
Page 1 

© Copyright 2007 DigiPen Institute of Technology and DigiPen (USA) 
Corporation. All rights reserved. 



 Page 2 
 

Deconstructing a Neural Network 

 
BY 

 
Patrick Moghames 

DigiPen Institute of Technology 

5001-150th Ave NE 

Redmond, WA USA 

E-mail: pmoghames@digipen.edu 

 

 
 
 
 
 
 

THESIS 
 

Submitted in partial fulfillment of the requirements 
for the degree of Master of Science 

in the graduate studies program 
of DigiPen Institute of Technology 

Redmond, Washington 
United States of America 

 
 
 
 
 
 
 

Fall 
2007 

 
 
 
 

Thesis Advisor: Dr. Bikramjit Banerjee 
 

 

 

mailto:pmoghames@digipen.edu


 Page 3 
 

DIGIPEN INSTITUTE OF TECHNOLOGY 

GRADUATE STUDY PROGRAM 

DEFENSE OF THESIS 

 

THE UNDERSIGNED VERIFY THAT THE FINAL ORAL DEFENSE OF THE 

MASTER OF SCIENCE THESIS OF                    PATRICK MOGHAMES  

HAS BEEN SUCCESSFULLY COMPLETED ON       NOVEMBER 27TH 2007 

TITLE OF THESIS: PLAYER MODELING USING KNOWLEDGE TRANSFER  

MAJOR FILED OF STUDY: COMPUTER SCIENCE. 

 
COMMITTEE: 
 
        
 

Michael Aristidou, Chair    Samir Abou Samra 
 
 
       
 

Christopher Erhardt     Dimitri Volper 
 
 
APPROVED: 
 
      
 

Xin Li                             date                               Matt Klassen               date 
Director Graduate Program                                        Dean of Faculty 
 
     
 

Samir Abou Samra       date                               Claude Comair            date 
Chair of Computer Science Department    President of DigiPen 

 
 

THE MATERIAL PRESENTED WITHIN THIS DOCUMENT DOES NOT 
NECESSARILY REFLECT THE OPINION OF THE COMMITTEE, THE 

GRADUATE PROGRAM, OR DIGIPEN INSTITUTE OF TECHNOLOGY.



 Page 4 
 

INSTITUTE of DigiPen Institute Of Technology 

PROGRAM OF MASTER’S DEGREE 

THESIS APPROVAL 

 

Date: November 27th 2007 
 

Based on the CANDIDATE’S successful oral defense, it is recommended that the 

thesis prepared by 

 

Patrick Moghames 

 

ENTITLED 

Deconstructing a Neural Network 

Be accepted in partial fulfillment of the requirements for the degree of master of 

computer science from the program of Master’s degree at DigiPen Institute Of 

Technology. 

 
 

 
 

Dr. Michael Aristidou  
Thesis Advisory Committee Chair      

 
 

 

Dr. Xin Li 
Director of Graduate Program 

 
 
 

Dr. Matt Klassen, 
Dean of Faculty 

 
The material presented within this document does not necessarily reflect the 
opinion of the Committee, the Graduate Study Program, or DigiPen Institute of 
Technology 



 Page 5 
 

Table of Contents 
1 Acknowledgements .......................................................................................................... 6 

2 Key Words ....................................................................................................................... 6 

3 Abstract ............................................................................................................................ 6 

4 Introduction ...................................................................................................................... 7 

5 What is an Artificial Neural Network? ............................................................................ 9 

5.1 Building an Artificial Neural Network ................................................................... 10 

6 Previous Work ............................................................................................................... 12 

6.1 Destructive Methods ............................................................................................... 13 

6.2 Constructive Methods ............................................................................................. 15 

7 Deconstructing a Neural Network ................................................................................. 45 

7.1 Our Approach.......................................................................................................... 46 

7.2 Extending our Approach ......................................................................................... 51 

7.3 Taylor Series representation ................................................................................... 52 

7.4 Multinomial Expansion ........................................................................................... 53 

8 Analysis and Experimentation Plan ............................................................................... 55 

8.1 Example .................................................................................................................. 58 

8.2 More Results ........................................................................................................... 63 

8.3 Drawbacks............................................................................................................... 64 

9 Conclusion ..................................................................................................................... 71 

10 Future Directions ......................................................................................................... 72 

11 References .................................................................................................................... 74 

 

 

 

 

 

 

 

 

 



 Page 6 
 

1 Acknowledgements 
 

 I would like to thank my advisor Dr. Bikramjit Banerjee in guiding me to reach 

the results that I have today. I would also like to thank all my teachers that 

supported me during my college years. A special thank you goes out to Dr. 

Michael Aristidou and Dr. Dimitri Volper for their help in finalizing the paper. 

 The biggest thank you goes out to my friends and family. My mother and 

father, Therese & Abdo, my two sisters, Patricia & Patina, thank you for your 

support throughout my whole life. Last but not least, thank you Mr. Samir Abou 

Samra and Mr. Claude Comair for your non-stop push and support. 

 

2 Key Words 
Neural Network, Taylor Series, Approximation 

 

3 Abstract 

We focus on the problem of constructing an equivalent function for a given 

neural network, when the training/test data are not available. The unknown 

function captured by the neural net is represented as the Taylor series expansion 

in terms of the inputs, and the relevant coefficients are computed from the 

weights of the network. We argue that such deconstruction of a neural network 

can be a useful tool in complexity reduction. 
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4 Introduction 
 

 Neural networks (a.k.a. Artificial Neural Networks, or ANNs) are one of the 

best-known function approximators with wide ranging applications in Artificial 

Intelligence and Machine Learning. While traditionally ANNs are learned from 

supervised data, with pre-specified topology, there has also been a significant 

body of work on evolving the topology besides learning the parameters of the 

network. This sheds light on one of the main limitations of ANNs, viz.; the proper 

topology is often unknown (unless significant domain knowledge is assumed/ 

available). An improper topology can significantly affect the accuracy of the 

learned function and its capability to generalize (over-fitting), so it is often 

worthwhile to learn the topology as well. A complementary approach to this 

problem has been to learn the weights (parameters) for a complex network and 

then simplify it iteratively while preserving the functionality. Such constructive and 

destructive approaches have met with mixed success, primarily due to the added 

burden of computation that they impose on time-critical applications, such as a 

video game. 

In this paper, we address the problem of simplifying an ANN, but in a 

radically different way compared to existing literature. We attempt to infer the 

underlying function captured by an ANN directly in terms of the weights of the 

network. Our main motivation is that a complex network with possibly 100’s of 

hidden units might have actually captured a very simple function that can be 

expressed simply in terms of 10’s of parameters. We intend to acquire this simple 

representation of the underlying function making the bulky ANN dispensable.  
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Another possibility is that the number of inputs is large even if the number of 

hidden units is small, so that the network still has a very large number of weights. 

In classification tasks with such networks, if the number of examples 

(training/test) is relatively small (as it is in most real-world applications), the input 

space is sparse, which means the data may be linearly separable. This indicates 

that the underlying function may be rather simple and that the bulky network with 

a plethora of weights is rather wasteful.   

A second possible application of our approach could be the following: an 

ANN usually does not yield an idea of the analytic nature of the function it 

represents. Suppose the training data are unavailable (this is a likely scenario 

since the whole point of inductive learning is to extract a model from the training 

data so that the latter is no longer necessary to maintain) or corrupted. How does 

one recover the analytic function with access to the ANN only? Our method 

retrieves an analytic approximation that can be made arbitrarily close to the 

actual function with sufficient computation time, requiring no access to the 

training data. The two main assumptions behind our work are 

 

1. The ANN has been learned and the training data are not available any 

more. We only have access to the weights and the topology of the ANN 

and can only use this information to infer the underlying function. 

2. The underlying function can be expressed as an infinite series using 

Taylor’s series expansion of a function. 
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We derive the coefficients in the Taylor series expansion of the underlying 

function in terms of the weights of the given network, and show that the error of 

approximating this function with a finite number of terms of the infinite series 

decreases very fast. This means a finite truncation can often produce a very 

close approximation.  We show experiments that the inferred model can exhibit 

very similar behavior to the ANN that it approximates. 

 

5 What is an Artificial Neural Network? 
 

[8, 13, 14, 15] We will start by giving a brief definition of ANNs. ANNs try 

to map the way humans think and react to things in life. ANNs start with having 

inputs or receptors then will go through various calculations to come up with the 

output or the decision to be made. 

ANNs are made from several nodes depending on the problem to be 

solved. Nodes are connected to each other through connections with different 

values referred to as weights. The basic structure of a network is having inputs 

connected to output directly through connections. In several cases, such 

topology might give you a reasonable solution to your problem. In other cases, 

we would have to start adding intermediate nodes known as hidden nodes. So, 

till now, we know that our network is formed from three layers (input, hidden and 

output) with each layer containing several nodes or neurons. It is worth saying 

that some problems require having multiple hidden layers. 
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  Output layer 

Hidden layer 

Input layer 

The figure above illustrates a basic network with one input layer, one 

hidden layer and one output layer. 

 

 5.1 Building an Artificial Neural Network 
 

 The process of building an ANN can be fairly complex and exists in 

several ways. We will focus on one of the most commonly used ways to build an 

ANN. We will explain briefly how a Neural Network is trained and used. 

 First, we need to start with a set of data called the training set. This set will 

hold some certain values that we would like our network to learn approximating 

or imitating. Basically, it will consist with a list of certain inputs and their 

respective (desired) outputs. The more data we have, the more general network 
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we can build. But, if the range of the data is too wide, we may never reach a 

reasonable solution. 

 Second, we initialize all our connection weights to random values. Now, 

the training will begin to adapt this network to the data. There are several ways to 

train ANNs; the most commonly training method used the back-propagation 

method. This method consists of two things: Feed Forwarding and Back 

Propagating. This training method will start by entering the inputs one by one and 

feeding them to the network. Then, the output will be computed referred to by 

current output. We compare our current output with the desired output of the 

respective inputs. We calculate the error term and then go backward in our 

network adjusting the connection weights. After that, we move on to the next 

input in the data set. We pass on the data sets for a certain number of times 

usually predefined or we can keep on iterating until the total error reaches a 

certain limit. 

 The most common way to calculate network outputs is using the sigmoid 

function. This function is called the activation function. The activation function, σ, 

and its first derivative are given by 
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 There are several activation functions to be used but sigmoid has proved 

to be one of the most efficient ones to be used because of its ability to capture 

and approximate many functions. After the training is complete and the error has 

become small, we migrate this network with the resulting weights into our 

program and just use it with any inputs we want. 

 

6 Previous Work 
 

Finding the ultimate and perfect neural network for certain problems has 

always been a problem for A.I. programmers. Programmers are always 

wondering if this topology fits the best or maybe the other. A certain number of 

hidden nodes was chosen by experts and then training techniques were used to 

fix the Neural Network. However, even with all the experts spending so much 

time and working to find the best topology for the given Neural Network problem, 

programmers, in most cases, were not satisfied with the results reached. 

Many have tried to come up with the ultimate formula to calculate the 

number of hidden nodes to be used in the network. All the formulas reached 
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gave us good results, but we always needed great results. Many methods were 

introduced to create and build Neural Networks. All can be categorized into two 

main groups: Constructive methods and Destructive methods. Reading these two 

words, we can build a small idea on how these two methods work. Later in the 

paper, we will talk about these two methods. 

 

6.1 Destructive Methods 
 

 Destructive methods are methods that use the destruction approach to 

find the ultimate Neural Network desired. What that means is that we take a 

Neural Network with a certain number of hidden nodes and work on reducing that 

number to a smaller number. We will talk about two types of Destructive 

Methods. The first one is related to pruning weights from the network while the 

other uses node removals in destructing the network. 

 

1- Weight Pruning 

This section deals with minimizing network topologies by removing 

weights from the network. 

 

a- Magnitude based pruning algorithms [1] 

This method deals with removing weights starting with the weights with 

the smallest value. This method considers that weights with smaller 

values have the least effect on the network, so removing them must 

have the same effect on the whole network in general. 



 Page 14 
 

b- Optimal Brain Damage (OBD) [1] 

This algorithm deals with calculating a certain value named “saliency” 

of weight i, and then the weight with the least saliency value will be 

removed from the network. The value saliency is calculated according 

to the following formula: 

 

where 

 

 

 

 

 

 

After calculating the saliency for all the weights in the network, we pick 

the weight with the smallest saliency number and remove it from the 

network. 

 

2- Node Pruning [1] 

This type of pruning deals with removing nodes. Basically, we need to find 

out how the network works or performs without a certain node. In other 

words, we need to calculate the error difference in the network in the 

presence and absence of that certain node. 
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6.2 Constructive Methods 
 

 Constructive methods have been the main center of attention in evolving 

networks. Many ideas have been discovered in this field. Some used Genetic 

Algorithms to evolve the networks, while others found other ways to do so. In the 

following sections, we will look at some of the techniques used to evolve neural 

networks. 

 

1- TWEANN (Topology & Weight Evolving Artificial Neural Networks) [2] 

In this section, we will see how the idea of evolving neural networks using 

genetic algorithms evolved through time. Basically, to be able to evolve 

the topology of a certain neural network using GAs, we had to find the 

right genetic representation to be used in the process of evolving. 

 

a- Binary Encoding 

In this type of encoding, we use the simplest traditional encoding using 

the bit string representation used by GAs in general. An algorithm 

called sGA (Structured Genetic Algorithm) was used in this encoding 

type. A bit string was used to represent the connection matrix of the 

network. The limitation of this algorithm was that the size of the 

connectivity matrix was the number of nodes squared which means 

that this matrix would explode for really large networks with a big 

number of nodes. Crossover would not give us good results since it 
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would be hard to apply beneficial crossovers using a linear string to 

represent the graph structure. 

 

b- Graph Encoding 

This type of encoding tried to solve the problem encountered in the 

above section. A new algorithm was introduced which used the dual 

representation. This algorithm is called PDGP (Parallel Distributed 

Genetic Programming). The first representation in this algorithm was a 

graph structure while the second representation was a linear genome 

describing the connections between the nodes. In this type of 

encoding, sub-graph-swapping crossovers and topological mutations 

use the graph structure representation while point crossovers and 

connection parameter mutations use the linear genome representation. 

The problem encountered here resembled the one found in section (a) 

which is the finite limit set for the number of nodes in the network 

before it explodes. 

 

c- GNARL (Generalized Acquisition of Recurrent Links) 

This kind of evolution is known also as the non-mating type of 

evolution. This means that founders of this algorithm gave up on 

crossover by commenting that “the prospect of evolving connectionist 

networks with crossover appears limited in general”. The only problem 

here is that the founders of this algorithm state that it’s better to work 
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on network evolution without using crossover without showing its 

advantages or disadvantages. They just leave the problem of 

demonstrating the advantages of crossover to other methods. 

 

d- Indirect Encoding 

This type of encoding is famously known as CE (Cellular Encoding). In 

CE, genomes are programs written in a specialized graph 

transformation language. Unfortunately, this type is not used widely in 

evolving neural networks because indirect encoding do not map 

directly to their phenotypes hence they can bias the search in 

unpredictable ways. 

 

2- Cascade Correlation Algorithm [4] 

This type of evolving neural network does not use GA. It is a fairly simple 

and interesting way in finding the best neural network topology suitable for 

our problem. 

 

a- Introduction 

As seen in the previous parts, we encountered drawbacks in the way 

we used GA in building perfect neural network topologies. So, basically 

programmers needed another type of algorithm to build networks. The 

Cascade Correlation Algorithm is an algorithm that approaches the 

problem of building neural networks from another view using a different 
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approach which does not user Genetic Algorithms. A short description 

of this algorithm would be that the algorithm starts from minimal 

structure (no hidden nodes). It then trains the network and adds hidden 

nodes one by one. Each time it adds a new hidden node, the input side 

weights are frozen and the system is trained. This process is used until 

the network reaches a topology with a small margin of error. We will 

see a more general description of the algorithm later in this paper. 

 

b- Back-Propagation is Slow? 

One of the main reasons that led into establishing the Cascade 

Correlation algorithm is finding a problem for the ordinary back-

propagation learning algorithms. The problem is that back-propagation 

algorithms require lots of epochs to reach a solution (An epoch is 

defined as passing through all the training examples one time). Most of 

the times, we may reach a solution that does not suite our problem. 

We may sometimes reach a point where we never reach a solution. 

Basically, back-propagation is less desired due to two large factors: 

 

i) Step-Size Problem 

First reason that shows us why the back-propagation learning 

technique is less desired is the step-size problem. What we 

mean by this is that back-propagation uses in its calculation the 

first derivative of the overall error with respect to each weight in 
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the network only. In this way, we might miss the perfect solution 

while going backwards in the network and fixing the weights. 

Many solutions were introduced in order to try and fix this 

problem. One of the solutions is taking large steps which will 

help us find the solution directly but still, we are left with missing 

the right solution problem. Another solution is using a new 

concept called momentum. This concept tracks the weight 

changes in the network and finds the best solution for the 

network. A third solution suggested computing the second 

derivative of the total error with respect to each weight in the 

network. This solution encountered a major problem. The 

problem was that the curvature of the error function is not given 

in the network. One solution to the last problem was calculating 

explicitly the approximation of the second derivative and using it 

in the gradient descent. Finally, a solution came up that proved 

to be the most useful which became known as Fahlman’s 

Quickprop algorithm. Quickprop computes the first derivative  

as the usual back-propagation algorithm, but here instead of a 

simple gradient descent, Quickprop uses a second-order 

method, related to Newton’s method, to update the weights. 
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ii) The Moving Target Problem 

The second problem in the back-propagation learning technique 

is the Moving Target problem. This problem addresses the issue 

of the always changing weights in a manner that may never lead 

to a solution. This is due to the fact that in ordinary back-

propagation techniques, the hidden nodes do not communicate 

with each other in the network. In this manner, each weight 

connecting the hidden nodes to the output and input nodes is 

updated after each and every element of the training set. In this 

way, the weights will keep on changing and never settling down 

for a long time to see if one of the weights changed would be fit 

for the network or can actually be a solution for the network. 

One of the main problems found in the Moving Target problem 

is what is known by the herd effect. This effect occurs in the 

case where we have for example multiple hidden units and they 

have two training examples to train against. Let’s name those 

training examples A & B. Suppose that A always receives a 

greater margin error than B. All the hidden units will work more 

on fixing A’s problem leaving B on this side. Once A is solved, 

the units will see B’s problem and work on fixing it, and before 

they know, A would have begun having problems again. A 

solution to this problem would be allowing some of the weights 
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in the network to change at once and other weights to remain 

constant. This concept was also known as freezing the weights. 

  

c- The Algorithm 

The Cascade Correlation algorithm relies on two basic ideas. The first 

idea is called the cascade architecture, in which hidden units are 

added to the network one by one and these added nodes do not 

change after being added to the network. The second idea is the 

learning algorithm which will be used to create and add the hidden 

nodes needed. 

The Cascade Correlation algorithm starts minimally with no hidden 

nodes. It starts with its input nodes and output nodes. A bias is added 

as to the input nodes, and it’s always set to +1(Figure 1). 

 

Output 

Input +1 

Figure 1 
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As seen in the above figure, all inputs are connected to the output. The 

special feature used in this algorithm is that everything is connected to 

everything. 

The output in this algorithm can be calculated linearly by multiplying 

each input with the weight of the connection that connects it with the 

output and then adding the result of all those multiplications, or a non-

linear activation function can be applied. This algorithm has been 

tested positively using a symmetric sigmoidal function whose output 

range lies between -1 and +1. 

The algorithm adds hidden nodes one by one. Each time a new hidden 

node is added, it is connected to all other nodes in the system. What is 

meant by that is that it will be connected to all input and output nodes. 

In addition, it will be connected to all the previously added hidden 

nodes in the system. When this new node is added, all connections 

going into all hidden nodes are frozen and all the output connections 

are trained repeatedly. This is the basic idea of the algorithm. 

Now comes the question of when to add a new node? 

When the system starts minimally with no hidden nodes, we train the 

weights using any technique desirable. It could be the “delta rule”, the 

“Perceptron learning algorithm” or any of the well-known learning 

techniques for single-layered networks. We can also use the 

Quickprop algorithm described earlier. When used in single-layered 

networks, Quickprop acts like the “delta rule” algorithm. Regardless of 
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what algorithm we chose to use, we keep on applying that algorithm 

until our network reaches a point where the error difference is less than 

a certain threshold that we’ve set. If that condition is met, we run the 

algorithm one last time to measure the error of the system. Now we 

test for this error. If it’s less than a certain threshold that we, again, 

have set, we stop. If not, we add a hidden node to the network. The 

question how to add a node will be answered in the next paragraph. 

After adding the new node, as stated before, we connect it to all other 

nodes including previous hidden nodes (if found). Now we freeze all 

the connections going from the input nodes to all hidden nodes, and 

we train the system. 

Now, we move on to the process of how to add a new hidden node. 

We begin with a unit that will be called a candidate unit. This unit or 

node is connected to all input nodes and pre-existing hidden nodes 

with connections of random weights. At first, we will not connect it to 

the output nodes. It will be treated now as an output node, and we will 

apply the used learning algorithm on this little system that we have 

temporarily created. While fixing the weights of the new connections, 

we always try to maximize S where is S is defined by the following 

formula. 

 

where 

 



 Page 24 
 

 

 

 

 

 

 

In order to maximize S, we compute  the derivative of S with respect 

to all the current node’s input weights which can be computed by 

the following formula. 

 

where 

 

 

 

 

 

 

After computing  for each input connection at the candidate node, 

we perform a gradient ascent to maximize S. When S stops improving, 

we add the new candidate, freeze the connections that come into the 

new node, connect it to the output nodes and continue applying the 

algorithms to train the network and check for the error. 
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An addition to the algorithm would be using a set of candidate nodes, 

known as the pool of candidate units. Each of these units will have a 

set of random initial weights. In order to choose the right unit, we 

perform the steps explained above about maximizing S. At the end, we 

install the candidate with the best correlation score. In this way, we will 

have multiple candidates to fit into our system, and we get to choose 

the best of them. 

 

 

In Figure 2, we can notice how we added a new hidden node to the 

system.  

Output 

Input +1 

Hidde

n 

Figure 2 
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The connections going from the inputs to the newly added node are 

dotted meaning that they are frozen. 

 

 

In Figure 3, another, hidden node in the system. Notice how again all 

connections going to the new node are frozen, even those coming from 

other hidden nodes. 

 

d- Advantages 

- Quick learning 

- Network determines size and topology needed for itself 

- No back-propagation most importantly 

Output 

Input +1 

Hidde

n 

Figure 3 
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- Retains structure built even if training sets have changed 

 

3- NEAT (Neuro-Evolution with Augmenting Topologies) [2] 

This type of evolution used Genetic Algorithms to evolve the neural 

network from minimal topology using a new and improved way. This 

algorithm came as an answer to previous problems encountered while 

dealing with the evolution of neural networks using genetic algorithms. 

The basic three problems that NEAT works on fixing are competing 

conventions, protecting innovation with speciation and initial population 

and topological innovation. 

 

a- Competing Conventions 

There can be lots of ways to represent a graph. This is the competing 

conventions problem also known as the permutations problem. 

Basically, it means that we can represent our network in multiple ways 

thus leading to problems when applying crossover between networks 

that can be the same but because of their different representation 

appear to be different. 

In Figure 4, we see an illustrated form of the problem faced. In this 

figure, both networks are the same but they are represented in a 

different way. Now, if we apply a crossover between those two 

networks, we will see that we will lose data from the networks and this 

data will be a hidden node. As seen in the same figure, the results of 
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the crossover gave us two offspring. In each of these two offspring, 

there is a node missing. The correct answer must have the same 

topology as the one of the parents’ since both have the same topology. 

We need a way to keep track of the network’s structure to know how to 

apply crossover between networks. 

 

 

 

A B C C B A 

C B C A B A 

Results of the crossover 

Figure 4 
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b- Protecting Innovation with Speciation 

The second problem occurs when adding new structures to the 

population. The new structures’ fitness will be low at first hence they 

are in danger of being removed from the population in the next 

generation. So basically, what we need is a way to protect these new 

networks and give them a chance to improve before we put them 

under the microscope and test for their fitness. 

 

c- Initial Population and Topological Innovation 

The last problem relies trying to know how to start. We’ve seen several 

ideas on how to begin. What we mean here by how to begin is 

deciding on the initial topology (structure) of the network. Most of the 

old algorithms that used the concept of evolution have started with a 

random number of hidden nodes. NEAT argues that the reason that 

the reason why most of those algorithms have failed to deliver good 

results was according to that factor.  

Now we reach the part where we begin to explain the NEAT algorithm in 

detail after having explained the problems that have lead to the rise of 

NEAT. In the next part, we will address the structure used in NEAT, plus 

we will talk about how NEAT solved each of the arising problems talked 

about in the first section. 
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I. Genetic Encoding 

NEAT came as an answer to the problems faced while using the 

concept of evolving neural networks using GAs. One of the problems 

faced was the genetic representation used in previous algorithms. 

NEAT uses a simple way of representing genes and genomes, and this 

way has proved to be very effective in a positive way to the evolution 

process. NEAT’s gene representation was designed in a way to make 

it easier to apply crossover between two genomes. The NEAT uses 

two types of genes. These genes make up the genomes. A genome in 

NEAT is a network structure itself. The two types of genes are 

connection genes and node genes. 

 

i) Node Gene 

This gene represents the nodes in the network. Its structure 

contains mainly two things: its name or ID in the network, and its 

type (input, hidden or output). 

 

ii) Connection Gene 

The connection represents the connections that connect two 

nodes in a network. This gene’s structure contains more things 

than the node gene. It first contains two node pointers: one for 

in-node, and one for the out-node. Second, it contains the 

weight of this connection usually a floating point number. It also 
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contains a Boolean that expresses whether this connection is 

enabled or disabled. Finally, it has a number called the 

Innovation Number. The Innovation Number acts like an ID for 

this connection. This is used mostly in crossover function 

(explained later). 

 

After seeing how genes are represented, let’s see how genomes are 

formed in the network. Then we’ll see how phenotypes can be 

acquired from genomes (genotypes). Figure 5 illustrates the general 

representation of a genome. As you can see, it is made of two lists: 

node gene list and connection gene list. The node list contains all 

nodes present in the network. Each node has its ID and it states 

whether it’s an input, a hidden or an output node. The connection gene 

list contains all the connection found in the network. Each connection 

gene has two pointers telling us what nodes this connection connects. 

Then, we can see the weight, and the Boolean to tell us whether this 

connection is turned on or off. Finally, we see the innovation number 

which acts as the ID for this connection. Please note that connections 

that have same in and out node have the same innovation number 

even if this connection was added later in a future generation. 
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Figure 6 shows us what the phenotype of the above genome will look 

like. The dotted connections mean that this connection is disabled. 

Now, we will talk about mutations and how they occur in NEAT. NEAT 

has two types of mutations that happen during the evolution process. 

Mutation can either add a new connection or add a new node to the 

network. Both mutations will help the network get larger. This shows us 

how the evolution part of the network occurs. 

 

i) Add Connection 

This type of mutation adds a new connection to the network. A 

new connection means that a new innovation number has to be 

assigned to this new connection. Where to add this new 

connection can be at a random place and the weight of this 

connection is also random. Note that this new connection will 

now connect two nodes that were not connected previously in 

the network. This process is illustrated in Figure 7. The added 

connection has the color red. The new connection got the 

Innovation Number 8. 

 

ii) Add Node 

This type of mutation adds a new node to the network. For sure, 

the type of this node is a hidden node (input and output node 

number is fixed throughout the process). In here, an existing 
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connection is split and the node is added in between the two 

nodes that were connected by the chosen connection to be split. 

The old connection (the one split) will be set to disabled. Two 

new connections will be added to the network. The new 

connection going into the new node added will receive a weight 

of +1, while the connection going from the new node to the out-

node of the old connection will have the same weight of the old 

connection. Figure 8 shows us the add node mutation process. 

The new node added has the ID 8. Notice how connection of 

Innovation Number 7 is disabled and two new connections are 

added to the system. 
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This process of mutation will gradually help the network grow up into 

larger networks and converge towards the perfect network structure 

solution. 

 

II. Tracking Genes through Historical Markings 

This section talks about the way to solve that Competing Conventions 

problem. The solution was to add a small number of which we now 

know as the Innovation Number. This number will mostly help us in the 

crossover process. As illustrated before, the competing conventions 

problem occurred when we were applying crossover between two 

nodes of the same structure. Now, using the Innovation Number, the 

crossover is much easier and much more effective. All we have to do is 

match up genes with the same Innovation Number and leave them as 

they are in the new network, while the non matching genes will be 

added two as is to the network. Now the question is: how to choose 

what connection genes to take between matching genes. Figure 9 

shows us the first of two parents that we’re going to apply crossover to. 

Figure 10 shows us the second parent. 
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Figure 11 shows us the result of the crossover when it happens 

between the two parents shown above. First, we lay out all the genes 

and sort them by their Innovation Number. All genes in Parent 2 whose 

Innovation Number is less or equal than the maximum Innovation 

Number in Parent 1 and that are not found in Parent 1 are called 

Disjoint genes. All genes in Parent 2 whose Innovation Number is 

larger than the maximum Innovation Number in Parent 1 are called 

Excess genes. Matching genes are chosen randomly from the parents 

to be in the child. Non matching genes are taken from the fittest parent 
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and put in the child. In case, both parents have the same fitness, non 

matching genes are chosen again randomly.  
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III. Protecting Innovation through Speciation 

One of the previous problems that we talked about is that when a new 

child is introduced into the population, its fitness will be very low hence 

making it a candidate to be deleted in the next generation. We do not 

want this effect; instead we want this new child to grow up and then 

compete. In other words, we want to find a way to protect this child 

while it grows up. This is where the concept of Speciation comes into 

play. We will divide the population into smaller species. Networks will 

be grouped into species according to their genotype, meaning that 

networks of same structure will be in the same group. In this way, we 

will networks compete in their own niche and grow up in there, and 

then come back and compete in the population at large. 

Networks of different topology can be added to species too by using a 

compatibility distance function to check how compatible these two 

networks can be. Below is the compatibility function: 

 

where 
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We will specify a compatibility threshold  to check for compatibility 

between two genomes. If the current genome is compatible with any of 

the present species, it will be added to that species; else we create a 

new species and add the current genome to it. 

In NEAT, an explicit fitness sharing is used. In this manner, a species 

cannot become too large and take over the whole population because 

the solution will converge to whatever species performs best at first. 

What we do is that we adjust the fitness of the genomes in the species 

to represent the whole genomes in that species using the function 

below: 

 

where 

 

 

 

 

 

 

 

Now species reproduce by first removing the genomes with lowest 

fitness in the population. Then the population is replaced by the 

offsprings of the remaining genomes in the population. After that, we 
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perform a technique, also known as clustering, where we divide the 

offspring into species according to their topologies. 

 

IV. Minimizing Dimensionality through Incremental Growth from Minimal 

Structure 

The last problem was finding out how to start with the algorithm. What 

we mean by that is choosing the initial topology that we start applying 

the algorithm to. We know that the number of input nodes and output 

nodes is fixed and cannot change, so our problem is finding the right 

number of hidden nodes to begin with. Most of the old algorithms have 

started with a random number of hidden nodes to begin with. Starting 

randomly might give us a network structure that already passed the 

perfect topology required. For example, let’s say that the random 

generator gave us 3 hidden nodes. Starting from that number of nodes, 

we perform our evolution algorithm and the solution returned was 3 

hidden nodes. The question asked here is what if we started with 0 

number of hidden nodes and the perfect solution was 2 hidden nodes. 

NEAT states that it’s best to start with no hidden nodes and build up. 

This is the concept of starting minimally to reach the minimum solution 

size desired. 
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7 Deconstructing a Neural Network 
 

Neural network structures can grow to be very large and complex, with many 

connections (and consequently many weights to store). Large networks require 

large memory space for storage. We have seen several ways to prune networks 

that try to minimize this complexity without sacrificing accuracy significantly. 

These methods can be quite complex and often leave us with large networks. 

We will propose a different approach to this process of simplification. We 

extract an analytic function of minimal complexity that has the same behavior as 

the network, to a certain error-tolerance level. We show that the resulting 

expression can involve significantly fewer parameters than the given network, 

leading to a compact equivalent function. 

When viewed as a network, our equivalent function can be very different from 

the original network. It uses only the polynomial terms (in inputs) that are 

indispensable in capturing the functionality of the original network. Since it is 

based on the original network’s parameters (and not on the training data), any 

inaccuracies in the latter will be translated to our representation as well. 

However, any redundancy in the original network will be eliminated in our 

representation. 
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xi   

Hj  

  O number of output nodes 

N number of hidden nodes 

M number of input nodes 

7.1 Our Approach 
 

The function captured by a given neural network can be represented in many 

ways. We use a Taylor series [9] representation of the function and calculate 

progressively higher order terms of the series from the weights of the given 

network. We first illustrate our approach with functions that are quadratic in their 

inputs. Later, we extend this approach to higher order polynomials, making way 

to a more general Taylor series representation for an arbitrary unknown function.  

In this paper we focus on networks with a single hidden layer, and using a 

sigmoid activation function. Since such networks can capture any bounded, 

continuous function, our approach has a wide applicability. 
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The functional form of the output of the network is 

 

where 

 

 

 

 

 

where 

 

 

 

Our representation of the output using a quadratic function is 

 

where 

 

 

 

Our task is to compute the values of all the constants in the above equation. 

From now on, we will assume that the network has a single output node. If there 
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is more than one output node, our approach simply needs to be replicated on 

each additional output, which is a straightforward extension. In the following, 

method i) stands for the first method of computing the output (of the network) 

using the sigmoid activation function, and method ii) stands for the second 

method of computing the output (of the equivalent function) from equation (1). 

 

1-  

To find this value, we find the output using both functions with all inputs 

set to zero. 

 

 

 

therefore 

 

 

2-  

To find this value, we first differentiate the output function with respect to 

 and then set all inputs to zero.  
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therefore 

 

 

3-  

To find this value, we find the second derivative of the output function with 

respect to  and then again we set all inputs to zero. 
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therefore 

 

 

4-  

To find this value, we find the derivative of the output with respect to  

and then with respect to , and then again we set all inputs to zero. 

 

 

 

 

therefore 
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Thus all the coefficients in equation 1 can be computed from the known weights 

of the network, producing the equivalent quadratic function of the inputs.  

 

7.2 Extending our Approach 
 

It is possible to extend the above method to any polynomial function. We note 

that the number of constants to be calculated depends on the number of inputs 

we have and the degree of the polynomial we want to use to capture the 

network’s functionality. The number of constants, A, needed for a polynomial of 

degree P given a network of M inputs, is: 

 

where 

 

Now suppose we want to compute the coefficient for , it is given by 

 

 

where 
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7.3 Taylor Series representation 
 

 In general, any differentiable function taking a vector as input can be 

represented as the Taylor series expansion 

 

 

 

where 

 

 

 

To apply this formula to our network, we set f to be the network output function 

which is the same as . Then we set the vector . Now, we 

calculate each term j = 0, 1, 2… in the following way: 

For j=0, we get  , as before. 

For j=1, we get  

For j=2, we get 

 

and similarly for j = 3, 4,... 
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In the end, we will get our network output function as a polynomial. 

 

7.4 Multinomial Expansion 
 

 In order to compute the jth term in the above Taylor series expansion, we use 

the Multinomial Expansion theorem [12]: 

 

 

where 

 

 

 

 

 

Now, we can replace in the formula (3) by: 

 

It can be shown that the above expression for the j-th term of the Taylor series is 

the same as equation (2). 
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The above representation looks so hard and almost impossible to code. This is 

why we elaborated this formula to reach one that would be simpler to code. 

 

It can be shown that the above expression for the j-th term of the Taylor 

series is the same as equation (2), under the following approximation for the k-th 

derivative of the sigmoid function: 

 

Although this approximation is valid for lower order terms (first and 

second), it deviates from the true value increasingly for higher order terms. For 

instance, the third derivative of s is actually 

 

which is slightly different from the approximation that we use which is 

 

 

Despite this discrepancy, this approximation serves to simplify our algorithm 

and works well with our intended applications, which seeks mostly lower order 

terms. 

Applications with many inputs seldom require higher order terms (linearly 

separable), and for those that do, the Taylor series will have many more terms 

than weights in the network, defeating the purpose of our approach. 

Consequently, it is important to note that although our approach applies to a wide 
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variety of problems where a neural net has been acquired, it cannot be applied 

beneficially in many problems where a neural network is a more succinct 

representation of a function compared to its analytical form. 

 

8 Analysis and Experimentation Plan 
 

The first point of note is that we have ignored bias weights of a neural 

network in all of the above steps, for simplicity. It is a straightforward matter to 

incorporate the bias weights in the above equations. Secondly, the equivalent 

function computed by the above procedure can be very different from the original 

network. It uses only the polynomial terms (in inputs) that are indispensable in 

capturing the functionality of the original network, while the latter is not limited to 

polynomials. For example, consider a neural net for computing the XOR boolean 

function. For binary inputs x, y, our approach yields coefficients that 

approximately represent x+y-2xy, which is equivalent to XOR(x,y). Notice that the 

neural net would need at least 2 hidden units for capturing this function to a high 

accuracy, necessitating at least 9 weights (including the bias weights). In 

contrast, the proposed method can capture the same functionality with only 3 

non-zero coefficients. 

It is also noteworthy that since our method is based on the original network’s 

parameters (and not on the training data), any inaccuracies in the latter will be 

translated to our representation as well. However, any redundancy in the original 

network will be eliminated in our representation. 
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 It is also important to state that the number of constants in the equation is 

proportional to the number of inputs and outputs in the network and has nothing 

to do with the number of hidden nodes. Taking the XOR example again, it has 2 

inputs and one output resulting in 6 constants in case we are using a second 

degree polynomial which proved sufficient to come up with a decent solution. On 

the other hand, in the regular representation that would need approximately 9 

hidden nodes resulting in 20 values that need to be stored. The number of 

floating point numbers saved in this small example is quite high. Given a network 

with 5 inputs and 3 outputs and n hidden nodes: 

 

Number Of Hidden 

Nodes  

Number Of Float 

Numbers (Weights) 

Number Of Constants 

Using power 2 

10 80 21*3 

20 160 21*3 

30 240 21*3 

40 320 21*3 

50 400 21*3 

 

On the other hand, the approximation will require much more constants with 

every power increment. Given now the same network (5 inputs and 3 outputs) 

but this time 10 hidden nodes (80 float numbers or weights): 
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Power Number Of Constants 

1 6*3 

2 21*3 

3 56*3 

4 126*3 

5 252*3 

 

As you can see, the number of constants grew quickly every time we increased 

the power (degree) of the polynomial. In most cases, a second degree 

polynomial gave us acceptable results. 

We tested our approach in another way. We took an arbitrary neural network 

with M input nodes, N hidden nodes and O output nodes. We initialized all 

weights between all nodes to a random value ranging between -1 & 1. We used 

the resultant network as input to our algorithm and tested for results for random 

values to check the error margin between the outputs of the two algorithms. The 

average margin of error was around 0.0001 using a 2nd degree polynomial. At 

times, the error was as low as 0.0000001. A drawback occurred with every high 

degree polynomials i.e. degree 10. While using high degree polynomials, we 

noticed that at time the network will sometimes generate results of an error 

margin of 10 or 100 at times. After looking at the problem and analyzing it, we 

figured out that precision for small values multiplied at high degrees can result in 

such abnormalities especially that the derivative approximation can result in 
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I1 I2 

H1 

O 1 output node 

4 hidden nodes 

2 input nodes 

H2 H1 H3 

errors. Further studies for the program can be done as future work to improve the 

stability of the program. Until now, the program has proved useful in many cases. 

 

8.1 Example 
 

Take an example of a network with 2 input nodes, 4 hidden nodes and one 

output node. This network results in 12 float numbers to store. Using a second 

degree equation, we need 6 constants to represent the network. 

 

 

Given the trained network weights: 

a) I1H1 = -1.0; I1H2 = 0.5; I1H3 = -0.6; I1H4 = 0.4 

b) I2H1 = 1.0; I2H2 = -0.7; I2H3 = 0.9; I2H4 = 0.25 

c) H1O = 0.35; H2O = -0.95; H3O = 0.65; H4O = -0.15 
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So the polynomial is: 
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Inputs (I1, I2) Sigmoid 2nd degree 

equation 

Error 

(0,0) 0.487503 0.487503 0.0 

(1,0) 0.411762 0.408182 0.00358 

(0,1) 0.578944 0.585574 0.00663 

(1,1) 0.505544 0.505476 0.000068 

(0.5,0.5) 0.496495 0.496485 0.000010 

(0.25,0.75) 0.539744 0.540932 0.001188 

(0.75,0.25) 0.452628 0.452236 0.000392 

 

Two tests were made on point going from 0 to 1; one with an increment of 0.01 (a 

total of 10000 points) and the other with an increment of 0.001 (a total of 

1000000 points). The results came as follows: 

 0.01 0.001 

Largest Error 0.006445 0.006612 

Error < 0.00001 944 93994 

Error < 0.000001 228 22625 

Error < 0.0000001 26 2454 

Error < 0.00000001 3 246 

The tables above show some good results. The error term is minimal in many of 

the cases but still, there are some cases where the error is large but as shown 

the maximum error was about 0.6%. 
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In both graphs, x-axis is in red, y-axis is in green, z-axis is in blue, original’s 

network output in white and polynomial output in black. 

 

The graph representing the reached polynomial (in black) using a 0.01 increment 

on points going from 0 to 1 is compared to the original network’s function (in 

white) in the following figure: 

 

 

The graph representing the reached polynomial (in black) using a 0.001 

increment on points going from 0 to 1 is compared to the original network’s 

function (in white) in the following figure: 
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Both graphs show that our result and the result generated from the network are 

really close in values in this particular case. 

 

8.2 More Results 
 

  Several other results were reached using random weights for the 

connections on different networks with different topologies. For each network 

topology, 1000 samples were taken randomly and the points were incremented 

from 0 to 1 using a 0.01 increment. The table below shows the average error in 

each case: 
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Network Topology Average Error 

2 inputs, 4 hidden, 1 output 0.00514368 

2 inputs, 6 hidden, 1 output 0.00663347 

3 inputs, 6 hidden, 1 output (with one of 

the inputs fixed to 0.0) 

0.00655637 

3 inputs, 6 hidden, 1 output (with one of 

the inputs fixed to 0.5) 

0.00818654 

3 inputs, 6 hidden, 1 output (with one of 

the inputs fixed to 1.0) 

0.012859 

 

8.3 Drawbacks 
 

 In this section, we will focus on the drawbacks of our algorithm; that is 

illustrating the points where our algorithm has failed. It is noticeable that the 

algorithm fails every time we compute results that are far from the origin of 

approximation (in our case ). The following example shows clearly the flaws of 

this algorithm at some of its points. We considered a more complicated neural 

network with 3 inputs, 10 hidden nodes and 1 output node. We will show 11 

examples (figures) each having one of the inputs fixed at a point incrementing by 

0.1 from 0 to 1 and the other 2 varying from 0 to 1 using a 0.01 increment. 
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One of the weights is fixed at 0.0. Largest error is 1.228560 

 

One of the weights is fixed at 0.1. Largest error is 1.172808 
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One of the weights fixed to 0.2. Largest error is 1.111509 

 

One of the weights fixed to 0.3. Largest error is 1.045970 
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One of the weights fixed to 0.4. Largest error is 0.978146 

 

One of the weights fixed to 0.5. Largest error is 0.910438 
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One of the weights fixed to 0.6. Largest error is 0.845444 

 

One of the weights fixed to 0.7. Largest error is 0.785721 
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One of the weights fixed to 0.8. Largest error is 0.733625 

 

One of the weights fixed to 0.9. Largest error is 0.691170 



 Page 70 
 

 

One of the weights fixed to 1.0. Largest error is 0.659660 

 

As you can see from this example, our approximation failed at several points in 

the network thus resulting in large errors. This can be due to the fact that the 

degree of the polynomial used cannot approximate the network’s original 

function. We should have used a higher order polynomial. 

A solution to this problem may be dissecting our space into smaller partitions 

where each partition has its own approximation function at a certain point. 

Currently, our algorithm approximates the neural network at the point . This has 

resulted in all the errors in our program. We think that if we approximate the 

network at several points in space and then for each given point, we calculate its 

result using the function that gives us the best result. In other words, we group 

our points into partitions, and we associate to each partition a polynomial that 
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best represents the network within this partition. The drawback of this method is 

storage space since we now have to store more constants to represent all 

polynomials around our space. 

 

9 Conclusion 
 

 In conclusion, we find that our algorithm holds a new and nice representation 

of the neural network. It proved to be memory efficient for those interested in 

saving memory space. It proved to give results close enough to the actual neural 

network with a tolerance to the error resulted. 

As you can notice, the error term gradually increased when we started 

getting farther from the origin. This is due to the fact that the Taylor Series 

approximation was done at the vector . This means that the function will lose 

precision far from that point. 

Nevertheless this algorithm has proved to be useful in several cases where the 

problem concentrates around the origin. 

If we go back to the example in 8.1, its computational needs are as follows: 

 

i) 12 multiplications 

ii) 12 additions 

iii) 5 divisions 

iv) 5 exponentials 
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In our approach this computational needs will be reduced to: 

 

i) 8 multiplications 

ii) 5 additions 

The difference is clearly seen now. Not only our approach is memory efficient, 

but it needs fewer computations to achieve an acceptable result. It’s still true that 

our approach will fail once we get far from the origin where we originally 

approximated our function. 

Throughout this paper, we have looked at several methods to better improve the 

representation of our neural networks as well as find better ways to find the best 

topology for any given network. Our approach dealt with the problem from 

another window where we tried simplifying the network to a simple polynomial 

that can be read by anyone. Our experiments succeeded at times with flying 

numbers but also fell into problems in several other cases. Further work will 

continue to improve more the efficiency of this algorithm.  

 

10 Future Directions 
 

This approach approximates the sigmoid function using the Taylor series at 

the origin. Our future work includes expanding the representation and test among 

differences in approximations across other points. 
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This approach deals with approximating a neural network whose activation 

function is the regular sigmoid function . An expansion to that 

approximation could done by using an approximation for any sigmoid 

function , where n is a scaling value for the network. 

 Another thing to do is apply this algorithm to a more complex problem 

such as a game. Currently, neural networks are not included much in games due 

to their complexity and high storage space that they require when modeling 

complex agent behaviors. This approach could be used to help enter the neural 

networks more into the gaming world because of its simplicity to program and the 

results would still be the same. 

 Another approach to be added to the program would be working on neural 

networks that use different activation functions. But, since the sigmoid function is 

the most commonly used as an activation function for neural networks, we have 

decided to use it here. 

 As mentioned in section 8.3, one of the most innovative ideas to be 

touched in the future is dissecting our space (any dimension) into several 

partitions. Since in our approach the error tends to increase when we get farther 

from the origin of approximation, we can create an area around this origin where 

this polynomial will be used. Then we approximate the network at another point 

in space being in the center of the next partition. In this way, we think we can 

guarantee good results along our entire network’s space. The drawback of this 

method is storage space because then we will have to save multiple polynomials 
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representing each region in space, but run-time computations will be the same all 

over the regions. 
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