
Page 1

© Copyright 2007 DigiPen Institute of Technology and DigiPen (USA)
Corporation. All rights reserved.

 Page 2

Deconstructing a Neural Network

BY

Patrick Moghames

DigiPen Institute of Technology

5001-150th Ave NE

Redmond, WA USA

E-mail: pmoghames@digipen.edu

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science

in the graduate studies program
of DigiPen Institute of Technology

Redmond, Washington
United States of America

Fall
2007

Thesis Advisor: Dr. Bikramjit Banerjee

mailto:pmoghames@digipen.edu

 Page 3

DIGIPEN INSTITUTE OF TECHNOLOGY

GRADUATE STUDY PROGRAM

DEFENSE OF THESIS

THE UNDERSIGNED VERIFY THAT THE FINAL ORAL DEFENSE OF THE

MASTER OF SCIENCE THESIS OF PATRICK MOGHAMES

HAS BEEN SUCCESSFULLY COMPLETED ON NOVEMBER 27TH 2007

TITLE OF THESIS: PLAYER MODELING USING KNOWLEDGE TRANSFER

MAJOR FILED OF STUDY: COMPUTER SCIENCE.

COMMITTEE:

Michael Aristidou, Chair Samir Abou Samra

Christopher Erhardt Dimitri Volper

APPROVED:

Xin Li date Matt Klassen date
Director Graduate Program Dean of Faculty

Samir Abou Samra date Claude Comair date
Chair of Computer Science Department President of DigiPen

THE MATERIAL PRESENTED WITHIN THIS DOCUMENT DOES NOT
NECESSARILY REFLECT THE OPINION OF THE COMMITTEE, THE

GRADUATE PROGRAM, OR DIGIPEN INSTITUTE OF TECHNOLOGY.

 Page 4

INSTITUTE of DigiPen Institute Of Technology

PROGRAM OF MASTER’S DEGREE

THESIS APPROVAL

Date: November 27th 2007

Based on the CANDIDATE’S successful oral defense, it is recommended that the

thesis prepared by

Patrick Moghames

ENTITLED

Deconstructing a Neural Network

Be accepted in partial fulfillment of the requirements for the degree of master of

computer science from the program of Master’s degree at DigiPen Institute Of

Technology.

Dr. Michael Aristidou
Thesis Advisory Committee Chair

Dr. Xin Li
Director of Graduate Program

Dr. Matt Klassen,
Dean of Faculty

The material presented within this document does not necessarily reflect the
opinion of the Committee, the Graduate Study Program, or DigiPen Institute of
Technology

 Page 5

Table of Contents
1 Acknowledgements .. 6

2 Key Words ... 6

3 Abstract .. 6

4 Introduction .. 7

5 What is an Artificial Neural Network? .. 9

5.1 Building an Artificial Neural Network ... 10

6 Previous Work ... 12

6.1 Destructive Methods ... 13

6.2 Constructive Methods ... 15

7 Deconstructing a Neural Network ... 45

7.1 Our Approach.. 46

7.2 Extending our Approach ... 51

7.3 Taylor Series representation ... 52

7.4 Multinomial Expansion ... 53

8 Analysis and Experimentation Plan ... 55

8.1 Example .. 58

8.2 More Results ... 63

8.3 Drawbacks... 64

9 Conclusion ... 71

10 Future Directions ... 72

11 References .. 74

 Page 6

1 Acknowledgements

 I would like to thank my advisor Dr. Bikramjit Banerjee in guiding me to reach

the results that I have today. I would also like to thank all my teachers that

supported me during my college years. A special thank you goes out to Dr.

Michael Aristidou and Dr. Dimitri Volper for their help in finalizing the paper.

 The biggest thank you goes out to my friends and family. My mother and

father, Therese & Abdo, my two sisters, Patricia & Patina, thank you for your

support throughout my whole life. Last but not least, thank you Mr. Samir Abou

Samra and Mr. Claude Comair for your non-stop push and support.

2 Key Words
Neural Network, Taylor Series, Approximation

3 Abstract

We focus on the problem of constructing an equivalent function for a given

neural network, when the training/test data are not available. The unknown

function captured by the neural net is represented as the Taylor series expansion

in terms of the inputs, and the relevant coefficients are computed from the

weights of the network. We argue that such deconstruction of a neural network

can be a useful tool in complexity reduction.

 Page 7

4 Introduction

 Neural networks (a.k.a. Artificial Neural Networks, or ANNs) are one of the

best-known function approximators with wide ranging applications in Artificial

Intelligence and Machine Learning. While traditionally ANNs are learned from

supervised data, with pre-specified topology, there has also been a significant

body of work on evolving the topology besides learning the parameters of the

network. This sheds light on one of the main limitations of ANNs, viz.; the proper

topology is often unknown (unless significant domain knowledge is assumed/

available). An improper topology can significantly affect the accuracy of the

learned function and its capability to generalize (over-fitting), so it is often

worthwhile to learn the topology as well. A complementary approach to this

problem has been to learn the weights (parameters) for a complex network and

then simplify it iteratively while preserving the functionality. Such constructive and

destructive approaches have met with mixed success, primarily due to the added

burden of computation that they impose on time-critical applications, such as a

video game.

In this paper, we address the problem of simplifying an ANN, but in a

radically different way compared to existing literature. We attempt to infer the

underlying function captured by an ANN directly in terms of the weights of the

network. Our main motivation is that a complex network with possibly 100’s of

hidden units might have actually captured a very simple function that can be

expressed simply in terms of 10’s of parameters. We intend to acquire this simple

representation of the underlying function making the bulky ANN dispensable.

 Page 8

Another possibility is that the number of inputs is large even if the number of

hidden units is small, so that the network still has a very large number of weights.

In classification tasks with such networks, if the number of examples

(training/test) is relatively small (as it is in most real-world applications), the input

space is sparse, which means the data may be linearly separable. This indicates

that the underlying function may be rather simple and that the bulky network with

a plethora of weights is rather wasteful.

A second possible application of our approach could be the following: an

ANN usually does not yield an idea of the analytic nature of the function it

represents. Suppose the training data are unavailable (this is a likely scenario

since the whole point of inductive learning is to extract a model from the training

data so that the latter is no longer necessary to maintain) or corrupted. How does

one recover the analytic function with access to the ANN only? Our method

retrieves an analytic approximation that can be made arbitrarily close to the

actual function with sufficient computation time, requiring no access to the

training data. The two main assumptions behind our work are

1. The ANN has been learned and the training data are not available any

more. We only have access to the weights and the topology of the ANN

and can only use this information to infer the underlying function.

2. The underlying function can be expressed as an infinite series using

Taylor’s series expansion of a function.

 Page 9

We derive the coefficients in the Taylor series expansion of the underlying

function in terms of the weights of the given network, and show that the error of

approximating this function with a finite number of terms of the infinite series

decreases very fast. This means a finite truncation can often produce a very

close approximation. We show experiments that the inferred model can exhibit

very similar behavior to the ANN that it approximates.

5 What is an Artificial Neural Network?

[8, 13, 14, 15] We will start by giving a brief definition of ANNs. ANNs try

to map the way humans think and react to things in life. ANNs start with having

inputs or receptors then will go through various calculations to come up with the

output or the decision to be made.

ANNs are made from several nodes depending on the problem to be

solved. Nodes are connected to each other through connections with different

values referred to as weights. The basic structure of a network is having inputs

connected to output directly through connections. In several cases, such

topology might give you a reasonable solution to your problem. In other cases,

we would have to start adding intermediate nodes known as hidden nodes. So,

till now, we know that our network is formed from three layers (input, hidden and

output) with each layer containing several nodes or neurons. It is worth saying

that some problems require having multiple hidden layers.

 Page 10

 Output layer

Hidden layer

Input layer

The figure above illustrates a basic network with one input layer, one

hidden layer and one output layer.

 5.1 Building an Artificial Neural Network

 The process of building an ANN can be fairly complex and exists in

several ways. We will focus on one of the most commonly used ways to build an

ANN. We will explain briefly how a Neural Network is trained and used.

 First, we need to start with a set of data called the training set. This set will

hold some certain values that we would like our network to learn approximating

or imitating. Basically, it will consist with a list of certain inputs and their

respective (desired) outputs. The more data we have, the more general network

 Page 11

we can build. But, if the range of the data is too wide, we may never reach a

reasonable solution.

 Second, we initialize all our connection weights to random values. Now,

the training will begin to adapt this network to the data. There are several ways to

train ANNs; the most commonly training method used the back-propagation

method. This method consists of two things: Feed Forwarding and Back

Propagating. This training method will start by entering the inputs one by one and

feeding them to the network. Then, the output will be computed referred to by

current output. We compare our current output with the desired output of the

respective inputs. We calculate the error term and then go backward in our

network adjusting the connection weights. After that, we move on to the next

input in the data set. We pass on the data sets for a certain number of times

usually predefined or we can keep on iterating until the total error reaches a

certain limit.

 The most common way to calculate network outputs is using the sigmoid

function. This function is called the activation function. The activation function, σ,

and its first derivative are given by

 Page 12

 There are several activation functions to be used but sigmoid has proved

to be one of the most efficient ones to be used because of its ability to capture

and approximate many functions. After the training is complete and the error has

become small, we migrate this network with the resulting weights into our

program and just use it with any inputs we want.

6 Previous Work

Finding the ultimate and perfect neural network for certain problems has

always been a problem for A.I. programmers. Programmers are always

wondering if this topology fits the best or maybe the other. A certain number of

hidden nodes was chosen by experts and then training techniques were used to

fix the Neural Network. However, even with all the experts spending so much

time and working to find the best topology for the given Neural Network problem,

programmers, in most cases, were not satisfied with the results reached.

Many have tried to come up with the ultimate formula to calculate the

number of hidden nodes to be used in the network. All the formulas reached

 Page 13

gave us good results, but we always needed great results. Many methods were

introduced to create and build Neural Networks. All can be categorized into two

main groups: Constructive methods and Destructive methods. Reading these two

words, we can build a small idea on how these two methods work. Later in the

paper, we will talk about these two methods.

6.1 Destructive Methods

 Destructive methods are methods that use the destruction approach to

find the ultimate Neural Network desired. What that means is that we take a

Neural Network with a certain number of hidden nodes and work on reducing that

number to a smaller number. We will talk about two types of Destructive

Methods. The first one is related to pruning weights from the network while the

other uses node removals in destructing the network.

1- Weight Pruning

This section deals with minimizing network topologies by removing

weights from the network.

a- Magnitude based pruning algorithms [1]

This method deals with removing weights starting with the weights with

the smallest value. This method considers that weights with smaller

values have the least effect on the network, so removing them must

have the same effect on the whole network in general.

 Page 14

b- Optimal Brain Damage (OBD) [1]

This algorithm deals with calculating a certain value named “saliency”

of weight i, and then the weight with the least saliency value will be

removed from the network. The value saliency is calculated according

to the following formula:

where

After calculating the saliency for all the weights in the network, we pick

the weight with the smallest saliency number and remove it from the

network.

2- Node Pruning [1]

This type of pruning deals with removing nodes. Basically, we need to find

out how the network works or performs without a certain node. In other

words, we need to calculate the error difference in the network in the

presence and absence of that certain node.

 Page 15

6.2 Constructive Methods

 Constructive methods have been the main center of attention in evolving

networks. Many ideas have been discovered in this field. Some used Genetic

Algorithms to evolve the networks, while others found other ways to do so. In the

following sections, we will look at some of the techniques used to evolve neural

networks.

1- TWEANN (Topology & Weight Evolving Artificial Neural Networks) [2]

In this section, we will see how the idea of evolving neural networks using

genetic algorithms evolved through time. Basically, to be able to evolve

the topology of a certain neural network using GAs, we had to find the

right genetic representation to be used in the process of evolving.

a- Binary Encoding

In this type of encoding, we use the simplest traditional encoding using

the bit string representation used by GAs in general. An algorithm

called sGA (Structured Genetic Algorithm) was used in this encoding

type. A bit string was used to represent the connection matrix of the

network. The limitation of this algorithm was that the size of the

connectivity matrix was the number of nodes squared which means

that this matrix would explode for really large networks with a big

number of nodes. Crossover would not give us good results since it

 Page 16

would be hard to apply beneficial crossovers using a linear string to

represent the graph structure.

b- Graph Encoding

This type of encoding tried to solve the problem encountered in the

above section. A new algorithm was introduced which used the dual

representation. This algorithm is called PDGP (Parallel Distributed

Genetic Programming). The first representation in this algorithm was a

graph structure while the second representation was a linear genome

describing the connections between the nodes. In this type of

encoding, sub-graph-swapping crossovers and topological mutations

use the graph structure representation while point crossovers and

connection parameter mutations use the linear genome representation.

The problem encountered here resembled the one found in section (a)

which is the finite limit set for the number of nodes in the network

before it explodes.

c- GNARL (Generalized Acquisition of Recurrent Links)

This kind of evolution is known also as the non-mating type of

evolution. This means that founders of this algorithm gave up on

crossover by commenting that “the prospect of evolving connectionist

networks with crossover appears limited in general”. The only problem

here is that the founders of this algorithm state that it’s better to work

 Page 17

on network evolution without using crossover without showing its

advantages or disadvantages. They just leave the problem of

demonstrating the advantages of crossover to other methods.

d- Indirect Encoding

This type of encoding is famously known as CE (Cellular Encoding). In

CE, genomes are programs written in a specialized graph

transformation language. Unfortunately, this type is not used widely in

evolving neural networks because indirect encoding do not map

directly to their phenotypes hence they can bias the search in

unpredictable ways.

2- Cascade Correlation Algorithm [4]

This type of evolving neural network does not use GA. It is a fairly simple

and interesting way in finding the best neural network topology suitable for

our problem.

a- Introduction

As seen in the previous parts, we encountered drawbacks in the way

we used GA in building perfect neural network topologies. So, basically

programmers needed another type of algorithm to build networks. The

Cascade Correlation Algorithm is an algorithm that approaches the

problem of building neural networks from another view using a different

 Page 18

approach which does not user Genetic Algorithms. A short description

of this algorithm would be that the algorithm starts from minimal

structure (no hidden nodes). It then trains the network and adds hidden

nodes one by one. Each time it adds a new hidden node, the input side

weights are frozen and the system is trained. This process is used until

the network reaches a topology with a small margin of error. We will

see a more general description of the algorithm later in this paper.

b- Back-Propagation is Slow?

One of the main reasons that led into establishing the Cascade

Correlation algorithm is finding a problem for the ordinary back-

propagation learning algorithms. The problem is that back-propagation

algorithms require lots of epochs to reach a solution (An epoch is

defined as passing through all the training examples one time). Most of

the times, we may reach a solution that does not suite our problem.

We may sometimes reach a point where we never reach a solution.

Basically, back-propagation is less desired due to two large factors:

i) Step-Size Problem

First reason that shows us why the back-propagation learning

technique is less desired is the step-size problem. What we

mean by this is that back-propagation uses in its calculation the

first derivative of the overall error with respect to each weight in

 Page 19

the network only. In this way, we might miss the perfect solution

while going backwards in the network and fixing the weights.

Many solutions were introduced in order to try and fix this

problem. One of the solutions is taking large steps which will

help us find the solution directly but still, we are left with missing

the right solution problem. Another solution is using a new

concept called momentum. This concept tracks the weight

changes in the network and finds the best solution for the

network. A third solution suggested computing the second

derivative of the total error with respect to each weight in the

network. This solution encountered a major problem. The

problem was that the curvature of the error function is not given

in the network. One solution to the last problem was calculating

explicitly the approximation of the second derivative and using it

in the gradient descent. Finally, a solution came up that proved

to be the most useful which became known as Fahlman’s

Quickprop algorithm. Quickprop computes the first derivative

as the usual back-propagation algorithm, but here instead of a

simple gradient descent, Quickprop uses a second-order

method, related to Newton’s method, to update the weights.

 Page 20

ii) The Moving Target Problem

The second problem in the back-propagation learning technique

is the Moving Target problem. This problem addresses the issue

of the always changing weights in a manner that may never lead

to a solution. This is due to the fact that in ordinary back-

propagation techniques, the hidden nodes do not communicate

with each other in the network. In this manner, each weight

connecting the hidden nodes to the output and input nodes is

updated after each and every element of the training set. In this

way, the weights will keep on changing and never settling down

for a long time to see if one of the weights changed would be fit

for the network or can actually be a solution for the network.

One of the main problems found in the Moving Target problem

is what is known by the herd effect. This effect occurs in the

case where we have for example multiple hidden units and they

have two training examples to train against. Let’s name those

training examples A & B. Suppose that A always receives a

greater margin error than B. All the hidden units will work more

on fixing A’s problem leaving B on this side. Once A is solved,

the units will see B’s problem and work on fixing it, and before

they know, A would have begun having problems again. A

solution to this problem would be allowing some of the weights

 Page 21

in the network to change at once and other weights to remain

constant. This concept was also known as freezing the weights.

c- The Algorithm

The Cascade Correlation algorithm relies on two basic ideas. The first

idea is called the cascade architecture, in which hidden units are

added to the network one by one and these added nodes do not

change after being added to the network. The second idea is the

learning algorithm which will be used to create and add the hidden

nodes needed.

The Cascade Correlation algorithm starts minimally with no hidden

nodes. It starts with its input nodes and output nodes. A bias is added

as to the input nodes, and it’s always set to +1(Figure 1).

Output

Input +1

Figure 1

 Page 22

As seen in the above figure, all inputs are connected to the output. The

special feature used in this algorithm is that everything is connected to

everything.

The output in this algorithm can be calculated linearly by multiplying

each input with the weight of the connection that connects it with the

output and then adding the result of all those multiplications, or a non-

linear activation function can be applied. This algorithm has been

tested positively using a symmetric sigmoidal function whose output

range lies between -1 and +1.

The algorithm adds hidden nodes one by one. Each time a new hidden

node is added, it is connected to all other nodes in the system. What is

meant by that is that it will be connected to all input and output nodes.

In addition, it will be connected to all the previously added hidden

nodes in the system. When this new node is added, all connections

going into all hidden nodes are frozen and all the output connections

are trained repeatedly. This is the basic idea of the algorithm.

Now comes the question of when to add a new node?

When the system starts minimally with no hidden nodes, we train the

weights using any technique desirable. It could be the “delta rule”, the

“Perceptron learning algorithm” or any of the well-known learning

techniques for single-layered networks. We can also use the

Quickprop algorithm described earlier. When used in single-layered

networks, Quickprop acts like the “delta rule” algorithm. Regardless of

 Page 23

what algorithm we chose to use, we keep on applying that algorithm

until our network reaches a point where the error difference is less than

a certain threshold that we’ve set. If that condition is met, we run the

algorithm one last time to measure the error of the system. Now we

test for this error. If it’s less than a certain threshold that we, again,

have set, we stop. If not, we add a hidden node to the network. The

question how to add a node will be answered in the next paragraph.

After adding the new node, as stated before, we connect it to all other

nodes including previous hidden nodes (if found). Now we freeze all

the connections going from the input nodes to all hidden nodes, and

we train the system.

Now, we move on to the process of how to add a new hidden node.

We begin with a unit that will be called a candidate unit. This unit or

node is connected to all input nodes and pre-existing hidden nodes

with connections of random weights. At first, we will not connect it to

the output nodes. It will be treated now as an output node, and we will

apply the used learning algorithm on this little system that we have

temporarily created. While fixing the weights of the new connections,

we always try to maximize S where is S is defined by the following

formula.

where

 Page 24

In order to maximize S, we compute the derivative of S with respect

to all the current node’s input weights which can be computed by

the following formula.

where

After computing for each input connection at the candidate node,

we perform a gradient ascent to maximize S. When S stops improving,

we add the new candidate, freeze the connections that come into the

new node, connect it to the output nodes and continue applying the

algorithms to train the network and check for the error.

 Page 25

An addition to the algorithm would be using a set of candidate nodes,

known as the pool of candidate units. Each of these units will have a

set of random initial weights. In order to choose the right unit, we

perform the steps explained above about maximizing S. At the end, we

install the candidate with the best correlation score. In this way, we will

have multiple candidates to fit into our system, and we get to choose

the best of them.

In Figure 2, we can notice how we added a new hidden node to the

system.

Output

Input +1

Hidde

n

Figure 2

 Page 26

The connections going from the inputs to the newly added node are

dotted meaning that they are frozen.

In Figure 3, another, hidden node in the system. Notice how again all

connections going to the new node are frozen, even those coming from

other hidden nodes.

d- Advantages

- Quick learning

- Network determines size and topology needed for itself

- No back-propagation most importantly

Output

Input +1

Hidde

n

Figure 3

 Page 27

- Retains structure built even if training sets have changed

3- NEAT (Neuro-Evolution with Augmenting Topologies) [2]

This type of evolution used Genetic Algorithms to evolve the neural

network from minimal topology using a new and improved way. This

algorithm came as an answer to previous problems encountered while

dealing with the evolution of neural networks using genetic algorithms.

The basic three problems that NEAT works on fixing are competing

conventions, protecting innovation with speciation and initial population

and topological innovation.

a- Competing Conventions

There can be lots of ways to represent a graph. This is the competing

conventions problem also known as the permutations problem.

Basically, it means that we can represent our network in multiple ways

thus leading to problems when applying crossover between networks

that can be the same but because of their different representation

appear to be different.

In Figure 4, we see an illustrated form of the problem faced. In this

figure, both networks are the same but they are represented in a

different way. Now, if we apply a crossover between those two

networks, we will see that we will lose data from the networks and this

data will be a hidden node. As seen in the same figure, the results of

 Page 28

the crossover gave us two offspring. In each of these two offspring,

there is a node missing. The correct answer must have the same

topology as the one of the parents’ since both have the same topology.

We need a way to keep track of the network’s structure to know how to

apply crossover between networks.

A B C C B A

C B C A B A

Results of the crossover

Figure 4

 Page 29

b- Protecting Innovation with Speciation

The second problem occurs when adding new structures to the

population. The new structures’ fitness will be low at first hence they

are in danger of being removed from the population in the next

generation. So basically, what we need is a way to protect these new

networks and give them a chance to improve before we put them

under the microscope and test for their fitness.

c- Initial Population and Topological Innovation

The last problem relies trying to know how to start. We’ve seen several

ideas on how to begin. What we mean here by how to begin is

deciding on the initial topology (structure) of the network. Most of the

old algorithms that used the concept of evolution have started with a

random number of hidden nodes. NEAT argues that the reason that

the reason why most of those algorithms have failed to deliver good

results was according to that factor.

Now we reach the part where we begin to explain the NEAT algorithm in

detail after having explained the problems that have lead to the rise of

NEAT. In the next part, we will address the structure used in NEAT, plus

we will talk about how NEAT solved each of the arising problems talked

about in the first section.

 Page 30

I. Genetic Encoding

NEAT came as an answer to the problems faced while using the

concept of evolving neural networks using GAs. One of the problems

faced was the genetic representation used in previous algorithms.

NEAT uses a simple way of representing genes and genomes, and this

way has proved to be very effective in a positive way to the evolution

process. NEAT’s gene representation was designed in a way to make

it easier to apply crossover between two genomes. The NEAT uses

two types of genes. These genes make up the genomes. A genome in

NEAT is a network structure itself. The two types of genes are

connection genes and node genes.

i) Node Gene

This gene represents the nodes in the network. Its structure

contains mainly two things: its name or ID in the network, and its

type (input, hidden or output).

ii) Connection Gene

The connection represents the connections that connect two

nodes in a network. This gene’s structure contains more things

than the node gene. It first contains two node pointers: one for

in-node, and one for the out-node. Second, it contains the

weight of this connection usually a floating point number. It also

 Page 31

contains a Boolean that expresses whether this connection is

enabled or disabled. Finally, it has a number called the

Innovation Number. The Innovation Number acts like an ID for

this connection. This is used mostly in crossover function

(explained later).

After seeing how genes are represented, let’s see how genomes are

formed in the network. Then we’ll see how phenotypes can be

acquired from genomes (genotypes). Figure 5 illustrates the general

representation of a genome. As you can see, it is made of two lists:

node gene list and connection gene list. The node list contains all

nodes present in the network. Each node has its ID and it states

whether it’s an input, a hidden or an output node. The connection gene

list contains all the connection found in the network. Each connection

gene has two pointers telling us what nodes this connection connects.

Then, we can see the weight, and the Boolean to tell us whether this

connection is turned on or off. Finally, we see the innovation number

which acts as the ID for this connection. Please note that connections

that have same in and out node have the same innovation number

even if this connection was added later in a future generation.

 Page 32

1 2 3

4 5

6 7

Phenotype

Node 1

Input

Node 2

Input

Node 3

Input

Node 4

Hidden

Node 5

Hidden

Node 6

Output

Node 7

Output
Node

Genes

In 1

Out 4

Wt 0.7

Enabled

Inn # 1

Connection

Genes

In 2

Out 4

Wt 0.3

Disabled

Inn # 2

In 2

Out 5

Wt 0.4

Enabled

Inn # 3

In 3

Out 5

Wt 0.9

Enabled

Inn # 4

In 4

Out 6

Wt 0.1

Enabled

Inn # 5

In 4

Out 7

Wt 0.8

Disabled

Inn # 6

In 5

Out 7

Wt 0.2

Enabled

Inn # 7

Genome (Genotype)

Figure 5

Figure 6

 Page 33

Figure 6 shows us what the phenotype of the above genome will look

like. The dotted connections mean that this connection is disabled.

Now, we will talk about mutations and how they occur in NEAT. NEAT

has two types of mutations that happen during the evolution process.

Mutation can either add a new connection or add a new node to the

network. Both mutations will help the network get larger. This shows us

how the evolution part of the network occurs.

i) Add Connection

This type of mutation adds a new connection to the network. A

new connection means that a new innovation number has to be

assigned to this new connection. Where to add this new

connection can be at a random place and the weight of this

connection is also random. Note that this new connection will

now connect two nodes that were not connected previously in

the network. This process is illustrated in Figure 7. The added

connection has the color red. The new connection got the

Innovation Number 8.

ii) Add Node

This type of mutation adds a new node to the network. For sure,

the type of this node is a hidden node (input and output node

number is fixed throughout the process). In here, an existing

 Page 34

connection is split and the node is added in between the two

nodes that were connected by the chosen connection to be split.

The old connection (the one split) will be set to disabled. Two

new connections will be added to the network. The new

connection going into the new node added will receive a weight

of +1, while the connection going from the new node to the out-

node of the old connection will have the same weight of the old

connection. Figure 8 shows us the add node mutation process.

The new node added has the ID 8. Notice how connection of

Innovation Number 7 is disabled and two new connections are

added to the system.

 Page 35

1 2 3

4 5

6 7

In 1

Out 4

Wt 0.7

Enabled

Inn # 1

Connection

Genes

before

Mutation

In 2

Out 4

Wt 0.3

Disabled

Inn # 2

In 2

Out 5

Wt 0.4

Enabled

Inn # 3

In 3

Out 5

Wt 0.9

Enabled

Inn # 4

In 4

Out 6

Wt 0.1

Enabled

Inn # 5

In 4

Out 7

Wt 0.8

Disabled

Inn # 6

In 5

Out 7

Wt 0.2

Enabled

Inn # 7

In 1

Out 5

Wt 0.7

Enabled

Inn # 8

New

Connection

Gene

added after

Mutation

Figure 7

 Page 36

1 2 3

4 5

6 7

In 1

Out 4

Wt 0.7

Enabled

Inn # 1

Connection

Genes

before

Mutation

In 2

Out 4

Wt 0.3

Disabled

Inn # 2

In 2

Out 5

Wt 0.4

Enabled

Inn # 3

In 3

Out 5

Wt 0.9

Enabled

Inn # 4

In 4

Out 6

Wt 0.1

Enabled

Inn # 5

In 4

Out 7

Wt 0.8

Disabled

Inn # 6

In 5

Out 7

Wt 0.2

Enabled

Inn # 7

Node 1

Input

Node 2

Input

Node 3

Input

Node 4

Hidden

Node 5

Hidden

Node 6

Output

Node 7

Output

Node

Genes

before

Mutation

In 5

Out 8

Wt 1.0

Enabled

Inn # 8

New

Connection

Genes

added after

Mutation

In 8

Out 7

Wt 0.2

Enabled

Inn # 9

Node 8

Hidden

Node Gene

added after

Mutation

In 5

Out 7

Wt 0.2

Disabled

Inn # 7

Old

Connection

Gene

disabled

after

Mutation

8

Figure 8

 Page 37

This process of mutation will gradually help the network grow up into

larger networks and converge towards the perfect network structure

solution.

II. Tracking Genes through Historical Markings

This section talks about the way to solve that Competing Conventions

problem. The solution was to add a small number of which we now

know as the Innovation Number. This number will mostly help us in the

crossover process. As illustrated before, the competing conventions

problem occurred when we were applying crossover between two

nodes of the same structure. Now, using the Innovation Number, the

crossover is much easier and much more effective. All we have to do is

match up genes with the same Innovation Number and leave them as

they are in the new network, while the non matching genes will be

added two as is to the network. Now the question is: how to choose

what connection genes to take between matching genes. Figure 9

shows us the first of two parents that we’re going to apply crossover to.

Figure 10 shows us the second parent.

 Page 38

1 2 3

4

5

In 1

Out 4

Enabled

Inn # 1

Parent 1

Connection

Genes

In 2

Out 4

Disabled

Inn # 2

In 3

Out 5

Enabled

Inn # 3

In 4

Out 5

Enabled

Inn # 4

In 3

Out 4

Enabled

Inn # 6

Figure 9

 Page 39

Figure 11 shows us the result of the crossover when it happens

between the two parents shown above. First, we lay out all the genes

and sort them by their Innovation Number. All genes in Parent 2 whose

Innovation Number is less or equal than the maximum Innovation

Number in Parent 1 and that are not found in Parent 1 are called

Disjoint genes. All genes in Parent 2 whose Innovation Number is

larger than the maximum Innovation Number in Parent 1 are called

Excess genes. Matching genes are chosen randomly from the parents

to be in the child. Non matching genes are taken from the fittest parent

1 2 3

4

5

In 1

Out 4

Enabled

Inn # 1

In 2

Out 4

Disabled

Inn # 2

In 3

Out 5

Disabled

Inn # 3

In 4

Out 5

Enabled

Inn # 4

Parent 2

Connection

Genes

In 2

Out 6

Enabled

Inn # 5

In 6

Out 5

Enabled

Inn # 7

6

Figure 10

 Page 40

and put in the child. In case, both parents have the same fitness, non

matching genes are chosen again randomly.

 Page 41

In 3

Out 4

Enabled

Inn # 6

In 1

Out 4

Enabled

Inn # 1

In 2

Out 4

Disabled

Inn # 2

In 3

Out 5

Enabled

Inn # 3

In 4

Out 5

Enabled

Inn # 4

Child’s

Connection

Genes

In 2

Out 6

Enabled

Inn # 5

In 3

Out 4

Enabled

Inn # 6

Parent 1

Connection

Genes

In 6

Out 5

Enabled

Inn # 7

In 6

Out 5

Enabled

Inn # 7

Disjoint Excess

1 2 3

4

5

6

Parent 2

Connection

Genes

In 1

Out 4

Enabled

Inn # 1

In 2

Out 4

Disabled

Inn # 2

In 3

Out 5

Disabled

Inn # 3

In 4

Out 5

Enabled

Inn # 4

In 2

Out 6

Enabled

Inn # 5

In 1

Out 4

Enabled

Inn # 1

In 2

Out 4

Disabled

Inn # 2

In 3

Out 5

Enabled

Inn # 3

In 4

Out 5

Enabled

Inn # 4

Figure 11

 Page 42

III. Protecting Innovation through Speciation

One of the previous problems that we talked about is that when a new

child is introduced into the population, its fitness will be very low hence

making it a candidate to be deleted in the next generation. We do not

want this effect; instead we want this new child to grow up and then

compete. In other words, we want to find a way to protect this child

while it grows up. This is where the concept of Speciation comes into

play. We will divide the population into smaller species. Networks will

be grouped into species according to their genotype, meaning that

networks of same structure will be in the same group. In this way, we

will networks compete in their own niche and grow up in there, and

then come back and compete in the population at large.

Networks of different topology can be added to species too by using a

compatibility distance function to check how compatible these two

networks can be. Below is the compatibility function:

where

 Page 43

We will specify a compatibility threshold to check for compatibility

between two genomes. If the current genome is compatible with any of

the present species, it will be added to that species; else we create a

new species and add the current genome to it.

In NEAT, an explicit fitness sharing is used. In this manner, a species

cannot become too large and take over the whole population because

the solution will converge to whatever species performs best at first.

What we do is that we adjust the fitness of the genomes in the species

to represent the whole genomes in that species using the function

below:

where

Now species reproduce by first removing the genomes with lowest

fitness in the population. Then the population is replaced by the

offsprings of the remaining genomes in the population. After that, we

 Page 44

perform a technique, also known as clustering, where we divide the

offspring into species according to their topologies.

IV. Minimizing Dimensionality through Incremental Growth from Minimal

Structure

The last problem was finding out how to start with the algorithm. What

we mean by that is choosing the initial topology that we start applying

the algorithm to. We know that the number of input nodes and output

nodes is fixed and cannot change, so our problem is finding the right

number of hidden nodes to begin with. Most of the old algorithms have

started with a random number of hidden nodes to begin with. Starting

randomly might give us a network structure that already passed the

perfect topology required. For example, let’s say that the random

generator gave us 3 hidden nodes. Starting from that number of nodes,

we perform our evolution algorithm and the solution returned was 3

hidden nodes. The question asked here is what if we started with 0

number of hidden nodes and the perfect solution was 2 hidden nodes.

NEAT states that it’s best to start with no hidden nodes and build up.

This is the concept of starting minimally to reach the minimum solution

size desired.

 Page 45

7 Deconstructing a Neural Network

Neural network structures can grow to be very large and complex, with many

connections (and consequently many weights to store). Large networks require

large memory space for storage. We have seen several ways to prune networks

that try to minimize this complexity without sacrificing accuracy significantly.

These methods can be quite complex and often leave us with large networks.

We will propose a different approach to this process of simplification. We

extract an analytic function of minimal complexity that has the same behavior as

the network, to a certain error-tolerance level. We show that the resulting

expression can involve significantly fewer parameters than the given network,

leading to a compact equivalent function.

When viewed as a network, our equivalent function can be very different from

the original network. It uses only the polynomial terms (in inputs) that are

indispensable in capturing the functionality of the original network. Since it is

based on the original network’s parameters (and not on the training data), any

inaccuracies in the latter will be translated to our representation as well.

However, any redundancy in the original network will be eliminated in our

representation.

 Page 46

xi

Hj

 O number of output nodes

N number of hidden nodes

M number of input nodes

7.1 Our Approach

The function captured by a given neural network can be represented in many

ways. We use a Taylor series [9] representation of the function and calculate

progressively higher order terms of the series from the weights of the given

network. We first illustrate our approach with functions that are quadratic in their

inputs. Later, we extend this approach to higher order polynomials, making way

to a more general Taylor series representation for an arbitrary unknown function.

In this paper we focus on networks with a single hidden layer, and using a

sigmoid activation function. Since such networks can capture any bounded,

continuous function, our approach has a wide applicability.

 Page 47

The functional form of the output of the network is

where

where

Our representation of the output using a quadratic function is

where

Our task is to compute the values of all the constants in the above equation.

From now on, we will assume that the network has a single output node. If there

 Page 48

is more than one output node, our approach simply needs to be replicated on

each additional output, which is a straightforward extension. In the following,

method i) stands for the first method of computing the output (of the network)

using the sigmoid activation function, and method ii) stands for the second

method of computing the output (of the equivalent function) from equation (1).

1-

To find this value, we find the output using both functions with all inputs

set to zero.

therefore

2-

To find this value, we first differentiate the output function with respect to

 and then set all inputs to zero.

 Page 49

therefore

3-

To find this value, we find the second derivative of the output function with

respect to and then again we set all inputs to zero.

 Page 50

therefore

4-

To find this value, we find the derivative of the output with respect to

and then with respect to , and then again we set all inputs to zero.

therefore

 Page 51

Thus all the coefficients in equation 1 can be computed from the known weights

of the network, producing the equivalent quadratic function of the inputs.

7.2 Extending our Approach

It is possible to extend the above method to any polynomial function. We note

that the number of constants to be calculated depends on the number of inputs

we have and the degree of the polynomial we want to use to capture the

network’s functionality. The number of constants, A, needed for a polynomial of

degree P given a network of M inputs, is:

where

Now suppose we want to compute the coefficient for , it is given by

where

 Page 52

7.3 Taylor Series representation

 In general, any differentiable function taking a vector as input can be

represented as the Taylor series expansion

where

To apply this formula to our network, we set f to be the network output function

which is the same as . Then we set the vector . Now, we

calculate each term j = 0, 1, 2… in the following way:

For j=0, we get , as before.

For j=1, we get

For j=2, we get

and similarly for j = 3, 4,...

 Page 53

In the end, we will get our network output function as a polynomial.

7.4 Multinomial Expansion

 In order to compute the jth term in the above Taylor series expansion, we use

the Multinomial Expansion theorem [12]:

where

Now, we can replace in the formula (3) by:

It can be shown that the above expression for the j-th term of the Taylor series is

the same as equation (2).

 Page 54

The above representation looks so hard and almost impossible to code. This is

why we elaborated this formula to reach one that would be simpler to code.

It can be shown that the above expression for the j-th term of the Taylor

series is the same as equation (2), under the following approximation for the k-th

derivative of the sigmoid function:

Although this approximation is valid for lower order terms (first and

second), it deviates from the true value increasingly for higher order terms. For

instance, the third derivative of s is actually

which is slightly different from the approximation that we use which is

Despite this discrepancy, this approximation serves to simplify our algorithm

and works well with our intended applications, which seeks mostly lower order

terms.

Applications with many inputs seldom require higher order terms (linearly

separable), and for those that do, the Taylor series will have many more terms

than weights in the network, defeating the purpose of our approach.

Consequently, it is important to note that although our approach applies to a wide

 Page 55

variety of problems where a neural net has been acquired, it cannot be applied

beneficially in many problems where a neural network is a more succinct

representation of a function compared to its analytical form.

8 Analysis and Experimentation Plan

The first point of note is that we have ignored bias weights of a neural

network in all of the above steps, for simplicity. It is a straightforward matter to

incorporate the bias weights in the above equations. Secondly, the equivalent

function computed by the above procedure can be very different from the original

network. It uses only the polynomial terms (in inputs) that are indispensable in

capturing the functionality of the original network, while the latter is not limited to

polynomials. For example, consider a neural net for computing the XOR boolean

function. For binary inputs x, y, our approach yields coefficients that

approximately represent x+y-2xy, which is equivalent to XOR(x,y). Notice that the

neural net would need at least 2 hidden units for capturing this function to a high

accuracy, necessitating at least 9 weights (including the bias weights). In

contrast, the proposed method can capture the same functionality with only 3

non-zero coefficients.

It is also noteworthy that since our method is based on the original network’s

parameters (and not on the training data), any inaccuracies in the latter will be

translated to our representation as well. However, any redundancy in the original

network will be eliminated in our representation.

 Page 56

 It is also important to state that the number of constants in the equation is

proportional to the number of inputs and outputs in the network and has nothing

to do with the number of hidden nodes. Taking the XOR example again, it has 2

inputs and one output resulting in 6 constants in case we are using a second

degree polynomial which proved sufficient to come up with a decent solution. On

the other hand, in the regular representation that would need approximately 9

hidden nodes resulting in 20 values that need to be stored. The number of

floating point numbers saved in this small example is quite high. Given a network

with 5 inputs and 3 outputs and n hidden nodes:

Number Of Hidden

Nodes

Number Of Float

Numbers (Weights)

Number Of Constants

Using power 2

10 80 21*3

20 160 21*3

30 240 21*3

40 320 21*3

50 400 21*3

On the other hand, the approximation will require much more constants with

every power increment. Given now the same network (5 inputs and 3 outputs)

but this time 10 hidden nodes (80 float numbers or weights):

 Page 57

Power Number Of Constants

1 6*3

2 21*3

3 56*3

4 126*3

5 252*3

As you can see, the number of constants grew quickly every time we increased

the power (degree) of the polynomial. In most cases, a second degree

polynomial gave us acceptable results.

We tested our approach in another way. We took an arbitrary neural network

with M input nodes, N hidden nodes and O output nodes. We initialized all

weights between all nodes to a random value ranging between -1 & 1. We used

the resultant network as input to our algorithm and tested for results for random

values to check the error margin between the outputs of the two algorithms. The

average margin of error was around 0.0001 using a 2nd degree polynomial. At

times, the error was as low as 0.0000001. A drawback occurred with every high

degree polynomials i.e. degree 10. While using high degree polynomials, we

noticed that at time the network will sometimes generate results of an error

margin of 10 or 100 at times. After looking at the problem and analyzing it, we

figured out that precision for small values multiplied at high degrees can result in

such abnormalities especially that the derivative approximation can result in

 Page 58

I1 I2

H1

O 1 output node

4 hidden nodes

2 input nodes

H2 H1 H3

errors. Further studies for the program can be done as future work to improve the

stability of the program. Until now, the program has proved useful in many cases.

8.1 Example

Take an example of a network with 2 input nodes, 4 hidden nodes and one

output node. This network results in 12 float numbers to store. Using a second

degree equation, we need 6 constants to represent the network.

Given the trained network weights:

a) I1H1 = -1.0; I1H2 = 0.5; I1H3 = -0.6; I1H4 = 0.4

b) I2H1 = 1.0; I2H2 = -0.7; I2H3 = 0.9; I2H4 = 0.25

c) H1O = 0.35; H2O = -0.95; H3O = 0.65; H4O = -0.15

 Page 59

 Page 60

So the polynomial is:

 Page 61

Inputs (I1, I2) Sigmoid 2nd degree

equation

Error

(0,0) 0.487503 0.487503 0.0

(1,0) 0.411762 0.408182 0.00358

(0,1) 0.578944 0.585574 0.00663

(1,1) 0.505544 0.505476 0.000068

(0.5,0.5) 0.496495 0.496485 0.000010

(0.25,0.75) 0.539744 0.540932 0.001188

(0.75,0.25) 0.452628 0.452236 0.000392

Two tests were made on point going from 0 to 1; one with an increment of 0.01 (a

total of 10000 points) and the other with an increment of 0.001 (a total of

1000000 points). The results came as follows:

 0.01 0.001

Largest Error 0.006445 0.006612

Error < 0.00001 944 93994

Error < 0.000001 228 22625

Error < 0.0000001 26 2454

Error < 0.00000001 3 246

The tables above show some good results. The error term is minimal in many of

the cases but still, there are some cases where the error is large but as shown

the maximum error was about 0.6%.

 Page 62

In both graphs, x-axis is in red, y-axis is in green, z-axis is in blue, original’s

network output in white and polynomial output in black.

The graph representing the reached polynomial (in black) using a 0.01 increment

on points going from 0 to 1 is compared to the original network’s function (in

white) in the following figure:

The graph representing the reached polynomial (in black) using a 0.001

increment on points going from 0 to 1 is compared to the original network’s

function (in white) in the following figure:

 Page 63

Both graphs show that our result and the result generated from the network are

really close in values in this particular case.

8.2 More Results

 Several other results were reached using random weights for the

connections on different networks with different topologies. For each network

topology, 1000 samples were taken randomly and the points were incremented

from 0 to 1 using a 0.01 increment. The table below shows the average error in

each case:

 Page 64

Network Topology Average Error

2 inputs, 4 hidden, 1 output 0.00514368

2 inputs, 6 hidden, 1 output 0.00663347

3 inputs, 6 hidden, 1 output (with one of

the inputs fixed to 0.0)

0.00655637

3 inputs, 6 hidden, 1 output (with one of

the inputs fixed to 0.5)

0.00818654

3 inputs, 6 hidden, 1 output (with one of

the inputs fixed to 1.0)

0.012859

8.3 Drawbacks

 In this section, we will focus on the drawbacks of our algorithm; that is

illustrating the points where our algorithm has failed. It is noticeable that the

algorithm fails every time we compute results that are far from the origin of

approximation (in our case). The following example shows clearly the flaws of

this algorithm at some of its points. We considered a more complicated neural

network with 3 inputs, 10 hidden nodes and 1 output node. We will show 11

examples (figures) each having one of the inputs fixed at a point incrementing by

0.1 from 0 to 1 and the other 2 varying from 0 to 1 using a 0.01 increment.

 Page 65

One of the weights is fixed at 0.0. Largest error is 1.228560

One of the weights is fixed at 0.1. Largest error is 1.172808

 Page 66

One of the weights fixed to 0.2. Largest error is 1.111509

One of the weights fixed to 0.3. Largest error is 1.045970

 Page 67

One of the weights fixed to 0.4. Largest error is 0.978146

One of the weights fixed to 0.5. Largest error is 0.910438

 Page 68

One of the weights fixed to 0.6. Largest error is 0.845444

One of the weights fixed to 0.7. Largest error is 0.785721

 Page 69

One of the weights fixed to 0.8. Largest error is 0.733625

One of the weights fixed to 0.9. Largest error is 0.691170

 Page 70

One of the weights fixed to 1.0. Largest error is 0.659660

As you can see from this example, our approximation failed at several points in

the network thus resulting in large errors. This can be due to the fact that the

degree of the polynomial used cannot approximate the network’s original

function. We should have used a higher order polynomial.

A solution to this problem may be dissecting our space into smaller partitions

where each partition has its own approximation function at a certain point.

Currently, our algorithm approximates the neural network at the point . This has

resulted in all the errors in our program. We think that if we approximate the

network at several points in space and then for each given point, we calculate its

result using the function that gives us the best result. In other words, we group

our points into partitions, and we associate to each partition a polynomial that

 Page 71

best represents the network within this partition. The drawback of this method is

storage space since we now have to store more constants to represent all

polynomials around our space.

9 Conclusion

 In conclusion, we find that our algorithm holds a new and nice representation

of the neural network. It proved to be memory efficient for those interested in

saving memory space. It proved to give results close enough to the actual neural

network with a tolerance to the error resulted.

As you can notice, the error term gradually increased when we started

getting farther from the origin. This is due to the fact that the Taylor Series

approximation was done at the vector . This means that the function will lose

precision far from that point.

Nevertheless this algorithm has proved to be useful in several cases where the

problem concentrates around the origin.

If we go back to the example in 8.1, its computational needs are as follows:

i) 12 multiplications

ii) 12 additions

iii) 5 divisions

iv) 5 exponentials

 Page 72

In our approach this computational needs will be reduced to:

i) 8 multiplications

ii) 5 additions

The difference is clearly seen now. Not only our approach is memory efficient,

but it needs fewer computations to achieve an acceptable result. It’s still true that

our approach will fail once we get far from the origin where we originally

approximated our function.

Throughout this paper, we have looked at several methods to better improve the

representation of our neural networks as well as find better ways to find the best

topology for any given network. Our approach dealt with the problem from

another window where we tried simplifying the network to a simple polynomial

that can be read by anyone. Our experiments succeeded at times with flying

numbers but also fell into problems in several other cases. Further work will

continue to improve more the efficiency of this algorithm.

10 Future Directions

This approach approximates the sigmoid function using the Taylor series at

the origin. Our future work includes expanding the representation and test among

differences in approximations across other points.

 Page 73

This approach deals with approximating a neural network whose activation

function is the regular sigmoid function . An expansion to that

approximation could done by using an approximation for any sigmoid

function , where n is a scaling value for the network.

 Another thing to do is apply this algorithm to a more complex problem

such as a game. Currently, neural networks are not included much in games due

to their complexity and high storage space that they require when modeling

complex agent behaviors. This approach could be used to help enter the neural

networks more into the gaming world because of its simplicity to program and the

results would still be the same.

 Another approach to be added to the program would be working on neural

networks that use different activation functions. But, since the sigmoid function is

the most commonly used as an activation function for neural networks, we have

decided to use it here.

 As mentioned in section 8.3, one of the most innovative ideas to be

touched in the future is dissecting our space (any dimension) into several

partitions. Since in our approach the error tends to increase when we get farther

from the origin of approximation, we can create an area around this origin where

this polynomial will be used. Then we approximate the network at another point

in space being in the center of the next partition. In this way, we think we can

guarantee good results along our entire network’s space. The drawback of this

method is storage space because then we will have to save multiple polynomials

 Page 74

representing each region in space, but run-time computations will be the same all

over the regions.

11 References

[1] Colin Campbell, "Constructive learning techniques for designing neural

network systems," in Neural Network Systems, Techniques and Applications ed.

C. T. Leondes (Academic Press, San Diego, 1997)

[2] Kenneth O. Stanley, Risto Miikkulainen, “Evolving neural networks through

augmenting topologies”, Evolutionary Computation 10 (2002) 99--127

[3] Kenneth O. Stanley, Bobby D. Bryant & Risto Miikkulainen, “Evolving Neural

Network Agents in the NERO Video Game”. In Proceedings of the IEEE 2005

Symposium on Computational Intelligence and Games (CIG’05). 2005

[4] Scott E. Fahlman & Christian Lebiere, “The Cascade-Correlation Learning

Architecture”. CMU-CS-90-100. August 29, 1991

[5] Babak Hassibi, David G. Stork & Gregpry J. Wolff, “Optimal Brain Surgeon

and General Network Pruning”. 1993

 Page 75

[6] Peter Morgan, Bruce Curry & Malcom Beynon, “Pruning neural networks by

minimization of the estimated variance” European Journal of Economic and

Social Systems 14 N° 1 (2000) 1-16

[7] Rudy Setiono, Wee Kheng Leow & James Y. L. Thong, “Opening the Neural

Network Black Box: An Algorithm For Extracting Rules From Function

Approximating Artificial Neural Networks”. International Conference on

Information Systems 2000

[8] Tom Mitchell, Machine Learning (McGraw Hill, 1997).

[9] Al Shenk, Calculus and Analytic Geometry (Pearson Scott Foresman; 4th

edition (July 2000))

[10] Geoffrey Stephenson, Worked Examples in Mathematics for Scientists and

Engineers (Longman, March 1985)

[11] E. Drougge, E. & J. Wroldsen, "A Robust Algorithm for Pruning Neural

Networks", Gjovik College Preprint , November, (1994).

[12] George Chrystal, Algebra (A. & C. Black 1889)

[13] Carlos Gershenson, “Aritificial Neural Networks for Beginners”, August 2003

 Page 76

[14] Weiyu Yi, “Artificial Neural Networks”, October 7, 2005

[15] Martin Anthony & Peter L. Barlett, Neural Network Learning: Theoretical

Foundations (Cambridge University Press; 1 edition (January 15, 1999))

	Copyright
	Title Page
	Table of Contents
	1 Acknowledgements
	2 Key Words
	3 Abstract
	4 Introduction
	5 What is an Artificial Neural Network
	5.1 Building an Artificial Neural Network

	6 Previous Work
	6.1 Destructive Methods
	6.2 Constructive Methods

	7 Deconstructing a Neural Network
	7.1 Our Appproach
	7.2 Extending our Approach
	7.3 Taylor Series representation
	7.4 Multinomial Expansion

	8 Analysis and Experimentation Plan
	8.1 Example
	8.2 More Results
	8.3 Drawbacks

	9 Conclusion
	10 Future Directions
	11 References

