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Abstract 

In the present paper we propose, and investigate different types of 

constructive approaches towards approximating Mamdani fuzzy systems, 

using Takagi-Sugeno systems. The Takagi- Sugeno fuzzy systems that we 

consider will be of different types, such as using a piecewise linear 

approach, a polynomial approach, and an approach based on cubic splines. 

Since using a Mamdani system is computationally expensive, this paper 

will show how the approximation of Mamdani systems using Takagi-

Sugeno will be less expensive on the computation side keeping high 

quality on the performance side. We extend these approaches to fuzzy rule 

bases with more antecedents. As application we construct a computing 

with words system using the proposed approach and also use the 

proposed approach control system in a video game. 

1 



	

	

 
 

    

        

         

     

            

       

     

           

        

          

       

          

              

           

        

      

      

        

    

Introduction 

Approximating a function using fuzzy systems is the problem of 

identifying a fuzzy model by training it to fit a certain set of data points. 

Multiple approaches have been used to solve this problem including the 

ones in [19], [10], and [11]. Takagi-Sugeno rules and fuzzy inference 

methods proposed by authors such as [10] and [2] are utilized in function 

approximation problems using fuzzy logic. A small number of simple rules 

can be used to approximate such functions using the Takagi-Sugeno 

system. The issue that we encounter while using the TS rules is that the 

consequent part does not cover most of the function space and the rules are 

hard to interpret, while the Mamdani Fuzzy system [18] has a better 

perspective in presenting the rules and a better interpretability. If we 

consider a given function space, and if we conduct a good analysis on the 

function, we are able to generate rules that are specific to that space which 

will lead to a smooth approximation of the curve. However, this method is 

expensive in computation, thus this paper explains various ways to make a 

generalized system that takes information from a Mamdani fuzzy system 

and constructs a Takagi-Sugeno system that approximates a curve with 

arbitrary precision. The thesis originally started out as a proof of concept 

about approximating Mamdani fuzzy system using Takagi-Sugeno. We 

2 



	

	

     

         

        

     

       

       

         

      

        

        

        

        

 
 
 
 
 
 
 
 
 
 
 
 

started testing out this concept by constructing high orders of Takagi-

Sugeno in one dimension and two dimensions where by dimensions we 

mean number of inputs. First, we tested our proposed algorithms on 

predefined functions and then we extended our results to Mamdani fuzzy 

systems. For two dimensions’ test cases we used two dimensional 

functions which also started giving us some analogy about the 

computational complexity of a fuzzy system. After fully testing this side of 

the concept we designed multiple fuzzy controllers to test on. We used 

Mamdani systems to solve a given problem system and then we 

approximated on that system using Takagi-Sugeno. Our results show 

believe this approach not only approximated the system very well but also 

changed the time complexity from non linear to linear time. 

3 



	

	

  
 

  
 

       

       

          

        

         

     

          

    

 

 
  

 
         

  

   

       

         

           

Chapter 2 

Origins & Evolution of Fuzzy Logic 

Fuzzy logic, fuzzy sets, and fuzzy systems is a branch of mathematics that 

deals with rules and reasoning under uncertainty. When something is 

fuzzy that means we are dealing with uncertain vague values, that we are 

responsible to defuzzify in order to get the right interpretation. Fuzzy sets 

allow partial membership with grade range between 0 and 1. The term 

fuzzy logic was first introduced in 1965 by Lotfi Zadeh [9] in the field of 

fuzzy set theory. Fuzzy logic now is being used to solve real world 

problems by using fuzzy systems to construct advanced artificial 

intelligence. 

Fuzzy logic 

Fuzzy sets are generalization of conventional (Boolean) logic that has been 

extended to handle the concept of partial truth. Truth values (in fuzzy 

logic) or membership values (in fuzzy sets) belong to the range [0, 1], with 

0 being falseness and 1 being truth. It deals with real world vagueness. 

Some of the real world applications are ABS Brakes, Expert Systems, 

Control Units, Bullet train between Tokyo and Osaka, Video Cameras, and 

4 



	

	

  

       

          

           

        

         

  

 

 
 

       

    

           

     

  

  
	 	 

 
  

 
 
 
 

 
 

Automatic Transmission. Fuzzy logic is also being used as game AI in 

order to control agents in the game. The agent using fuzzy logic will have 

the ability to simulate as if a human is making decisions with a certain 

threshold. In addition to game AI, fuzzy logic is being used to generate 

texture mapping on terrains where the fuzzy rules imply on what textures 

need to be used at a certain height or area on the map with a nice 

interpolation between the different areas [13]. 

Crisp (Classical) Sets 

Classical subsets as stated in [1] are defined by crisp predicates. Crisp 

predicates classify all elements into two groups or categories group 1 

which is elements that make true the predicate and group 2 which is 

elements that make false the predicate. 

Example: 

Let E = ℤ 

A ⊆ E = {n ⊂ E│n = 1 + 2k, 0 k ∈ ℤ} 

and our predicate n is odd 

5 



	

	

    
 

        

 

			 	  
	 						 	

						 	  
   

	  

	  
 
 
 
 
 

  
 

        

        

    

        

      

            

         

          

     

Crisp Characteristic Functions 

The classification of elements can be done using an indicator or 

characteristic function: 

A : E ⟶ {0,1}
;, 8 ∈:A � = {7, 8 ∉: 

• Note that: 

�=; 1 = … , −2k − 1, −3, −1,1,3,2k + 1, … 

�=; 0 = {… , −2k, −4, −2,0,2,4,2k, … } 

Fuzzy Sets 

Human reasoning often uses vague predicates instead of classical ones. 

Elements cannot be always sharply classified into two groups! (Making a 

predicate either true or false) 

Let us consider for example the set of tall men: 

{1.6 m, 1.7m, 1.75m, 1.79m,1.8m ….} 

Naturally raises the question: How do we model the concept of tall. As a 

descriptive term, tall is very subjective and relies on the context in which it 

is used. Even a 5 foot 7 man can be considered “tall” when he is 

surrounded by people shorter than he is. 

6 
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Fuzzy Membership Functions 

It is impossible to give a classical model or definition for the subset of tall 

men. However, we could establish to which degree a man can be 

considered tall. This can be done using a membership function with a 

continuum of values between 0 and 1. 

A : E ⟶ [0,1] 

• A � = � has the following interpretation 

- Individual x belongs to some extent (“y”) to subset A 

- y is the degree to which the individual x is tall 

• A � = 0 

- Individual x does not belong to subset A 

• A � = 1 

- Individual x definitely belongs to subset A 

A fuzzy set is defined by its membership function. 

7 



	

	

    
 

      

             

          

         

             

      

          

    

 

 

 

   

 
      

 
 
 
 

Types of Membership Functions 

A membership function is a curve that is defined by mapping every input 

point in the input space to a membership value between 0 and 1. The input 

space is referred to as the universe of discourse. The only condition that a 

membership function has to satisfy to become a fuzzy set is that all the 

values must be between 0 and 1. The function itself can be an arbitrary 

curve where the user defines its shape depending on the point of view of 

the problem that we are modeling. In the present paper we use among 

others, the following membership functions. 

• Gaussian 

Figure 1.1 this graph shows a membership function of type Gaussian 

8 



	

	

 
 
 
 
 
 
 
 
   

 
     

  
 
 
   

 
     

  
  

 
        

   

        

• Triangular 

Figure 1.2 this graph shows a membership function of type
Triangular 

Figure 1.3 this graph shows a membership function of type
Trapezoidal 

Membership functions represent distributions of possibility rather than 

probability. For instance, the fuzzy set Young expresses the possibility that 

a given individual is young. Membership functions often overlap with each 

• Trapezoidal 

9 



	

	

         

          

 

      

  

 

	  
 
     

 

  

  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

other. A given individual may belong to different fuzzy sets (with different 

degrees). For practical reasons, in many cases the universe of discourse (E) 

is assumed to be discrete 

If we don’t have a discrete universe of discourse, we may have a discrete 

approximation 

� = �; , �F, … , �G 

• The pair (�, A � ), denoted by A � /� is called fuzzy 

singleton 

• Fuzzy sets can be described in terms of fuzzy 

singletons 

KM = {(A(�)/�)} = LM; A(�L)/�L 

10 



	

	

   
 

   	    

 
	 	 	  

 
        

 
	 	 	  

 
 

 
  	    

 
	 	 	 	 	 

    	   

	
	  

 
    	  

 

 
 	 		 	  

 
 
 

Basic Definition over Fuzzy Sets 

Empty set: A fuzzy subset A ⊆ � is empty (denoted A=∅) iff 

A � = 0 , ∀� � � 

Equality: two fuzzy subsets A and B defined over E are equivalent iff 

A � = B(x), ∀� � � 

A fuzzy subset A ⊆ � is contained in B ⊆ � iff 

A � ≤ B � , ∀� � � 

Normality: A fuzzy subset A ⊆ � is said to be normal iff 

maxA � = 1
8 ∈V 

Support: The support of a fuzzy subset A ⊆ �is a crisp set defined as 

follows 

�X= {x ∈ � │A � > 0} Ø ⊆ �X ⊆ � 

11 



	

	

     
 

        

  
 
  

	 	  
 
  

	 	  
 
  

	 	 
 
 
 
 
 

 

 
 

       
  

 
	  	 			 	       

 
 	 		   	 	 	   

 
         

 
 

Operations over Fuzzy Sets 

The basic operations over crisp sets can be extended to suit fuzzy sets 

Standard operations: 

- Intersection: 
A ∩ B � = min( A � , B(x) ) 

- Union: 
A ∪ B � = max( A � , B(x) ) 

- Complement:
A � = 1 − A � 

Fuzzy Intersection (t-norms) 

A t-norm is an operation on [0,1] that satisfies the following 
axioms : 

T (x, �) = T ( �, x) ∀�, � ∈ � commutativity 

T (T (x, �), �) = T (x, T ( �, �)) ∀�, �, � ∈ � associativity 

(x ≤ �), � ≤ � → � �, � ≤ � �, � ∀�, �, �, � ∈ � 
monotony 

12 



	

	

 							 	       
 

  							 	      
 

          

    

	 	  

 
 

       
  

 
			 	       

 
 

		 	      
 
 

        
 

 

   							 	       
 

   							 	      
 

T(x,0) = 0 ∀� ∈ � absorption 

T(x,1) = x ∀� ∈ � neutrality 

Given two fuzzy sets A, B ⊆ E, their intersection can be defined 

based on a t-norm as follows: 

A ∩ B � = �[A(x), B(�)] ∀�, � ∈ � 

Fuzzy Union (t-conorms) 

A t-conorm is an operation on [0,1] that satisfies the following 
axioms : 

S(x,y) = S(y,x) ∀�, � ∈ � commutativity 

S(S(x,y),z) = S(x,S(y, z))   ∀�, �, � ∈ � associativity 

(x ≤ �), � ≤ � → � �, � ≤ � �, � ∀�, �, �, � ∈ � 
monotony 

S(x,1) = 1 ∀� ∈ � absorption 

S(x,0) = x ∀� ∈ � neutrality 

13 



	

	

           

    

	 	  
 
 
 

   
 

          

           

 

      

  

         

              

       

            

   

          

 

 

 

Given two fuzzy sets A, B ⊆ E, their union can be defined based 

on a t-conorm as follows: 

A ∪ B � = �[A(x), B(�)] ∀�, � ∈ � 

Linguistic Variables 

Linguistic variables are used to associate a term from natural language to a 

fuzzy set, used as a mathematical model for the given linguistic expression 

[1]: 

(X, T, U, G, M) 

Where 

X is the name of the variable 

T is the set of linguistic terms which can be values of the variable 

U is the universe of discourse 

G is a collection of syntax rules, grammar, that produces correct 

expressions in T. 

M is a set of semantic rules that map T into fuzzy sets in U. 

14 



	

	

 

  
 

            

      

          

 

         

       

      

 
 
 
 
 

 
 

        

         

 

        

           

   

Fuzzy Inference 

We can see from the previous definition and as defined [1] that a linguistic 

variable works as a dictionary that translates linguistic terms into fuzzy 

sets. Often we use the term linguistic variable for a given value of the 

linguistic variable and also, if confusion is avoided, we use the same term 

for the fuzzy set that is associated to it, i.e., if A is a fuzzy set that is 

associated through a semantic rule to an instance of a linguistic variable, 

then we say that A is a linguistic variable. 

Fuzzy rules 

Fuzzy rules (fuzzy if-then rules) as explained in [1] and [4] are able to 

model expert opinion or commonsense knowledge often expressed in 

linguistic terms. The intuitive association that exists between given typical 

input data and typical output data is hard to be described in a 

mathematically correct way, because of the uncertain, often subjective 

nature of this information. Fuzzy rules are tools that are able to model and 

use such knowledge. 

15 



	

	

               

       

   

 

       

    

 

         

    

    

     

 

 

           

         

     

      

          

    

A fuzzy rule is a triplet (A, B, R) that consists of an antecedent A ∈ ℱ(�), a 

consequence B ∈ ℱ(�), that are linguistic variables, linked through a fuzzy 

relation R ∈ ℱ(�xY) [1]. 

Using fuzzy sets, a fuzzy rule is written as follows: 

If x is A then y is B 

Definition: (Mamdani Assilian [4] ) We define the fuzzy rule 

If x is A then y is B 

As a fuzzy relation as follows: 

Mamdani rule: �e(x, y) = A(x) ⋀ B(y) 

Remark: In many applications a fuzzy rule will have several antecedents 

that are used in conjunction to build our fuzzy rule. For example, a more 

complex fuzzy rule can be considered 

If x is A and y is B then z is C 

In this case the antecedents are naturally combined into a fuzzy relation 

D (x, y) = A(x) ∧ B(y) , 

16 



	

	

           

         

     

 

        

    	     

     

   

   

 
 
 

 
 

         

         

       

          

    

   

  

  

that is regarded as a fuzzy set on its own. Then the fuzzy rule uses the 

antecedent D. For example, in this case the Mamdani rule will be 

�e (x, y, z) = A(x) ⋀ B(y) ⋀ C(z). 

Definition: (Mamdani-Assilian) We define the fuzzy rule base 

If x is Ai then y is �L, i = 1, …, n 

as a fuzzy relation as follows: 

Mamdani rule base: 

K�e (x, y) = LM; �L � ∧ �L(�) 

Fuzzy Inference 

Fuzzy inference is the process of obtaining a conclusion for a given input 

that was possibly never encountered before. The basic rule (law) for a 

fuzzy inference system is the compositional rule of inference (Zadeh). It is 

based on the fuzzy version of the classical rule of Modus Ponens. Let us 

recall first the classical Modus Ponens of Boolean logic: 

premise: if p then q 

fact: p 

conclusion: q 

17 



	

	

               

   	     

           		   

    

         

             

     

     

    

            

      

	  	  

   	   

 

 

 

 

 

 

 

Given a fuzzy rule or a fuzzy rule base R ∈ ℱ(X x Y), the compositional rule 

of inference is a function ℱ: ℱ(X) ⟶ℱ(Y) determined through a 

composition B’ = ℱ(A’ )= A’ * R, with * : ℱ(x) x ℱ(X x Y) → ℱ(Y) being a 

composition of fuzzy relations. 

The composition rule of inference consists of a 

premise: if x is Ai then y is �L , i = 1, …, n 

fact: x is A’ 

conclusion: y is B’ 

Definition: (Mamdani- Assilian [4] ) 

We define a fuzzy inference based on a composition law as follows: 

Mamdani Inference: 

�’ y = �’ ∘ �(�, y) = �’ � ∧ �(�, �)8kl 

where �(�, y) = K �L � ∧ �L �LM; 

18 



	

	

   
    

         

 

          

        

  

      

   
 

 

 

 

 

 

 

        

 
 
 

 
 

 

   

  

Chapter 3 
Structure of a SISO Fuzzy System 
A single input single output fuzzy system (SISO Fuzzy System) uses a crip 

input, fuzzifies it, maps it through a fuzzy inference system and the fuzzy 

output that is obtained and defuzzified to get a crisp output. Often SISO 

Fuzzy Systems are used in a control problem in which case they are called 

fuzzy controllers [1]. 

The diagram of a SISO fuzzy is represented bellow: 

[ The components of a fuzzy controller] 

Crisp 
input 

Fuzzify Defuzzify Inference 
t 

Crisp 
output 

Rule base 

We will discuss in what follows each of the above components. 

19 



	

	

 
             

           

   

 

  		 					 				
					 								 			 	 	  

 

 

  
      

  

           

          

    

  

      

 

        

Fuzzification 
Most of the systems use the most basic fuzzifier that is the canonical 

inclusion. If x0 ∈ X is a crisp input then the fuzzy set associated with it is the 

singleton fuzzy set x0, given by the characteristic function 

1 �� � = �7�0 (x) = X { �7} (x) = 0 �� � ≠ �7 

Fuzzy Rule Base 
The fuzzy rule base can be described as a fuzzy relation : 

KR(x, y) = LM; �L � ∧�L � 

Consider a linguistic variable A with linguistic values close, distant, far and 

another linguistic variable B with linguistic values slow, steady, fast and a 

consequence linguistic variable C with linguistic values slowdown, keep 

distance, brake. 

Then we can write rules using the relation we stated above: 

Example: 

If A is close and B is slow then C is brake. 

20 



	

	

             

      

 

  
           

     

	 	  
      

 

 
 

     

        

       

      

    

        

       

Using the following example, we can populate a fuzzy rule base with the 

antecedents linguistic variables and the consequence linguistic variables. 

Fuzzy Inference Mamdani 
The fuzzy inference system that we consider can be of any type that have 

been discussed before. Mamdani Inference gives 

�0(y) = (R ∘ �0) (x) = �’ � ∧ �(�, �)8kl 

where the fuzzy relation R is the fuzzy rule base. 

Defuzzification 

Defuzzification as explained in [1] is the final step in a fuzzy control 

algorithm. Based on the output of a fuzzy controller one has to give an 

estimate of the crisp quantity (a representation crisp element) for the 

output value of the SISO fuzzy system. In this case one has to use a 

defuzzification. There are many different defuzzification methods and 

based on the given application that we are working on, we can select a 

suitable defuzzification. In the present paper we will use the center of 

21 



	

	

         

      

        

   

	 	 		 	
	 	   

    

 

        
 

          

      

           

    	     

  

   	   

    

		 	 	
	 	 	 	  

gravity as our defuzzification method. Center of Gravity (COG). The value 

selected is the center of gravity of the fuzzy set 

u ∈ ℱ(X). The defuzzification value is the x coordinate of the center mass of 

the fuzzy set. 

p q . s q tq
COG (u) = ,

p s q tq 

Where W = supp(u). 

Fuzzy Inference and Rule Base for a SISO Fuzzy
System 
Mamdani inference has simple expression on par with great computational 

and intuitive properties. These were historically the systems used in the 

first fuzzy controllers. Also we can obtain a simplified expression for the 

output of the fuzzy controller. If �0(x) = � 8v 
(x) is a crisp input of a fuzzy 

inference system with a given rule base R(x, y), then the output of a 

KMamdani fuzzy system is �0(�, y) = LM; �L � ∧�L � 

Indeed, if we consider 

1 �� � = �7�0(x) = 0 �� � ≠ �7 

22 



	

	

 
      

	  

 
 

 
 

      

     

    

      

 

      
   

   
 

      

       

           

      

            

then for Mamdani inference we have 

�0(y) = �’ � ∧ �(�, �) = �0(�7) ∧ �(�7, �)8kl 

Takagi-Sugeno Fuzzy Systems 

Takagi-Sugeno fuzzy systems [1][5] [3] and [8] are intrinsically single input 

single output systems. A Takagi-Sugeno system has the rule base 

consisting of antecedents of linguistic type and conclusions that are 

piecewise linear crisp outputs. This makes the defuzzification step 

redundant. 

premise:  if x is �L then �L = �Lx + �L, � = 1, …, n 
fact: x is �7 

conclusion: z is z7 

Takagi-Sugeno (TS) fuzzy controllers do not use an inference system as the 

Mamdani system described in the previous section, instead they use the 

firing strength of each fuzzy rule in the computation of the conclusions. TS 

fuzzy controller has crisp inputs, singleton fuzzifier and practically it does 

not have a defuzzifier. The fuzzy rules for TS fuzzy system are of the form 
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if x is �L and y is �L then  �L = �L� + �L� + �L. The output is 

computed as 

| 8 .�{ � .(�{8 � �{� � �{){}~ X{TS(x,y) = |
{}~X{ 8 .�{ � 

The control algorithm for a TS fuzzy system of this type is given as follows: 

Algorithm: 

1. Input the crisp values �7, �7. 

2. Calculate the firing strengths of each fuzzy rule 
�L = �L(�7) ∧ �L (�7) 

3. Calculate the rule outputs
�L = �L�7 + �L�7+�L 

4. The output is 
|
{}~ �{ . �{�7 = |
{}~ �{ 
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Remark. Designing the rule base for a TS fuzzy system requires 

knowledge of the parameters �L,, �L, �L, � = 1, …,n. The values of the 

parameters �L,, �L, and �L can be given in advance or they can be obtained 

using adaptive techniques that will be discussed later. 

In the present paper we propose a simple method to calculate parameters 

�L,, �L, and �L from a Mamdani fuzzy system. Obtaining this way, a Takagi-

Sugeno approximation of a fuzzy system [7]. 
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Chapter 4 

How to Approximate an Arbitrary Function 
using a Mamdani Fuzzy System? 

We consider the problem of approximation of a function y = � � using a 

Mamdani fuzzy system. 

Step 1: 

We consider sample values from the function. 

Let � �L = �L , � = 0 , … , � + 1. 

Step 2: 

We construct fuzzy sets �L & �L which will represent the antecedents and 

consequences respectively. 

To construct �L & �L we use membership functions such as triangle, 

trapezoid, Splines, etc.. 

The antecedent is constructed using a value range 

�� � = 1,… ,� with a given step size and sample points �L, � = 1,… , � as a 

support for each fuzzy set. 
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For example : �L = (�, �L=;,�L, �L�;). 

The fuzzy sets of the consequence parts are considered integrable and are 

constructed such as the value range is � = min � , … , max (�) with a 

predefined step size. The support of each fuzzy set is considered to be 

based on the sample points �L, � = 1,… , �. For example: 

�L = ( � , min {�L=; , �L, �L�;}, �L ,max {�L=; , �L, �L�;} ) 

So our fuzzy rule base in this case becomes 

if x is �L then � �� �L , �= 1, …, � 

Which is consistent with our intuitive knowledge on function 

approximation. 

Step 3: 

The approximation part of the function is done here where we combine the 

SISO fuzzy system with a Mamdani fuzzy rule base and COG 

defuzzification. 

Let us recall that the fuzzy output of the Mamdani system is calculated as 

follows: 

KB0(y) = (R ∘ A0) (x) = �’ � ∧ �(�, �) = LM; �L � ∧ �L(�)8kl 
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and the COG as: 

t �� � .�. ���COG (B0) = t �� � ��� 

Combining both relations we can write a SISO fuzzy system as: 

t | � ).�.��{}~( X{ 8 ∧ �{F (f, x) = � 
t | � ).��{}~( X{ 8 ∧ �{� 

Since �L is continuous and �L is integrable then we can approximate the 

given integrals as a summation. ( Riemann Sum ) 

The pseudo code is as follows: 

for k = 1 : t 
top =0;
bottom =0;
for j = 1: l

temp =0;
for i = 2 : n – 1 

tmp1 = tnorm( A(i,k), B(i,j) );
temp =max( [tmp1, mtmp] );

end 
top = top + temp * l(j);
bottom = bottom + temp;

end 
out(k)= top / bottom;

end 
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Figure 2.0 This graph shows the Mamdani fuzzy sets that were computed 
to approximate the function curve. The red sets represent the antecedent 
part and the blue sets represent the consequence part. 
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Figure 2.1 This graph shows the approximation of a curve using Mamdani
SISO system with 11 fuzzy rule set. The black line is the original function 
and the blue line is the approximation. 

The time complexity to approximate the function using a Mamdani fuzzy 

system is � �. � where n is the number of rules and l is the number of steps 

of integration with a certain precision. 
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How to Approximate a Mamdani Fuzzy 
System using TS Controller? 

In this section we will construct the TS fuzzy system that approximates a 

Mamdani fuzzy system. Since Takagi-Sugeno fuzzy systems can 

approximate any continuous function with random accuracy, [3], the 

existence of such Takagi-Sugeno fuzzy systems is theoretically ensured. 

Given a Mamdani system, we can construct a Takagi-Sugeno fuzzy system 

that approximates its output with any arbitrary accuracy. This gives us the 

advantage of low computational complexity compared to the numerical 

integration in Mamdani fuzzy systems. 

We will discuss several construction approaches. 

The first approach is with a single input and single output dimension 

Mamdani fuzzy system, using multiple orders of a Takagi-Sugeno fuzzy 

system as an approximation. 

The diagram of the whole process is as follows: 
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Problem Data 

Fuzzy Rules 
Mamdani 

Solve 
Mamdani 

Approx using 
TK 

Consider a Mamdani System with the fuzzy rules as: 

if x is �L then � i� �L , �= 1, …, � 

The Takagi-Sugeno transforms these fuzzy rules to: 

if x is �L then y� = a�� + b�, �= 1, …, � Where the TS system is defined to be 

of the 1st order. (linear case) 

Knowing the fuzzy rules and given the Mamdani system’s antecedents and 

consequences 

We can calculate coefficients as: 

�{�~= �{�~�L = and �L = �L− �L�L8{�~= 8{�~ 
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We consider �L �� �L = (�, �L=;,�L, �L�;) similar to what we considered in the 

construction of the Mamdani system. 

Knowing this information, we obtain the Takagi-Sugeno output of the 

form: 

|
{}~X{ . (��8 � ��)TS(x) = |

{}~ X{ 

We can prove that we can approximate a Mamdani system using Takagi-

Sugeno system in a similar way to [3]. 

Theorem: 

Let us consider a Mamdani fuzzy system satisfying the properties : 

i) �L - continuous with supp( �L ) = ( �L=; , �L�; ) 

ii) �L - integrable with supp( �L ) = ( �L=; , �L�; ) 

Then M(x) can be approximated by the Takagi – Sugeno fuzzy system 

|
{}~X{ . (��8 � ��)TS(x) = | ,

{}~ X{ 

�{�~= �{�~ where �L = and �L = �L− �L�L8{�~= 8{�~ 

with arbitrary accuracy. More over the following error estimate holds true 

� � − ��(�) ≤ 3�; + ��F with �; = max | �L�; − �L|LM;…K 
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�F = max | �L�; − �L| and c = max | �L|LM;…K LM;…K 

Proof: 

Given � � is the Mamdani system considered, we have 

K �L (�) . �L(�)LM;� � − ��(�) = � � − K �L (�)
K K
LM; �L (�) . � � LM; �L

LM
(�
;
) . �L � 

= −K K
LM; �L (�) LM; �L (�)

K
LM; �L (�) . � � − �L(�)≤ K �L (�)LM; 

since we have two overlapping consequences � � �� ∪ ���; then we 

get : 

��; �L (�) . � � − �L(�)LM�� � − ��(�) ≤ ��; �L (�)LM� 

Now we will estimate � � − �¡(�) , � � �, � + 1 . 

We have 
� � � ∧ �� � ).�.���}�( ���� � − �¡(�) = − �¡(�)� �

�}�( �� � ∧ �� � ).��� 
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� K ( �L � ∧ �L � ) . (� − �¡(�)) . ��LM;�= � K ( �L � ∧ �L � ) . ��LM;� 

� ��;
LM ( �L � ∧ �L � ) . |� − �¡ � | . �� �≤ � ��;( �L � ∧ �L � ) . ��LM� 

Knowing that we have only two overlapping active rules and 

�� = (a� + b) we get 

� − (a� + b ≤ � − ��| + |�� − (a� + b

≤ 3�; + a � − � = 3�; + a�F ≤ 3�; + c�F 

where all j – values 

�; = max | �L�; − �L| �F = max | �L�; − �L| and c = max | �L|LM;…K LM;…K LM;…K 

We let 

If �; → 0 and �F → 0 then we get 

lim � � = ��(�), uniformly in x.
�~,�¯ →7 
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So the approximation property is true with an error estimation based on 

the rule overlapping and on the step size where the system is interpolating. 

|
{}~ X{ . (��8 � ��)The pseudo code for calculating TS(x) = |

{}~ X{
is as follows: 

top =0; 

bottom =0; 

for k = 1 : t 

top =0; 

bottom =0; 

for i = 1 : n 

top = top + Ai(k) * (ai*x(k)+bi); 

bottom = bottom + Ai(t); 

end 

out(k)= top / bottom; 

end 
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Figure 2.2 This graph shows the approximation of a curve using Mamdani 
fuzzy rules and approximated by Takagi-Sugeno system using linear
function as the consequence.The black line is the original function and the
green line is the approximation. 

We can see that the time complexity and computational complexity is more 

efficient than using a Mamdani fuzzy system, the estimate in big O 

notation of the time complexity in this approach is �(�) where n is the 

number of rules. 

Our second approach for a better TS approximation of a Mamdani System 

was implemented through quadratic interpolation. 

Takagi-Sugeno are expandable from the point of view of the degree fo the 

output. 
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So for using a high order polynomial like a quadratic, we replace y� = a�� + 

b�, with a quadratic y� = a� �F+ b�� + �. 

In order to calculate the unknowns a, b, c we used polynomial 

interpolation. 

For the quadratic polynomial interpolation we use the following approach: 

Consider this equation: 

�� = � 

Where A is a 3x3 Vandermonde matrix that contains the following: 

�L=; 
F �L=; 1 

� = ,�L F �L 1 
�L�; 

F �L�; 1 

and B is 3x1 matrix: 

�L=;
�L� = .
�L�; 

In order to calculate the coefficients a, b, and c we will find the inverse 

matrix of A and then multiply it with B as � = �=;� , 

where x is the following matrix: 

� 
�� = . 
� 

The result was more accurate in its precision on approximating the curve. 
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Figure 2.3 This graph shows the approximation of a curve using Mamdani
fuzzy rules and approximated by Takagi-Sugeno system using quadratic
polynomial interpolation as a consequence function. The black line is the
original function and the cyan line is the approximation. 

Our third approach for better TS approximation using Mamdani System 

was implemented through cubic B spline interpolation. 

To add more to this functionality and more accuracy, we used B-splines as 

fuzzy rule outputs which transformed our output to: 

| |
{}v ±{(8) .{}~ X{ 8 .TS (x) = |

{}~ X{(8) 

Where �L � = 1 − � �L=; + ��L + � 1 − � �L 1 − � + �L� , 
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8=8{�~� = and 
8{=8{�~ 

�L = �L=; �L − �L=; − (�L − �L=;) 

�L = −�L �L − �L=; + (�L − �L=;) 

For this example, we used 3 sample points to construct the B-Spline. 

The values of �7, �;, �F are found by solving the tridiagonal linear equation 

system. 

�7 �;�;; �;F 0 
�F�; =�F; �FF �F³

0 �³F �³³ �F �³ 

where: 

2 1 1 ; ;�;; = , �;F = , �F; = , �FF = 2 ( + )�1−�0 �1−�0 �1−�0 8~=8v 8¯=8~ 

1 1 2�F³ = , �³F = , �³³ = �2−�1 �2−�1 �2−�1 

�1−�0 3( 
�1−�0 �2−�1 �2−�1�; = 3 = = 3

( �1−�0)
2 , �F ( �1−�0)

2 + 
( �2−�1)

2) , �³ ( �2−�1)
2 

The B-spline approach gave the best approximation with respect to the 

original function but the quadratic approach gave a better approximation 

with respect to Mamdani fuzzy system. 
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In addition to that, B-splines are also known for their approximation 

properties. This can be considered as a future work combining and 

understanding how a B-spline is directly related to fuzzy systems. 

Figure 2.4 This graph shows the approximation of a curve using Mamdani
fuzzy rules and approximated by Takagi-Sugeno system using Cubic
Bsplines interpolation as a consequence function. The black line is the
original function and the orange line is the approximation. 
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Figure 2.5 This graph shows the approximation of a curve using Mamdani
fuzzy rules and approximated by Takagi-Sugeno system of various orders 
and the Mamdani approximation of the original curve. These systems were 
based on 11 rules for approximation. 

Figure 2.6 This graph shows the approximation of a curve using Mamdani
fuzzy rules and approximated by Takagi-Sugeno system of various orders 
and the Mamdani approximation of the original curve. These systems were 
based on 21 rules for approximation. 
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The Blue line represents the mamdani fuzzy system approximation of the
curve. The green line represents the TS fuzzy system using the linear 
approach. The cyan line represents the TS fuzzy system using the quadratic 
approach. The orange line represents the TS fuzzy system using the cubic
spline approach. 

Table showing the error of approximation of TS with Mamdani fuzzy 
systems 
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How to Approximate a Mamdani Fuzzy 
System using a Two Dimensional TS 
System? 
Since our approach was successful we have to make sure it can work with 

different degrees and dimensions in order to fully cover the basis of 

approximation. A Mamdani fuzzy system can have several input values 

and several outputs. We solved in the previous section the base case which 

handled one input and one output. In order to provide enough evidence 

for the advantages of the proposed theory we extended the base case to an 

advanced case where the Mamdani system is constructed based on two 

inputs and one output. This is a two dimensional system where each input 

corresponds to a dimension and the output represents the axis 

perpendicular to the plane formed by the input axis. 

Similar to the implementation of the 1st approach we need to construct a 

Mamdani fuzzy system to approximate a function with 2 variables since 

the general method has already been proven and our theory will be 

constructed based on the same ideas. 
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Consider a Mamdani fuzzy system with a fuzzy rule base as: 

if x is �L and � �� �� then � �� �L,�, �, �= 1, …, � 

Step 1: 

We consider sample values from the function. 

Let � �L, �� = �L,� , � = 0 , … , � + 1, � = 0 ,… ,� + 1. 

Step 2: 

We construct �L & �� which represent the antecedent fuzzy sets on the x 

axis and y axis respectively. 

To construct �L & �� we use membership functions such as triangle, 

trapezoid, Splines, etc.. 

The antecedent is constructed using value ranges t, s with a step size of the 

user’s choice, and the sample points �L, � = 1,… , � and ��, � = 1,… ,� as a 

support for each fuzzy set. 

For example: 

�L = (�, �L=;,�L, �L�;) & �� = (�, ��=;,��, ���;) triangular fuzzy sets. 
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In order to compute consequence of the fuzzy rules, we use our output 

dimensional values that we obtain from sampling the function. 

The fuzzy sets of the consequence parts are considered integrable and are 

constructed such as the value range is � = min � , … , max (�) with a step 

size of the user’s choice . To compute the support for each fuzzy set we use 

all the sample points from the matrix 

�L=;,�=; ⋯ �L=;,��;
⋮ ⋱ ⋮ 

�L�;,�=; ⋯ �L�;,��; 

to get the minimum and maximum points as support and we consider that 

the center �L,� is the core of the fuzzy set that defines the consequence. So 

we get: 

�L,� = ( � , min,�L,� ,max ) which represents a fuzzy set. In the most general 

situation we have m.n fuzzy rules and consequences which is consistent 

with our intuitive knowledge on function approximation. 
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Step 3: 

The approximation of the function is done at this step, by combining the 

SISO fuzzy system with a Mamdani fuzzy rule base with the COG 

defuzzification. The combination will result into a summation function: 

�¼ � � � � )� ��� ∧ �� ∧ ����}� �}�( ��M (f, x,y) = ¼ 
�¼ � � � ∧ ��� � )�}� �}�( �� � ∧ ��¼ 

We approximate the integral with a Riemann sum. 

The pseudo code is as follows: 

for k1 = 1 : t 
for k2 = 1 : t 

top =0;
bottom =0;

for L = 1: l 
temp =0;

for i = 2 : n – 1 
for j= 2 : m – 1 

tmp1 = tnorm( A(i,k1), B(j,k2),C(l,i,j)  ); 
temp =max( [tmp1, mtmp] ); 

end 
end 

top = top + temp * l(j);
bottom = bottom + temp;

end 
out(k)= top / bottom;

end 
end 
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Figure 3.0 This graph represents the side view of the 3 dimensional
function we used to in order to test our approximation method. 
f(x,y) = sin(6x)+cos(7y) 

Figure 3.1 This graph represents the top view of the 3 dimensional function 
we used to in order to test our approximation method. f(x,y) = 
sin(6x)+cos(7y) 
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Figure 3.2 This graph represents the side view of the approximation using 
Mamdani systems with 14 fuzzy rules. 

Figure 3.3 This graph represents the top view of the approximation using 
Mamdani systems with 14 fuzzy rules. 
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The time complexity to approximate the function using a Mamdani fuzzy 

system is �(�. �. � ) & � ≥ �.� , � being the integration step. 

As we can see the more complex the system is, the more complex the 

approximation will be and the efficiency will decrease with the increase of 

that complexity factor, which is natural. To reduce the complexity we user 

our proposed approach to construct a TS fuzzy system to approximate the 

given Mamdani System. 

To test the theory of the TS approximation of this Mamdani system, we 

considered the following linear output for each fuzzy rule. 

The premise is: 

if x is �L and � �� �� then 
�L� = �L�� + �L�� + �L�; �= 1, …, �, �= 1, …, �. 

and the output of the TS fuzzy system is considered to be: 

| |
Á}~(X{ 8 . �Á (�) . Â{Á ){}~ 

|
Á}~(X{ (8). �Á (�) )

T(x,y) = formula (1) |
{}~ 

In order to find the unknown coefficients �L� , �L� , �L� we use a similar 

approach to the method we used for finding the support endpoints of the 

consequence fuzzy sets. 
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First we find the minimum of the support denoted by �L� and the 

maximum of the support denoted by , �L� . �L�and �L� are calculated by 

looping through the entire matrix and finding the max and min values in 

3x3 sub matrices. 

After finding �L�and �L� of sample points �L� , we consider the core to be 

�L� = �L� for the sample points neighboring �L�. 

Pseudo code for finding the coefficients: 

for i =2 : size(x) -1 
for j=2:size(y) -1 

left = min(z(i-1:i+1,j-1:j+1)); 
right = max(z(i-1:i+1,j-1:j+1)); 
middle = z(i,j); 

a(i,j) = (right - left ) /  ( x(j-1) - x (j +1 ) ); 
b(i,j) = (right - left ) /  ( y(j-1) - y (j +1 ) ); 
c(i,j) = middle - a(i,j)* x(j) - b(i,j) * y(j); 

end 
end 
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All the unknowns have been found, we can now compute the output of the 

TS fuzzy system using the formula (1). 

Pseudo code for computing the TK approximation using
Mamdani system is as follows: 

for k1 = 1: size(t) 

for k2 =1:size(s) 

top=0; 

bottom=0; 

for I = 2: size(x)-1 

for j = 2: size(y) -1 

top = top + ((A(i,k1)*B(j,k2) ) * ( a(i,j)*t(k1)+b(i,j)*s(k2)+c(i,j))) 

bottom = bottom + ( A(i,k1)*B(j,k2) ) 

end 

end 

out(k1,k2) = (top / bottom ) 

end 

end 
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Figure 3.3 This graph represents the side view of the approximation of Mamdani fuzzy 
sets using Takagi-Sugeno system. 
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Figure 3.4 This graph represents the top view of the approximation of Mamdani fuzzy 
sets using Takagi-Sugeno system. 

The complexity of the TS fuzzy system with respect to Mamdani fuzzy 

system is simpler and much more efficient with unnoticeable error margin. 

The big O notation for this approximation is �(�. �) where �. � is the 

number of rules. 
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How to use the Approximation in a Fuzzy 
Control System? 

Why do We use Fuzzy Controller System? 

Fuzzy logic is a technique to embed human like thinking into a control 

system. A fuzzy control is designed to emulate human deductive thinking, 

that is, the process people use to infer conclusions from what they know. 

Although genetic algorithms and neural networks can perform just as well 

as fuzzy logic in many cases, fuzzy logic has the advantage that the 

solution to the problem can be casted in terms that human operators can 

understand so that the experience can be used in design of the control. 

A fuzzy control system represents a mathematical system that analyzes 

inputs and outputs and links them through the fuzzy rules. Fuzzy 

controllers are very simple conceptually. They consist of an input stage, a 

processing stage, and an output stage. The input stage maps sensor or 

other inputs, such as switches, thumbwheels and so on, to the appropriate 

membership functions and membership values. The processing stage 

invokes each appropriate rule and generates a result for each, then 
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combines the results of rules. The output stage converts the combined 

result back into a specific control output value. 

A game developer uses fuzzy controllers in games to create an AI that 

follows fuzzy rules. For example, most of the games have a character 

movement control that can be used to move and navigate game units, 

vehicle aircrafts, foot units, etc. through waypoints and around obstacles. 

Also fuzzy controllers are used for threat assessments where the enemy 

assesses the threat of the other characters, AI will determine if your threat 

level is low, medium or high. So we can see, fuzzy controllers are 

implemented in multiple areas in games. As a consequence, optimizing 

these controllers will benefit the games performance without taking a hit in 

the quality of the game’s artificial intelligence. 

Usually the fuzzy controller’s fuzzy sets and output are precomputed and 

saved, and then we use these fuzzy sets to determine the output of the 

fuzzy inputs given inside the game. However, if we want to add a new rule 

in the middle of the game play run time we have to compute again the 

weight of each fuzzy set in order to have a complete working fuzzy system. 

Mamdani fuzzy systems are usually the best systems to design fuzzy 

controllers since they are precise, interpretable and all the variables are 

known so our output will not be a guess of the fuzzy the controller. 
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How to Construct Fuzzy Controllers using 
Takagi-Sugeno as Approximation to a 
Mamdani System 

As we stated earlier, fuzzy rules are of the form of if … then… and each 

rule is made up of linguistic variables. The linguistic variables are fuzzy 

sets with values that were calculated from a membership function. From 

these values we build a relationship to Takagi-Sugeno system that 

approximates the given Mamdani system. 

So as a result the fuzzy rule set changed from: 

if x is �L and � �� �� then � �� �L,� 
to 
if x is �L and � �� �� then � = �L�� + �L�� + �L� ∀ � = 
0,…�, � = 0,… ,�. 

In the Takagi-Sugeno approach we have unknown variables such �L� , �L� , 

and �L� that are used in the above general rule. These variables are usually 

given or obtained using adaptive techniques such as machine learning and 

neural networks. In the proposed method we construct the TS system with 

simple linear consequences, directly avoiding, avoiding the computation 

complexity of the learning algorithms. 
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How to compute the unknown coefficients? 

Consider a fuzzy rule: 

If �L (x) and �� (y) then �L� 

Where �L (x) = ( t, �L=;, �L, �L�;) , �� (y) = ( t, ��=;, ��, ���;) and 

�L� = ( t, �L�, �L�, �L�) represent the membership function used, in this case 

it was a triangular membership function. 

��� = ����� + ����� + ��� . 

���� ��� − ���== ������ ���� − ��=� 

���� ��� − ���== ������ ���� − ��=� 

��� = ����� + ����� + ��� 
then 

=��� ��� − ����� − ����� 

�L� and �L� represent the endpoints support of the membership function 

and �L� represents the core of the membership function. 
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Using these coefficients, we are able to approximate the Mamdani fuzzy 

system using Takagi-Sugeno with significantly less computation 

complexity. The reduced complexity makes it much more suitable for 

applications and for learning. 

In order to test our work, we used a fuzzy control example proposed in [1] 

which talks about a hypothetical crime scene. A friend claimed to have 

found a body and called the police. In order for the detective on the scene 

to believe the story that the friend was not a murderer, he had to touch the 

engine of the car to estimate the temperature of the engine. The detective 

also asked about his trip from where the man left home till he arrived to his 

friend’s home. This is a very interesting problem since we have a variety of 

fuzzy variable inputs that includes the duration of the trip from the origin 

point to the friend’s house and the other input is how much time did he 

have to arrange the crime scene. These two variables cannot be described 

as real numbers but can be described as fuzzy variables. And the output of 

these two inputs is the approximate temperature of the engine should be. 

The result will state if the man’s alibi is true. 

The proposed implementation takes a text file that represents the linguistic 

variables and the values to construct the fuzzy sets, and another file that 
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has the rules using these variables. This example is in line with the 

computing with words paradigm of Zadeh. 

For this test we used the following linguistic variables: 

DriveDuration 5 ANTECEDENT 

20 30
VSmall Triangle 0 10 20
Small Triangle 10 
Medium Triangle 20 30 40
High Triangle 30 40 50
VHigh Triangle 40 50 60
TimeStopped 5 ANTECEDENT
VSmall Triangle 0 10 20
Small Triangle 10 20 30
Medium Triangle 20 30 40
High Triangle 30 40 50
VHigh Triangle 40 50 60
EngineTemperature 5 CONSEQUENCE
VCold Triangle 0 10 20
Cold Triangle 10 20 30
Medium Triangle 20 30 40
Hot Triangle 30 40 50
VHot Triangle 40 50 60 

And the following rules: 
If DriveDuration = Small and TimeStopped = Medium then EngineTemperature = Cold 

If DriveDuration = Medium and TimeStopped = High then EngineTemperature = Medium 

If DriveDuration = High and TimeStopped = Small then EngineTemperature = Hot 

If DriveDuration = VHigh and TimeStopped = VSmall then EngineTemperature = VHot 

If DriveDuration = VSmall and TimeStopped = VHigh then EngineTemperature = VCold 
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Results 
And the results turned out to be as expected 

Figure 4.0 This graph represents a model that was computed through a fuzzy controller 
that used words as weighted values. The model was constructed using Mamdani SISO
fuzzy system. 
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Figure 4.1 This graph represents a model that was computed through a fuzzy controller 
that used words as weighted values. The fuzzy sets were constructed using Mamdani 
inference system and then approximated using Takagi-Sugeno. 

This example shows that the TS approximation of Mamdani system can be
derived directly from the Mamdani system without going through a 
function approximation. 

Another implementation of the proposed TS approximation of a Mamdani 
system was done on a mobile game application which is a 2D fast paced 
game where the player is a car maneuvering through obstacles made up of 
cubes. 
A fuzzy control was used in order to control the difficulty of the game. The 
difficulty of the game is based on the distance between the row of cubes 
and the input of the game was based on the reaction time of the player and 
how fast the car is moving. Using these two input variables we were able to 
derive a number to determine how far the row of cubes should be from 
each other. 
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Chapter 5 
Future Work 
To improve on our results, as a future work, we propose implementing a 

neuro fuzzy system that adjusts the values of the unknown coefficients of 

the Takagi-Sugeno System, then using these values to reconstruct the 

Mamdani system from Takagi-Sugeno system [12]. As the starting points 

for the learning algorithm we plan to use the constructive approach 

presented in this work. This will give us a two-way connection from 

Takagi-Sugeno and Mamdani systems which can be helpful for more 

accurate representation of a fuzzy controller by using the positive aspects 

of both fuzzy systems and combining them together. But there might be 

some runtime performance complications since adaptive learning is 

expensive and recomputing the system by Mamdani is also expensive so 

there should be studies on how to optimize the learning curve of the values 

in order to save performance issues. 
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