans are filled in 

two steps, first the uncommon spans are filled (generally a few number of pixels) 

then the common span is filled simulatenously for both successive spans (a relatively 

much larger number of pixels). This represents the core optimization startegy. 

The comparison with the normal floating-point rasterizer shows on average a %20 

increase in speed for arbitrary triangle shapes and sizes. This is an acceptable 

performance boost, however we were convinced that we could obtain a better 

performance gain.  

6.5. Fast Integer Edge Walking Rasterizer 

Because of the previously mentioned co-processor synchronization issues, we 

applied the algorithm on the integer rasterizer to compare the performance gains. 

Basically, the edge indexing and update optimizations are the same and were 

adapated to the integer rasterizer. It turns out that the performance boost is even 

greater when comparing the normal integer rasterizer with the optimized integer 



rasterizer. We obtained on average a %30 performance boost for arbitrary triangle 

shapes and sizes. 

6.6. Fast Edge Walking Rasterizer Variations 

Since determing the triangle case and updating the indices all require a dereference 

operation which could lead to expensive cache misses, we had the idea of avoiding 

as much dereferencing as possible by expanding the triangle rasterizer cases in code 

therefore pushing as much branching operations as possible to the beginning of the 

algorithm.  

The first variation was a „medium‟ sized rasterizer, we have split the code to handle 

the triangle rasterization into two major parts based on whether the middle point is 

on the left or right. This allows us to save a few dereference operations however the 

benchmarking results were not encouraging. 

Then we re-structured the rasterizer by expanding all the eight cases and avoiding a 

lot dereferencing operations.  

This variation is the „large‟ sized raterizer since the resulting function turned out to 

be 1082 lines of code which is a lot compared to the small algorithm‟s 377 lines. 

However, we gained another %5-%10 average performance boost making the 

algorithm %35-%40 faster than the normal integer triangle rasterizer. 

6.7. Robustness 

6.7.1. Ill-Shaped Triangles 

Because of polygon anomalies sometimes found in the 3D models and 

because of the variation in camera view, we are sometimes faced with 



projected screen space triangles that are ill-shaped. By ill-shaped, we mean 

extremly slanted in such a way that two successive span lines share a very 

small common span (or even no common span) as shown in the following 

figure: 

 

 

 

 

The above image is low-res in order to clearly show wut‟s happening on a 

per pixel basis. Notice how only the small red portion constitutes some 

common spans and the black part will make up all the residuals. The 

implication in this case is not incorrect triangle display using our algorithm, 

it is however less speed enhancement. The logic here is simple, since the core 

speed optimization relies on rasterizing common span pixels, the fewer these 

pixels, the less speed gain we get. 

6.7.2. Pixel Fidelity 

Another important issue to address here is which pixels get rasterized using 

our algorithm in comparison with the normal rasterizer. Due to the two 

algorithms being structurally different, this question actually makes sense 

since we may end up missing some pixels and adding others. In order to be 

consistent, It is important that our algorithm rasterizes the exact same pixels 

as the normal rasterizer and it does. The proof that our algorithm is consistent 

follows: First the edge slope computations are the same in both algorithms, 



so is the starting point (top vertex). In our proposed algorithm we walk on 

pairs of spans in contrast to the normal rasterizer which only considers a 

single span at a time. The next span extents are found incrementally by 

adding the corresponding inverse slope value to the current span extents. In 

our algorithm we have two options to deal with this update: 

NextPairExtents[0] = CurExtents + InvSlope 

NextPairExtents[1] = CurExtents + 2*InvSlope 

Or 

NextPairExtents[0] = CurExtents + InvSlope 

NextPairExtents[1] = NextPairExtents[0] + InvSlope 

Due to floating-point precision issues, only the second option yields 

consistent results with the normal rasterizer since they both perform the exact 

same arithmetic operations. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

7. Appendix 

7.1. EdgeWalkTriangle() 

 Determine Positions of the three vertices assuming CCW ordering 

  If (Py0 < Py1) 

  If (Py2 < Py0) 

   Top = 2 

   Middle = 0 

   Bottom = 1 

   MiddleIsLeft = 1 

  Else 

   Top = 0 

   If (Py1 < Py2) 

    Middle = 1 

    Bottom = 2 

    MiddleIsLeft = 1 



   Else 

    Middle = 2 

    Bottom = 1 

    MiddleIsLeft = 0 

 Else 

  If (Py2 < Py1) 

   Top = 2 

   Middle = 1 

   Bottom = 0 

   MiddleIsLeft = 0 

  Else 

   Top = 1 

   If (Py0 < Py2) 

    Middle = 0 

    Bottom = 2 

    MiddleIsLeft = 0 

   Else 

    Middle = 2 

    Bottom = 0 

    MiddleIsLeft = 1 

  

 

Set inverse slope values for all three triangle edges 

InvSlope[0] = ( PxBottom - PxTop)/( PyBottom - PyTop) 



InvSlope[1] = ( PxMiddle - PxTop) /( PyMiddle - PyTop) 

InvSlope[2] = (PxBottom - PxMiddle) /( PyBottom - PyMiddle) 

 

Determine left and right active edges 

 leftEdge =  MidIsLeft 

 rightEdge = Reverse MidIsLeft 

 

 

Split triangle from top to middle and set starting and ending y values 

yStart = Ceil(PyTop) 

yEnd = Floor(PyMiddle) 

 

Set initial x value to top vertex 

xLeft = xRight = PxTop 

Fill Top To Middle Triangle Part 

Loop y = yStart While y<=yEnd Do y++ 

 Get Current Horizontal Span 

xStart = Ceil(xLeft) 

 xEnd = Floor(xRight) 

Loop x = xStart While x<= xEnd Do x++ 

  Set Pixel at (x, y) 

 Update Left and Right x by Inverse Slope of respective edge 

 xLeft += InvSlope[leftEdge] 

 xRight += InvSlope[rightEdge] 

Update left and right active edges 



  leftEdge   = ShiftLeft MidIsLeft By 1 

rightEdge = ShitfLeft (Reverse MidIsLeft) By 1 

Split triangle from middle to bottom and set starting and ending y values 

yStart = Ceil(Pymiddle) 

yEnd = Floor(PyBottom) 

Fill Middle To Bottom Triangle Part 

Loop y = yStart While y<=yEnd Do y++ 

 Get Current Horizontal Span 

xStart = Ceil(xLeft) 

 xEnd = Floor(xRight) 

Loop x = xStart While x<= xEnd Do x++ 

  Set Pixel at (x, y) 

 Update Left and Right x by Inverse Slope of respective edge 

 xLeft += InvSlope[leftEdge] 

 xRight += InvSlope[rightEdge] 

7.2. TileBasedTriangle() 

Determine Bounding Rectangle 

MinX = Min (Px0, Px1, Px2) 

MaxX = Max (Px0, Px1, Px2) 

MinY = Min (Py0, Py1, Py2) 

MaxY = Max (Py0, Py1, Py2) 

Set Fixed Block Size n (could be statically or dynamically determined) 

BlockSize = n 



Go through n*n blocks in triangle bounding rectangle 

Loop y = MinY While y<=MaxY Do y+=BlockSize 

Loop x = MinX While x<=MaxX Do x+=BlockSize 

 Get Current Tile Corners 

TileMinX = x 

TileMaxX = x + BlockSize - 1 

TileMinY = y 

TileMaxY = y + BlockSize - 1 

 Check Tile Against Edge Functions 

Bool InsideEdge1 = EdgeFunction1(TileMinX, TileMaxX, 

TileMinY, TileMaxY) > 0 

Bool InsideEdge2 = EdgeFunction2(TileMinX, TileMaxX, 

TileMinY, TileMaxY) > 0 

Bool InsideEdge3 = EdgeFunction3(TileMinX, TileMaxX, 

TileMinY, TileMaxY) > 0 

Do Full Rejection Test 

If (Reverse InsideEdge1) AND (Reverse  InsideEdge2) 

AND (Reverse InsideEdge3) 

 Go To Next Tile 

Do Full Acceptance Test 

If (InsideEdge1) AND (InsideEdge2) AND (InsideEdge3) 

 Rasterize Full Tile 

 Go To Next Tile 



Otherwise Tile Is Partially Covered 

Loop Ty = TileMinY While Ty<=TileMaxY Do Ty++ 

 Loop Tx = TileMinX While Tx<=TileMaxX Do x++ 

          Check If Pixel at (x, y) is inside triangle 

    If IsInside(Tx, Ty) 

   Set Pixel at (Tx, Ty) 

7.3. FastEdgeWalkTriangle() 

Determine Positions of the three vertices assuming CCW ordering 

 If (Py0 < Py1) 

  If (Py2 < Py0) 

   Top = 2 

   Middle = 0 

   Bottom = 1 

   MiddleIsLeft = 1 

  Else 

   Top = 0 

   If (Py1 < Py2) 

    Middle = 1 

    Bottom = 2 

    MiddleIsLeft = 1 

   Else 

    Middle = 2 

    Bottom = 1 



    MiddleIsLeft = 0 

Else 

  If (Py2 < Py1) 

   Top = 2 

   Middle = 1 

   Bottom = 0 

   MiddleIsLeft = 0 

 

  Else 

   Top = 1 

   If (Py0 < Py2) 

    Middle = 0 

    Bottom = 2 

    MiddleIsLeft = 0 

   Else 

    Middle = 2 

    Bottom = 0 

    MiddleIsLeft = 1 

  

Set DeltaX Values 

DeltaX[0] = PxBottom - PxTop 

DeltaX[1] = PxMiddle - PxTop 

DeltaX[2] = PxBottom - PxMiddle 

Set DeltaY Values 



DeltaY[0] = PyBottom - PyTop 

DeltaY[1] = PyMiddle - PyTop 

DeltaY[2] = PyBottom - PyMiddle 

 

 

 

Set inverse slope values for all three triangle edges 

InvSlope[0] = DeltaX[0]  / DeltaY[0] 

InvSlope[1] = DeltaX[1]  / DeltaY[1] 

InvSlope[2] = DeltaX[2]  / DeltaY[2] 

If MiddleIsLeft 

  Update left and right active edges 

  leftEdge=1 

  rightEdge=0 

  If DeltaX[0]<0 

   Update Common/Uncommon Left and Right Indices 

   ucL=1 / cL=0 

   ucR=0 / cR=1 

   If DeltaX [2]>0 

    Update Value for left edge 

   eUpdate=1 

  Else 

    No Update Needed 



   eUpdate=0 

 Else 

Update Common/Uncommon Right Indices 

  cR=0 / ucR=1 

  If DeltaX[1]<0 

Update Common/Uncommon Left Indices    

   ucL=1 / cL=0 

    Update Value for left edge 

    eUpdate=1 

 

  Else 

  Update Common/Uncommon Left Indices 

   ucL=0 / cL=1 

   No Update Needed 

   eUpdate=0 

 Else 

   Update left and right active edges 

  leftEdge=0 

  rightEdge=1 

  if DeltaX[0]<0 

   Update Common/Uncommon Left Indices 

ucL=1 / cL=0 

   If DeltaX [1]>0 



    Update Common/Uncommon Right Indices 

ucR=1 / cR=0 

    Update Value for right edge 

    eUpdate=1 

   Else 

    Update Common/Uncommon Right Indices 

    ucR=0 / cR=1 

    No Update Needed 

    eUpdate=0 

  Else 

Update Common/Uncommon Left and Right Indices 

   ucL=0 / cL=1 

   ucR=1 / cR=0 

   if DeltaX[2]<0 

    Update Value for right edge 

    eUpdate=1 

   Else 

    No Update Needed 

    eUpdate=0; 

Split triangle from top to middle and set starting and ending y values 

yStart = Ceil(PyTop) 

yEnd = Floor(Pymiddle) 

Set initial x value to top vertex 



xLeft[0] = xRight[0] = PxTop 

Step By one if needed since this algorithm relies on traversing edge pairs so the 

edges number in the main loop must be even 

 If IsOdd(yEnd – yStart) 

Loop x = xLeft[0] While x<=xRight[0] Do x++ 

Set Pixel (x, yStart) 

Update Left and Right x by Inverse Slope of respective edge 

Xleft[0] += InvSlope[leftEdge] 

XRight[0] += InvSlope[rightEdge] 

Fill Top To Middle Triangle Part 

Loop y = yStart While y<=yEnd Do y+=2 

Get New Left and Right x 

Xleft[1] = Xleft[0] + InvSlope[leftEdge] 

XRight[1] = XRight[0] + InvSlope[rightEdge] 

Fill First Residual Span 

xStart = Ceil(xLeft[ucL]) 

xEnd = Floor(xRight[cL]) 

Loop x = xStart While x<= xEnd Do x++ 

Set Pixel at (x, y+ucL) 

Fill Second Residual Span 

xStart = Ceil(xLeft[cR]) 

xEnd = Floor(xRight[ucR]) 

Loop x = xStart While x<= xEnd Do x++ 



Set Pixel at (x, y+ucR) 

Fill Common Span 

xStart = Ceil(xLeft[cL]) 

xEnd = Floor(xRight[cR]) 

Loop x = xStart While x<= xEnd Do x++ 

Set Pixel at (x, y) 

Set Pixel at (x, y + 1) 

 Update Left and Right x by Inverse Slope of respective edge 

Xleft[0] = Xleft[1] + InvSlope[leftEdge] 

XRight[0] = XRight[1] + InvSlope[rightEdge] 

 

Update left and right active edges 

leftEdge   = ShiftLeft leftEdge By 1 

rightEdge = ShitfLeft rightEdge By 1 

Update Common/Uncommon indices 

cL += eUpdate AND MidIsLeft  

ucL -= eUpdate AND MidIsLeft 

cR += eUpdate AND (Reverse MidIsLeft) 

ucR -= eUpdate AND (Reverse MidIsLeft) 

Split triangle from middle to bottom and set starting and ending y values 

yStart = Ceil(Pymiddle) 

yEnd = Floor(Pybottom) 

Step By one if needed 

 If IsOdd(yEnd – yStart) 



Loop x = xLeft[0] While x<=xRight[0] Do x++ 

Set Pixel (x, yStart) 

Update Left and Right x by Inverse Slope of respective edge 

Xleft[0] += InvSlope[leftEdge] 

XRight[0] += InvSlope[rightEdge] 

 

Fill Middle To Bottom Triangle Part 

Loop y = yStart While y<=yEnd Do y+=2 

Get New Left and Right x 

Xleft[1] = Xleft[0] + InvSlope[leftEdge] 

XRight[1] = XRight[0] + InvSlope[rightEdge] 

Fill First Residual Span 

xStart = Ceil(xLeft[ucL]) 

xEnd = Floor(xRight[cL]) 

Loop x = xStart While x<= xEnd Do x++ 

Set Pixel at (x, y+ucL) 

Fill Second Residual Span 

xStart = Ceil(xLeft[cR]) 

xEnd = Floor(xRight[ucR]) 

Loop x = xStart While x<= xEnd Do x++ 

Set Pixel at (x, y+ucR) 

Fill Common Span 

xStart = Ceil(xLeft[cL]) 

xEnd = Floor(xRight[cR]) 



Loop x = xStart While x<= xEnd Do x++ 

Set Pixel at (x, y) 

Set Pixel at (x, y + 1) 

 Update Left and Right x by Inverse Slope of respective edge 

Xleft[0] = Xleft[1] + InvSlope[leftEdge] 

XRight[0] = XRight[1] + InvSlope[rightEdge] 
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