©Copyright 2013 DigiPen Institute of Technology and DigiPen (USA) Corporation. All
rights reserved.

Rendering Techniques for Cloud Volume Densities with Shadows

BY
Nicolas Giulietti
Bachelor of Science, Real-Time Interactive Simulation
DigiPen Institute of Technology, May 2008

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science
in the graduate studies program
of DigiPen Institute Of Technology
Redmond, Washington
United States of America

Fall
2013

Thesis Advisor: Dr. Garry Herron

il

DIGIPEN INSTITUTE OF TECHNOLOGY
GRADUATE STUDY PROGRAM
DEFENSE OF THESIS

THE UNDERSIGNED VERIFY THAT THE FINAL ORAL DEFENSE OF THE

MASTER OF SCIENCE THESIS OF NICOLAS GIULIETTI

HAS BEEN SUCCESSFULLY COMPLETED ON NOVEMBER 25, 2013

TITLE OF THESIS: RENDERING TECHNIQUES FOR CLOUD VOLUME

DENSITIES WITH SHADOWS

MAIJOR FILED OF STUDY: COMPUTER SCIENCE.

COMMITTEE:

Gary Herron, Chair Jason Hanson

Pushpak Karnick Xin Li

APPROVED:

Dmitri Volper date Xin L1 date
Graduate Study Program Director Dean of Faculty

Dmitri Volper date Claude Comair date
Department Chair of Computer Science President

The material presented within this document does not necessarily reflect the opinion of the Committee, the

Graduate Study Program, or DigiPen Institute of Technology.

il

INSTITUTE OF DIGIPEN INSTITUTE OF TECHNOLOGY

PROGRAM OF MASTER’S DEGREE
THESIS APPROVAL

DATE: 11/25/2013

BASED ON THE CANDIDATE’S SUCCESSFUL ORAL DEFENSE, IT IS
RECOMMENDED THAT THE THESIS PREPARED BY
NICOLAS GIULIETTI

ENTITLED
RENDERING TECHNIQUES FOR CLOUD VOLUME DENSITIES WITH
SHADOWS

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF MASTER OF COMPUTER SCIENCE FROM THE PROGRAM OF
MASTER’S DEGREE AT DIGIPEN INSTITUTE OF TECHNOLOGY.

Gary Herron
Thesis Advisory Committee Chair

Dmitri Volper
Director of Graduate Study Program

Xin Li
Dean of Faculty

The material presented within this document does not necessarily reflect the opinion of the Committee, the

Graduate Study Program, or DigiPen Institute of Technology.

v

Table of Contents

F N o 1 2T AU UROTUPRPUPPR 1
Chapter 1: INtroOAUCTION.ccuiiiiiiieeiie e et e et e e atee e e ensaeeee s 2
Lol GOAL ettt ettt e et esnte et e e e ennaeas 3
L @ ¥ o2 1112110) FO PSSP 3
Chapter 2: Volume Rendering EQUAtion...........cc.cocueviiiiiiiiniiiinieneeeece e 4
CRAPLET 32 SUIVEY .c.utiiieiiieeiie ettt ettt e e e et e e et e e s abee e esteeesseeetteeesenssseeeeeannnseeeaeans 14
3.1 Techniques Used for Modeling Clouds.........c..cccuerieniiiiinieneniiinieeeieneeniecseeee 14
311 TNEOAUCHION. ...ttt ettt e et e e 14

3. 1.2 Particle SYStEIM.....cc.eeruiiiiiiiiiiiiieeit ettt 14
3.1.2.1 Modeling Clouds..........cecuieiiieiiieeiieiieeie et eivee e raee e 15

3.1.3 VOIUME TEXLUTE.....couiiiiiieiieeieeiie ettt ettt ettt ae e e e ens 15
3.1.3.1 Modeling Clouds..........coouiiiiieiiieniieiiesie et eree e e eraee e 16

Bl IMIESI. ..t st e et e e e nnnaeeen 17
3.1.4.1 Marching CubeS........cc.ceveiiiiiiiieeieeiee ettt seeebeestee e e sseeearaeeenees 17

3.1.4.2 Modeling CloUdS........coviriiiiniinieeieeienieeeneseete et 21

3.2 Techniques Used for Rendering Clouds............cceevvierieiiiieniieiieiiecieeceeeiee e 22
3.2.1 INtrOAUCTION. ..c.uiiiiieiieite ettt ettt e e et eeebaeeeas 22

3.2.2 PartiCle SYStEML....ccccuiiiiiiieeiie ettt ettt ettt e e e e e e e 22
3.2.2.1 BillDOArding.......c.eevuiieiieiieeiieiee et e 23
3.2.2.1.1 Screen-Aligned Billboarding............cccccveevuierieenieniiieeeiee e 24

3.2.2.2 Rendering Clouds Using a Particle System.........cccccocevievincniicinncnnne. 25
3.2.2.2.1 Shader Constant INStancing............ccceeevrerieriieenieniieenieeieesieesiee s 25

3.2.2.3 Spherical Billboards..........ccccooerieririiniiiiiiiieieneeeee e 25

3.2.3 Volume Ray TraCing........ccceuieeiiiieiiieeiieeeite et eetee et e e e areee e e 28
3.2.3.1 Rendering Clouds Using Volume Ray Tracing.........ccccecevvevericnneennnen. 28
3.2.3.1.1 Transfer FUNCHION........ccceiiiiiiiiiiiiniieeceeeeeeeeeee e 29

3.2.4 FOg Polygon VOIUMES.......cc.ceuiriiniiiiiniiiieeieeitce ettt 29
3.2.4.1 Rendering Clouds Using Fog Polygon Volumes............cc.cccceuvveerreeennne. 30

3.3 Techniques Used for Rendering Cloud Shadow...........ccoceveiiiiniiiniiiniiiniiiiecs 32
3.3.1 INITOAUCHION. ...ttt ettt sttt e e 32

3.3.2 Surface ShadOWs.......coouiiiiiiiiee et 33
3.3.2.1 Traditional Depth Shadow Map..........cccveviieniieniiniieeeeieeieecee e 33

3.3.3 VOlumMEtric ShadOWS.......cciuiiiiiiiiieiieiieee ettt 34
3.3.3.1 Deep ShadoW Map........c.cocuieiiieiieiieeieeieeee et e 35

3.3.3.2 Opacity ShadoW Map........ccoerviiriiniriiiiiiecceeece e 38

3.3.3.3 Half-Angle SHCING.......ccoiiiiiiiieeiieiece et 39

3.3.3.4 Deep Opacity Map.....cccoeereriiniiiieienieeieeesteeete sttt 42

3.3.3.5 Fourier Opacity Map........cccceeecuiiiriiieeniieesiieeeieeesieeesvee et ae e 44

Chapter 4: RESULLS.c.eiiuiiiiiieieeee ettt et 45
4.1 PLatfOrI. et 46
4.2 Rendering Clouds of Smoke with Shadows..........ccccecieviriiniiiiiiiniieeee 46
4.2.1 SPEEA RESULLS.....eviiiiieiiieiiecieeee ettt ettt e sae e e ese e 46

4.2.2 AccuraCy RESUILS.oouiiiiiieiieie et e 48

4221 TIMAEES...eiuvieeiiieeiite ettt ettt ettt et

4.2.2.2 AccuraCy COMPATISON......ccvierureeireerrieerienieesseeseeesseensseesseesseenseesssesssseess 51

4.2.3 Rendering Clouds of Smoke with Shadows Analysis.........cccccuvveeeeriiiieeeeennns 57
Chapter 5: Conclusion and Future Work...........ccccoecieriiiiiiinieiiieiecieeeeee e 59
RETRIEIICES. ...ttt ettt et st e e b e s nee e e 61

vi

Abstract

The purpose of this research is to analyze and compare different approaches to
cloud volume (smoke, steam, and dust) rendering with shadows for computer graphics in
order to determine levels of accuracy and performance for each method. Accuracy is a
measure of realism, and performance is a measure of speed for a fixed amount of
memory. Traditional surface rendering techniques are not appropriate for rendering of
semi-transparent cloud volumes. Instead, techniques that consider the volumetric
qualities of clouds should be used. Also, modeling of clouds is generally different from
that of modeling surfaces, because clouds have inner densities that surfaces do not have.
Shadows are an important part of the appearance of clouds. They allow for more accurate
representations of clouds by adding essential visual cues. However, shadow techniques

may have artifacts that impact overall accuracy or realism of an image.

In order to determine levels of accuracy and performance for methods of
rendering clouds with shadows, the author surveyed the field of rendering techniques for
cloud volumes with shadows, implemented several techniques, and analyzed different
approaches. Accuracy and performance results of all implementations were compared

with each other.

Chapter 1: Introduction

For the purposes of this paper, we use the word “cloud” to mean any volumetric
cloud density such as a cloud of smoke, steam, or dust. The visual appearance of a cloud
can be quite interesting. It can take on many shapes and sizes, and have various densities.
Some clouds are semi-transparent, while other more dense clouds are more opaque. The
interaction of light and clouds is of special interest, because it is what gives the clouds
their characteristic look. An important characteristic of the look of clouds is the
appearance of shadows in them, and around them. Shadows give us visual information
that allows use to make judgments about the clouds, and the space that they are in. For
example, they can give us an ideal about how far the clouds are from other objects. They
can tell us a little about how thick or dense parts of the clouds are. If there is a light in the
area of the clouds, shadows can sometimes give us an ideal about where the light is

coming from.

In computer graphics, there are several popular ways to represent clouds.
Choosing one over another can significantly change the look of the final image that is
drawn. One representation may be particularly less accurate than another for drawing
clouds. In addition, the performance gained by choosing one representation over another
can be large. The memory usage between different representations for a desired level of
accuracy varies too. Perhaps one representation is particularly suited for rendering one
type of cloud better than the others. Where one representation may fail, another may
excel. In fact, some representations were developed as a result of the shortcomings of
another. Cloud rendering is a combination of a modeling technique, a volume rendering

technique, and a volume shadowing technique.

1.1 Goal

The aim of this research is to analyze many of the techniques, and determine
levels of accuracy and performance for drawing an image of clouds using vertex and
pixel shaders based on results produced by implementations and experiments. For the
purposes of this paper, we define accuracy as a measure of realism, and performance as a
measure of speed for a fixed amount of memory. To be clear, the goal is to determine
levels of accuracy and performance for a single combination of a modeling technique, a
rendering technique, and a shadowing technique. A side effect of the research is
determining the levels of accuracy and performance of cloud modeling, rendering, and
shadowing techniques separately. The research should show which techniques are more
suitable for different situations including desired accuracy, performance, and cloud
appearance. In addition, we aim to organize and layout the progression of the field of

cloud volume graphics with shadows for reference.

1.2 Organization

The research is organized by first developing several volume rendering equations
that are referenced in every volume rendering technique that follows. There are three root
sections in chapter 3. The first section starts with how clouds are modeled using different
modeling techniques. The next section is an examination of various techniques used to
render the clouds modeled in the previous section, and the final section of chapter 3 deals
with how cloud volume rendering is extended with shadows. The order in which each
technique was originally developed was preserved, so that the research shows how the
field progressed. Chapter 4 lists results from the experiments performed with our
implementations, compares the results, and explains the results. In addition, it explains

how we compare accuracy or realism for different shadow techniques.

http:memory.To

Chapter 2: Volume Rendering Equation

This entire chapter consists of an explanation and derivation of several useful
volume rendering equations. Some of the equations are used throughout the entire paper.
All of the material in this chapter came from chapter 1 of the book called Real-Time

Volume Graphics. [EHKRWO06]

The physics behind volume rendering relies on geometric optics. Light is assumed
to travel along a straight line unless interaction between light and participating medium
takes place. The interaction between light and participating medium can be described by
emission, absorption, and scattering. Emission occurs when a material emits light. In
reality, hot gases emit light by converting heat into radiative energy. Absorption occurs
when light travels through a material that converts the light into heat, so that light energy
is reduced. Scattering occurs when a material changes the direction of light propagation.
If the wavelength (or energy of photons) is not changed by scattering, the process is
called elastic scattering. Conversely, inelastic scattering affects the wavelength, and will

not be considered in this paper.

Radiance 7 is a measure of energy of light which is affected by emission,
scattering, and absorption. Radiance is defined as:
1= __d0
dA, dQdt
where Q is radiative energy, 4, is a unit of area projected along the direction of the
light, € issolid angle, and ¢ represents time. 4,=4 cos(9) ,if 9 isthe angle

between the light direction and the normal vector on the surface of 4.

Emission In-Scattering Out-Scattering Absorption

Hur

Energy Increase Energy Increase Energy Decrease Energy Decrease

Figure 1: Interactions between light and participating media that affect the radiance
along the ray.

By combining the absorption, emission, and scattering effects, the following

equation for the transfer of light is obtained:

0V I(X,0)=—yI(X,n)+n
The term -V, is the dot product of the light direction ® and the gradient of radiance /
with respect to position x. The dot product describes the directional derivative taken
along the light direction. The term 7 is the total absorption coefficient or attenuation,

and the quantity m is the total emission.

The total absorption coefficient ¥ consists of true absorption k, and scattering
coefficient o .Bothkand o represent energy loss. The total absorption coefficient

can be written as
X=k+o

The total emission coefficient M consists of source term ¢, and scattering term ;.

Both g and j represent energy gain. The total emission coefficient can be written as
n=q+j

Note that x,mM,k,0,q9 ,and; depend on position x, and direction ® along a
light ray. Terms & ,0 , and ¢ are optical material properties assigned by transfer

functions, a physical model of gas, or simply noise. The scattering term j, however, needs

to be indirectly computed from material properties by considering all possible

contributions of all incoming light directions. Scattering term j can be written as

’

j(x,oo)=m o(x,0)plx,0,0)(x,o)dQ

Sphere

For the scattering term j, contributions from incident light 7(x, ') are
accumulated by integrating over all directions ® . The contributions are weighted by
the scattering coefficient o and phase function p, which describes the chance that light
is scattered from the original direction ' to new direction ® . We assume that the

phase function is normalized according to

1

m f p(x,(n,m)dQZI

Sphere

| . . .
The factor ag s used to cancel the factor of 411 that is picked up by integrating a

unit function over a whole sphere.

By combining emission, absorption, in-scattering, and out-scattering the complete

equation for the transfer of light is obtained:

0V I(X,0)=—(k(x,o)+o(x,0))I(x,o)+g(x, o)
+ f olx, m')p(x,w,,(u)l(x,m’)d Q
Sphere
Because the solution of the complete equation of transport of light is
computationally expensive, simplified models are often used. One or more terms in the
complete equation is removed or simplified for efficiency. The following are some

common optical models:

Absorption Only. The volume is assumed to consist of cold, perfectly black material that

may absorb incident light. No light is emitted or scattered.

Emission Only. The volume is assumed to be gas that only emits light but is completely

transparent. No absorption or scattering occurs.

Emission-Absorption Model. The gas can emit light and absorb incident light. However,

scattering and indirect illumination are neglected.

Single Scattering and Shadowing. This model includes single scattering of light that
comes from an external light source (i.e. not from the volume). Shadows are modeled by

taking into account the attenuation of light that is incident from an external light source.

Multiple Scattering. Here, the goal is to evaluate the complete illumination model

volumes.

In order to represent a gas, a particle system may be used with the goal being to
accurately represent the complete volume rendering equation. A particle system is just a
large number of quadrilaterals. Commonly, each quadrilateral has a number of attributes
such as color, texture, and an alpha value. With only the ability to set color, texture
coordinates, and alpha for each vertex of a quadrilateral before rendering, we often
represent a volume using the Emission-Absorption Model. The Emission-Absorption

Model does not represent scattering and shadowing, but it is rather simple and efficient.

In order to write the Emission-Absorption Model volume rendering equation
using the same notation above, we set the scattering terms in the complete volume

rendering equation to zero and get:
0V (X, 0)=—k(x,0)I(x,0)+q(x,o)

If only a single ray of light is considered, we can rewrite the Emission-Absorption

Model volume rendering equation as

dl(s)
ds

=—k(s)I(s)+q(s)

where positions are described by the length parameter s.

The form of the Emission-Absorption equation above can be solved for radiance
by integrating along the direction of light flow from the starting point s=s, to the

ending point s=D |, resulting in the following volume-rendering integral

—[k()ar P — [k(t)dt
(Equation 1.0)](D):]Oe —|—fq<s)e ’ ds

The term [, represents the light entering the volume form the background. (D) is
the radiance leaving the volume at s=D and finally reaching the camera. The first term
describes the light from the background attenuated by the volume. The second term
represents the integral contribution of the source terms attenuated by the participating

medium along the remaining distances to the camera. The term

(s, 5,)= [k(e)de

§y

is defined as the optical depth between positions §; and §, . The optical depth is a
measure of how long light may travel before it is absorbed. In other worlds, optical depth
indicates the typical length of light propagation before scattering occurs. Small values of
optical depth mean that the medium is rather transparent, and high values of optical depth
are associated with a more opaque material. The corresponding transparency for a

material between s=s, and S=s5, is

Sy

[k(t)ar

(Equation 1.1) g
=e"

T (SI,SZ)

r (AN 2) —€
With this definition of transparency, we obtain a slightly different version of the volume-

rendering integral
D
(Equation 1.2)](D)ZIOT(SO’D)—FJ' q(s)T(s,D)ds

The volume rendering equation still neglects scattering. One way to incorporate

single scattering is to compute the gradient of the scalar field, and use it as a normal for

local illumination like Phong or Blinn-Phong. The gradient serves as a normal, because
the gradient is identical to the normal of the isosurface through the respective point in
space. Therefore, volume shading can produce an effect similar to an illuminated
isosurface. Local illumination is included in the volume-rendering integral by extending

the source term to

9 extended (S , W) =Y emission (S , W) + Yittum (S , W)

Sometimes, optical properties are derived from a density model of the
participating medium. In this description, P represents the density of the material and

all optical properties are weighted by the density. For example, the total absorption

coefficient % isreplaced by % according to
X=X P
There are similar substitutions for the true absorption coefficient, k=k'p , the

scattering coefficient, 0=0 p , and the true emission term g=g p

The volume-rendering integral cannot be evaluated analytically. Instead,
numerical methods are applied to find an approximation as close to the solution as

possible. A common approximation splits the integration domain into » intervals. The
intervals are described by locations $,<s,<...s,_;<s, ,where $, is the starting point
of the integration domain and s,=D is the endpoint. Please note that the intervals do

not necessary have equal lengths.

/ (Sl Segment 3

CO EEEEEE SRS =S

CQ T
[}

Figure 2: Partitioning of the integration domain into several intervals. The intervals are
described by locations §,<s;<...<s,_;<s, . The ith interval or segment is (s, ., s,]
The hatched box indicates the integration result for the third segment.

Considering the light transport within the ith interval [s,_,, s,](with0<i<n) we

can obtain the radiance at §; according to.

I(si)zl(si_l)T(si_l,sl.)—l-} q(s)T(s,s,)ds

We introduce an new notation for the transparency 7 and color contribution ¢ (i.e., the
radiance contribution) of the ith interval:
T.=T(s, ,,s,), c:f q(s)T(s,s,)ds

The hatched box in the figure above illustrates the result of integration over one interval.

The radiance at the endpoint of the volume is then given by
I(D):I(Sn)zl(Sn—l)Tn+Cn:(I(Sn—2)Tn—l+Cn—1)Tn+Cn:"'

Which can be written as

(Equation 1.3) I(D)=> ¢, [[T, withc,=1(s,)

i=0 j=itl
Often, transparency 7'; isreplaced by opacity o, =1-T,

Now that the integration domain is segmented into # discrete intervals, and the
summations and multiplications can be computed, the last thing that we need for volume-
rendering is the evaluation of transparency and color contributions of the intervals. A
rather common approach approximates the volume-rendering integral by a Riemann sum
over n equidistant segments of length A x=(D—s,)/n . Here the function to be
integrated is approximated by a piecewise-constant function. The integral over a single
interval corresponds to the area of the rectangle defined by the function value evaluated

at a sampling point and by the sampling width.

10

>
So 518,58, 5,8, S

Figure 3: Approximation of an integral by a Riemann sum.

In this approximation, the transparency of the ith segment is

k(s,)Ax

1

T ~e
and the color contribution for the ith segment is
¢;~q (S i) Ax

There are two compositing schemes used to evaluate radiance in Equation 1.3
iteratively: front-to-back compositing and back-to-front compositing. Front-to-back
compositing is sometimes called the under operator, while back-to-front compositing is
sometimes called the over operator. The front-to-back compositing is applied when the
viewing rays are traversed from the eye point into the volume. Let C represent a color,
typically given as a three channel RGB (red, green, blue) color value. The front-to-back

iteration equations are:

A

éi:C-A +7,.,C,,
T

i+1

i=Ti+1(1_0‘i>’

with the initialization

A

The results of the current iteration step are C,

1

and fi . CZH and T;l are the

accumulated results of the previous computations. The source term C; and the opacity

11

a,; are given by the transfer function or originate from a physical model of gas. The
iteration first starts at the sampling position i = n (closest to the camera) and ends at i = 0

(at the backside of the volume).

By renaming the variables according to C,,= C ; (withj =,1+1),
oy, =1 ~T ; (withj =,i+1),and @, =a; , front-to-back compositing can be

rewritten in it's most common form:

Cdst — Cdst +(1 o OLdsz‘) Csrc ’

(Equation 1.4)
O(’dst<_ O(‘dst_'_ (]‘ _O(‘dst) O(‘src

Variables with subscript src (as for “source”) describe quantities introduced as inputs
from the optical properties of the data set (e.g., through a transfer function or from a
physical model of gas), whereas variables with subscript dst (as for “destination”)
describe output quantities that hold accumulated colors and opacities. The compositing is
repeatedly applied while marching along the ray, updating color C,, and opacity O,
along its way. By reversing the traversal direction, we obtain the back-to-front

compositing scheme:

A

C,

1

:Cill(l _O‘l‘)"'cw
f'i:Tifl(l_O(’i)’

with the initialization
C,=C,
T =1—a,

The iteration starts at i = 0 and ends at i = n. Note that the accumulated transparency

A A

T'. is not needed to compute the color contribution C

1

;. S0 it is omitted. We rewrite
the back-to-front scheme like we did with the front-to-back scheme:
(Equation 1‘5) Cdst — (1 - asrc) Cdst + Csrc

Note that there is no iterative update of opacity needed because accumulated opacity (or

transparency) is not required to determine the color contribution.

12

In addition to the above compositing schemes, alternative approaches are
sometimes used. For example, maximum intensity projection (MIP) and x-ray or
weighted sum projections are often applied in medical imaging applications. MIP is

computed according to the compositing equation:

Cdst < max (Cdsl 4 Csrc)

The final result is the maximum color contribution along a ray. This compositing scheme
is independent of the traversal order; i.e., it may be applied in a back-to-front, a front-to-
back, or any other order. The main application for MIP is virtual angiography—the

display of vessel structures in medical scans.

13

Chapter 3: Survey

3.1 Techniques Used for Modeling Clouds

3.1.1 Introduction

How clouds are modeled can have a large affect on efficiency, and the accuracy of
the final cloud image. All of the techniques in this section are modeling techniques that
an artist might use in order to model clouds. Some representations are more suitable for
clouds than others. The techniques discussed in this chapter are not about how to render
clouds. This entire chapter is devoted to how each technique can be used to model clouds,
what the goals of each technique are, and how each technique differs from the others. All
techniques may use the word “volume” in order to describe what the final result of the
modeling process is, but some use the word more loosely than others for reasons that will

be made clear.

3.1.2 Particle System

A particle system is defined as a method for modeling fuzzy objects such as fire,
smoke, and water. Particle systems model an object as a cloud of primitives that define its
volume.[R83] Particles systems were introduced after surface rendering techniques,
because with particles an object is represented not by a set of primitive surface elements,
such as polygons or patches, that define its boundary, but as clouds of primitive particles
that define its volume. Simply by varying the number of particles in a region, a particle
system can represent a volume of varying density. Another benefit that the particle system
representation has over surface polygons is that an object represented by a particle system

is not deterministic, since its shape and form are not completely specified. Instead,

14

stochastic processes are used to create an object's appearance. A particle (for now, think
of a particle as a point in three-dimensional space) is a much simpler primitive than a
polygon, the simplest of the surface representations. Therefore, in the same amount of
computation time one can process more of the basic primitive and produce a more
complex image.[R83] The model definition is procedural, so it can be controlled by
random numbers. Therefore, obtaining a highly detailed model does not necessary require
a great deal of human design time as is often the case with existing surface-based

systems.[R83]

3.1.2.1 Modeling Clouds

We model clouds by simply choosing how many particles we want to use. Then,
the position of each particle in 3D space is chosen by computing a random number, or by
using a physics simulation. The size of each particle can be randomized too, or it can be
controlled by a physics simulation. Each particle is assigned a color that is used during
rendering, and each particle is given a transparency value that represents how much we
can see through the particle. Describing how complicated clouds are modeled using a

particle system is beyond the scope of this paper.

3.1.3 Volume Texture

Originally, a texture was the source of pattern for mapping patterns, pictures, or
texture onto 3D surfaces.[C74] [BN76] The performance and quality of texture mapping
has improved with techniques that are still used today. For example, fixed-rate texture
compression directly attacks memory and bandwidth problems, and caching concerns.
[MHHOS8] By having hardware decode compressed textures on the fly, a texture can

require less texture memory and so increase the effective cache size.[MHHOS8] At least as

15

significant, such textures are more efficient to use, as they consume less memory
bandwidth when accessed.[MHHO08] Another improvement to textures is how they are
sampled in order to reduce aliasing. Aliasing is an unwanted artifact that occurs when a
signal being sampled is to low of a frequency.[MHHOS] In order to reduce aliasing,
several filter techniques have been introduced. A filter allows us to reconstruct the signal

that may be represented by less data than the original signal.[MHHOS]

Textures are not limited to two dimensions. In fact, they can have a third
dimension. Another name for a 3D texture is volume texture. It makes sense to use a
volume texture in order to model clouds, because techniques that we use for 2D textures,
can be extended to 3D textures. Texture compression techniques can be applied to cube or
volume textures.[MHHOS8] For an entire book that deals with 3D image processing see

[TY09]. The book explains a number of 3D filters that can be applied to textures.

Using a 3D texture has the advantage of being able to show all important aspects
of a data image in a single data set.[W07] In other words, a 3D texture can represent solid
surface and low density features in one texture. Neither a particle volume nor a polygonal
mesh surface has the ability to represent both solid surfaces and low density features
using the same representation. For now, we can think about a 3D texture as being a
multidimensional grid where each grid element is an integer. A volume texture has the
same advantage over a traditional polygonal mesh representation in that the model

definition can be procedural, so it can be controlled by random numbers.

3.1.3.1 Modeling Clouds

Clouds are modeled using 3D noise and/or a physics simulation, and the result is
stored in a 3D texture. The 3D texture stores a multidimensional array of density or
opacity values. Both noise and phsyics simulations are not discussed in this paper. For

details on one type of noise that can be used to model clouds see [GO05].

16

3.1.4 Mesh

A polygon is a geometric shape that is made up of three or more points.[SO8] The
more points that are used, the more complex a shape can look.[S08] Triangles are three-
point polygons whose three edges are used to connect each of the points that make up the
shape of the primitive.[S08] Triangles are the most common type of primitive used in 3D
video games.[S08] Triangles are so common because they have a number of useful
properties.[R10] They are the simplest primitive that describes a surface in space, it is
simple to linearly interpolate values across them, and they can be used to construct a
number of higher order primitives.[R10] When we group a number of triangles together,
we call it a mesh. The mesh structure predates the introduction of particles and volume
textures. Advancements have made it an attractive representation for modeling clouds.
One advancement allows a mesh to be procedurally generated like a particle volume, or a

volume texture.

3.1.4.1 Marching Cubes

Marching Cubes (MC) is a algorithm used for creating a constant density
triangular mesh surface.[LC87] A mesh is generated from density evaluations, or from
simple inside and outside binary tests performed for every cube in a 3D array of cubes
(voxel bufter). The algorithm determines how a surface intersects a single cube in the

voxel buffer, then moves (or marches) to the next cube.

To find the surface intersection in a cube, we assign a one to a cube's vertex if a
data value at the vertex exceeds (or equals) the value of the surface we are constructing.
These vertices are inside (or on) the surface. Cube vertices with values below the surface
receive a zero and are outside the surface. The surface intersects those cube edges where
one vertex is outside the surface (one) and the other is inside the surface (zero). With this

assumption, we determine the topology of a surface within the cube finding the location

17

of the intersection later. One disadvantage of MC is that making a binary decision about
whether a surface intersects a cube or not exhibits false positives (spurious surfaces) or
false negatives (erroneous holes in surfaces), particularly in the presence of small or

poorly defined features.[L.88]

The 2D case of the algorithm is called Marching Squares (MS). Marching
Squares is easier to describe and is analogous to to MC. The following is pseudo-code for

MS applied to the ellipse in the figure below:

1 For every point in the grid
1.1 Set the point's status to inside or outside the ellipse (from the
formula for an ellipse)
2 For every square in the grid
2.1 For every line segment that has a point outside and point inside the
figure
2.1.1 Add a point in the list t placed in the middle between the two
points
3 Draw sequential lines between the points found in list t
Figure 4: Pseudo-code for Marching Squares applied to an ellipse. For 2.1.1, we could

compute the intersection point using linear interpolation instead of taking the midpoint.
Pseudo-code provided by [LO3].

18

Figure 5: Rendering of an ellipse using Marching Squares taking the midpoint of each
square edge to be the intersection. The orange ellipse is the shape that we wish to
generate. The green line is the output from Marching Squares. Image provided by [L03].
Extending MS to MC, we note that there are eight vertices of a cube, and they can
be in only two states (inside and outside). Thus, there are 2°=256 ways a surface can
intersect with a cube. By enumerating these 256 cases, a code of inside and outside cases
for each vertex of a cube can be mapped to edges of triangles used to determine the
surface. In order to map from such a code to edges of triangles, we must also enumerate

vertices and edges. One such enumeration follows:

? {0,1,1) {1,1,1) ﬁ ﬁ‘
4
4 / {1,100} 5 11
10,1, ’ -
: 5 104 4 Lg
00,1 {1,0,1) 2 .
3 i
3 2 1
“m.u.m {100 1 f
0

Figure 6: (Left) shows one possible vertex enumeration for a cube. (Right) shows one
possible edge enumeration of a cube. Image provided by [L03].

19

In order to visualize MC, for the sake of explanation, we can assume that the

intersection can be computed as a midpoint between cube edges, much like we did with

MS. The following sequence of images shows the ideal behind MC.

1) One point is

2) Generated a

the same cube is
outside the model.

. . :]
' outside of the the ' triangle that is
¥ object we want to . formed between the
draw and the centers on all three
o remaining seven are o o lines that now have
" inside. % one point on the
inside and one on the
outside of the model.
3) Another point in 4) Generate another

triangle, this time on
the other side of the
cube. This single
cube has contributed
with two triangles
for the finished
object. After
processing all cubes,
we get an object
quite close to what
we want.

Figure 7: Marching Cubes applied to a single cube. For the sake of simplicity, we assume
that the intersection of the surface and each cube edge is half-way along each edge.
Image provided by [L03].

The following pseudo-code summarizes the Marching Cubes algorithm:

1 For every cube in the voxel buffer space

1.1

1.2
1.3

1.4

20

Calculate an index by comparing the eight density values at the cube

vertices with the surface constant

Using the index, look up the list of edges from a precalculated table

Using the desities at each edge vertex, find the surface edge

intersection using linear interpolation

Output the triangle vertices

Figure 8: Pseudo-code that summarizes the Marching Cubes algorithm. Pseudo-code
provided by [L03].

3.1.4.2 Modeling Clouds

A closed cloud-shaped polygonal mesh can be built using Marching Cubes with
meta-balls. With meta-balls, we determine if a point from a 3D grid is inside or outside of

our surface using the following equation:

o—__mass 101
(distance)’ o1

The distance in the denominator represents the distance between a point mass and
the grid point. We have a number of moving points with mass. The position and the mass
of each ball is set using random numbers or a physics simulation. We sum e for all
points with mass when considering a single grid point. Once we have e for a grid point,
we test if the grid point is outside or inside of a surface by determining if e it is greater
than or less than a threshold called Level that we define. The different combinations of
inside and outside states for a single voxel's points determine which triangles, if any, are
rendered for the voxel. Each voxel point above the threshold causes a bit to be set in an
integer. The integer is used to index into a predefined list of triangles defined as edges.
We linearly interpolate between voxel points along an edge in order to find the actual

vertex of a surface triangle. The interpolate ¢ that we use for the interpolation is

calculated by:
Level —e,
t=——— [JO01]
€,—€

where e, and e, arethe sumsof e for the voxel edge endpoints. All voxels that
intersect the surface are evaluated. The vertices are used to to set a vertex buffer, and the

edge indices are used to set an index buffer.

21

3.2 Techniques Used for Rendering Clouds

3.2.1 Introduction

Once clouds have been modeled using any one of the techniques discussed in
section 3.1, they can be rendered using one of the techniques found in this section. More
advantages and disadvantages of each volume representation can be found here, but they
are associated with efficiency and accuracy of techniques used to draw them. Choosing
which cloud representation to use can be based solely on how each is rendered, because
some rendering techniques are less efficient than others, and some are more accurate than
others. In this section, we examine the differences between cloud rendering techniques in
order to determine relative levels of accuracy and performance between different

combinations of cloud modeling and rendering techniques.

One similarity between all of the rendering techniques discussed here, is that all of
them use some solution to the volume rendering equation (Equation 1.0) explained in
chapter 2. Equation 1.0 is for approximating emission and absorption of light for a

volume.[EHKRWO06]

3.2.2 Particle System

The general principal of rendering a particle volume is as complicated as
rendering traditional polygon mesh.[R83] Particles can obscure other particles that are
behind them in screen depth.[R83] They can be transparent and cast shadow on other
particles. In addition, particles can coexist in a scene with objects modeled by surface
based primitives, and these objects can intersect with particles.[R83] In [R83], the
assumption is made that each particle can be displayed as a point light source.[R83] Such

an assumption means that the volume only approximates volume rendering using

22

emission. For volumes with emission and absorption such as clouds, we use the solution
of the iterative form of the volume-rendering equation (Equation 1.4 or Equation 1.5).
By using equations 1.4 or 1.5, we must sort particles by screen depth which might be a
time consuming operation with a large amount of particles. GPU texture blending can be
used in order to render particle clouds. However, since what is rendered is a set of
blended textured polygons, performance drops when the view comes close to the clouds
and semi-transparent polygons fill the entire screen.[M01] In order to describe how
clouds are rendered using a particle system, we first describe how the points computed in
section 3.1 are used in order to define the geometry that is rendered. Later, we show how
to extend particles systems in order to remove artifacts caused by using them in a scene

with terrain.

3.2.2.1 Billboarding

Billboarding is the act of orienting a textured polygon based on the view direction.
[MHHOS8] The texture used for each polygon, when representing clouds, looks like a
small part of a cloud. The polygon itself is called a billboard or a particle, and it is usually
a quadrilateral. As the view changes, the orientation of the polygon changes. In order to
perform billboarding, we use three mutually orthogonal vectors. A point in the world
defines the center of the billboard while the orientation is defined by the three vectors.
The center points are the positions of each particle that we set with random numbers or a

physics simulation.

23

right

normal

Figure 9: The normal, up, and right vectors used for billboarding along with the polygon
and its center. Image derived from [MHHOS].

3.2.2.1.1 Screen-Aligned Billboarding

For screen-aligned billboarding, the negative of the normal vector of the billboard
is always in the same direction of the view of the camera.[MHHOS] In order to draw the
polygon, we must calculate the positions of the vertices of the polygon in world space.
One way to calculate the positions is to displace from the center position in the direction
of the up and right vectors. In order to get the scale right, we must have a variable that
controls the size of the billboard as well. The up vector is simply the up vector from the
camera view matrix. The camera up vector is a vector that defines the up direction for the
camera. The right vector is simply the right vector from the camera view matrix. The
camera right vector is a vector that defines the right direction for the camera. If the up

and right directions are of unit length, the four vertices that we want are:

v0 = center+up+ riéht vl =center —up + right

v2=center —ip—right v3=center +1ip— right

24

3.2.2.2 Rendering Clouds Using a Particle System

In order to draw clouds, we use textured screen-aligned billboards positioned
randomly, or positioned using a physics simulation. We use either equation 1.4 or 1.5, so
that the clouds are drawn with emission and absorption. In order to use equations 1.4 and
1.5, the billboards are sorted by screen depth. The next section discusses a technique that

can be used in order to accelerate particle rendering.

3.2.2.2.1 Shader Constant Instancing

Shader constant instancing is a way of rendering billboards or particles with the
intent to render them quickly using the GPU. One advantage of shader constant
instancing is that we do not have to read and write to a vertex buffer when we want to
draw particles. We set a small vertex buffer once with local space positions of a
quadrilateral. World positions are calculated in the vertex shader through the use of an
array of vectors that store the center position and size of each quadrilateral. For example,
the vertex buffer and the index buffer may hold 64 quadrilaterals. The array of positions
passed to the vertex shader holds 64 positions too. In addition, the colors for all particles
are passed as an array of 64 vectors. For each draw call, 64 particles are drawn.

Billboarding is performed in the vertex shader.[C05]

3.2.2.3 Spherical Billboards

Spherical Billboards (SB) is a particle system technique used to solve billboard
clipping artifacts by calculating the real path length a light ray travels inside a given
particle, because the length determines the opacity value to be used during rendering.

Like many particle systems, quadrilaterals primitives are sent through the graphics

25

http:simulation.We

pipeline. However, each particle is assigned a radius that is used during rendering to give
it the appearance of a sphere volume when it comes into contact with opaque objects in

the scene.[USS06]

To find out where opaque objects are during particle rendering, the opaque objects
are drawn first, and the resulting depth buffer storing camera space z coordinates is saved
in a texture. Next, the particles are sorted so that they can be rendered in the order of
furthest from the camera to closest to the camera. Particles are rendered as quadrilaterals
perpendicular to the viewing axis of the camera coordinate system. The particles are
rendered with depth testing disabled to eliminate incorrect object-billboard clipping. For
each pixel of a rendered particle, the interval that the ray travels inside of the particle
sphere is computed using the saved depth values of opaque objects along with the particle
position in camera space, the shaded billboard point in camera space, the particle radius,
the screen coordinates of the shaded point, and the camera's front clipping plane distance.

[USS06]

As
\ object

front clipping plane .

| - particle sphere

billboard
Figure 10: Computation of length As the ray segment travels inside a particle sphere
of radius » and of center P .Image derived from [USSO06].

Let P = (x,,¥,,2,) be the center of the particle in camera space,

26

-

O =(x,,»,2z,) bethe pixel of the billboard being rendered, and » be the radius of

the sphere. Assuming an orthographic projection, thatis z,=z, , the distance between

the ray and the particle is

[USS06] d=\(x,=x, P+, =7,
The closest and the farthest points of the particle sphere on the ray from the camera are

F and B , respectively. The distances of these points from the camera can be

obtained as

[USS06] |13|sz—w, §|sz+w
Where, w=\r'=d’
Thus, As=min(Z,|B))—max(f,IFl) [Usso06]

Assuming the density is homogeneous inside particle j, we can calculate the
opacity for each pixel which equals the decrease in radiance caused by extinction (i.e. the
sum of absorption and out scattering). Using Beer's Law we have

—T,As/.

[USS06] x,=1-e

where T is the density. However, in order to avoid artifacts, we modify the opacity
function to the following:
[USS06] O(iml_e—T/.(l—d/rj)Asj

Additive blending is used to blend multiple particles into the scene buffer.

27

3.2.3 Volume Ray Tracing

Volume Ray Tracing (VRT) is a technique that can be used in order to draw clouds
from a volume texture. Although this method has high intrinsic computational cost, when
rendering a sufficiently large data-set, ray tracing should be competitive because its low
time complexity ultimately overcomes its large time constant.[PPLSHS99] This
crossover will happen sooner on a multiple CPU computer because of ray tracing’s high
degree of intrinsic parallelism.[PPLSHS99] In addition, ray casting algorithms enjoy
speedup advantages from several different optimization techniques.[DKCBK98] The first
is called space leaping, or skipping over areas of insignificant opacity, and the second is
called early ray termination.[DKCBK98] In the next section, we explain how the volume

texture clouds built from noise or a physics simulation are rendered using VRT.

3.2.3.1 Rendering Clouds Using Volume Ray Tracing

Rendering clouds using VRT is different from rendering clouds using a particle
system in that no sorting of primitives is required. Instead, we trace a ray through a
volume to compute the color for that pixel.[PPLSHS99] Samples of the the volume are
taken along the ray at equally spaced intervals.[L90] As each ray is marched through the
volume, scalar values are mapped to optical properties through the use of a transfer
function which results in a RGBA value that includes the corresponding emission and
absorption for the current sample.[H09] For a short description of transfer functions, see
the section below. Samples (color and opacity) are composited from front-to-back.[L90]

The front-to-back compositing equation is Equation 1.5.

28

\]

Figure 11: The volume is sampled at equally spaced intervals along rays from the eye.

3.2.3.1.1 Transfer Function

A transfer function is used to “view” a certain part of the volume. For example,
there may be a skin layer and a bone layer in a volume. A transfer function could be
designed to just look at the skin, just the bone, or both. Typically, values in a 3D volume
texture are in the ranger from 0 to 255. One transfer function may consider values in the
range from 40 to 60 to be skin and color them tan, and consider values in the range from

80 to 250 to be bone and color them white.[H09]

3.2.4 Fog Polygon Volumes

A technique that can be used in order to draw mesh clouds is called Fog Polygon
Volumes (FPVs). FPVs is a convenient and flexible technique for rendering ordinary
polygon objects of any shape as thick volumes of light-scattering or light-absorbing
material.[04] The motivation for developing the algorithm was to render a patchy fog in
real-time first-person simulators in which the viewer can move through the fog.[MO1]
The result is a true volumetric rendering of ordinary polygon objects.[04] A large cloud is
more efficiently rendered using FPVs than a particle system, because a particle system is

a method that blends slices, and the cloud can cover a large area of the scene making the

29

number of slices too large.[MO01] In addition, unlike a particle system, the performance
does not drop when the view comes close to the object.[MO01] This technique has the
advantage of not being time consuming like ray tracing is.[M01] However, the results
often do not look as realistic as those produced by traditional techniques, mainly due to a
low polygon count of gas boundaries and visible discontinuities in the derivative of the
fog intensity along sharp boundary edges.[MO1] In the next section, we describe how to

render the mesh clouds built in section 3.1 using FPVs.

3.2.4.1 Rendering Clouds Using Fog Polygon Volumes

Before rendering clouds using FPVs, we assume that the gas inside of the polygon
boundary is of constant density.[M01] For each pixel, we can determine the distance a ray
associated with this pixel traveled through the gas by subtracting the distance between the
front facing and back facing triangles from a view point.[MO01] The resulting per-pixel
distance is converted to the attenuation factor and used to blend the scene color with a
uniform fog color.[M01] FPVs use vertex and pixel shaders in multi-pass rendering to
generated a measure of object thickness at each pixel.[04] In order to render the volumes
in a scene with opaque objects, we start by rendering the scene of opaque objects storing
color in an ordinary back buffer, and view space depth in another texture.[04] Next, we
render the depths of all of the back faces of the volumes into a texture with additive
blending, and we render the depths of all of the front faces of the volumes into another
texture with additive blending again.[04] The two textures with cumulative depths for
back and front facing triangles and the texture with view space depths for opaque objects
in the scene are used to calculate object thickness for each pixel.[04] The thickness is
used to calculate absorption or scattering in approximations where the total amount of
light for a pixel is a function of only thickness.[04] One approximation for absorption can
be done using Beer's Law assuming the density T is homogeneous inside the volume.

[MHHO8][USS06] Therefore, given the thickness As; for volume j, the opacity, which

30

equals the decrease in radiance caused by extinction (i.e. the sum of absorption and out

scattering), is
[USS06] ¢, =1— e A

Another way to think about how the thickness can be used to compute radiance is
to use Equation 1.2 with the interval between s, and D being the thickness

computed using FPVs. While everything else in the equation remains constant.

Distance

Viewpoint | | -

As=(d+b)—(a+c)

Pixels

Thickness

Figure 12: Computing thickness. Front face depths are a and ¢, and back face depths are
b and d. Image derived from [04].

4— Rendered Depths

Solid Objects \
Volume Geometry

Figure 13: Handling opaque objects intersecting the volume objects. The volume

geometry is shown with a dotted line. A pixel shader compares the volume object depth to

the solid object depth read from a texture and outputs the lesser depth value. This results

31

in depth information being taken from the geometry shown with solid lines. The depth
comparison clamps the occluded volume object pixels to the nearest solid object depth,
effectively limiting the volume object thickness to the proper amount for all intersection

cases. Image derived from [04].

3.3 Techniques Used for Rendering Cloud Shadow

3.3.1 Introduction

Clouds rendered without shadows insufficiently capture the look of real clouds.
We haven't finished determining the levels of accuracy and performance of cloud
rendering techniques until we examine them in combination with cloud shadowing
techniques. For our research to be thorough, we analyze techniques that self-shadow
clouds, and techniques that cast shadows on nearby terrain, for any given light position.
Some techniques used to render a shadow for clouds are more appropriately applied to a
specific cloud volume rendering technique. Picking a technique used for rendering the
shadow of clouds can be based on what technique is used for rendering the clouds
themselves. The opposite can be true too. In other words, the decision about which
technique to use for rendering clouds, can be based on what technique is chosen for
rendering the shadow of the clouds. Moreover, each shadow rendering technique has its
own strengths and weaknesses, and shadow rendering is so important for a good final

image.

Our preference is for cloud shadowing techniques that are fast, accurate, and
memory efficient, but we examine the strengths and weakness of each technique in order
to build a better picture about which technique is appropriate for each situation. Cloud
shadows that are volumetric are preferred to ones that are not. Surface shadows are
shadows that are not volumetric. For more information about volumetric shadows and

surface shadows, see the sections below.

32

3.3.2 Surface Shadows

The shadow technique discussed in this section is used to compute shadowing for
surfaces. It is not volumetric, so it will not produce accurate shadows for clouds. It builds
a texture map from a single depth value computed from a light. Traditional Depth
Shadow Maps (TDSMs) suffer from aliasing issues.[W78][DL06] We describe TDSMs in

the section that follows.

3.3.2.1 Traditional Depth Shadow Map

A Traditional Depth Shadow Map [W78] (TDSM) is built by rendering the depth
of all possible light occluders from the view of the the light. When rendering a surface
that may be in shadow, every sample from the view of the eye is used to calculate the
depth of the sample from the light, and the depth is compared with the corresponding
sample in the shadow map. If the depth in the shadow map is less than the depth

computed for the sample from the eye, the sample is in shadow, so it is colored darker.

l

Figure 14: The distance (a) from the light is less than the distance (b) from the light, so
the point is in shadow.

33

3.3.3 Volumetric Shadows

All of the shadow mapping techniques in this section are volumetric shadow
mapping techniques that can be used to render the shadow of clouds. A volumetric
shadow is defined as the amount of light reaching a point in a volume along a light ray
traced between the volume point and the light source.[JB09] We examine five techniques
that can be used for rendering a volumetric shadow for clouds. The five techniques are
Deep Shadow Maps (DSMs)[LV00], Opacity Shadow Maps (OSMs)[KNO1], Half-Angle
Slicing (HAS)[KPHSMO03], Deep Opacity Maps (DOMs)[YKO08], and Fourier Opacity
Maps (FOMs)[JB09]. The next few sections are devoted to describing DSMs, OSMs,
HAS, DOMSs, and FOMs, analyzing the progression or origins of each, and comparing
them to each other. Levels of accuracy and performance of techniques used to shadow
clouds are described in this section. Some techniques used to shadow clouds may appear
more desirable than the others, because of distinctions between the techniques. When
combined with the accuracy and performance of modeling techniques described in
section 3.1, and cloud rendering techniques described in section 3.2, this section helps
show levels of accuracy and performance of techniques used to render clouds with

shadows.

DSMs were the first to be introduced. DSMs improve upon Traditional Depth
Shadow Maps, by requiring lower resolution textures when used to capture fine details of
hair, fur, and smoke.[LV00] In addition, DSMs can handle volumetric effects like clouds,
and Traditional Depth Shadow Maps cannot.[LV00] DSMs are a fitting solution for
offline applications.[JB09] In other words, it requires a significant amount of data
initialization time.[KNO1] DSMs are compact and of high quality, but when the volume
changes in time with respect to the light, the generation cost can cancel out the
computational benefit of the algorithm.[KNO1] An unbounded amount of memory is
required for capturing the primitives.[JB09] Bounded memory DSM techniques exist, but
they they introduce artifacts.[HKSBO06]

OSMs is an approximation to DSMs.[JB09] Unlike a DSM, an OSM can be

34

generated efficiently on the GPU using a bounded amount of memory[KNO1][JB09] An
OSM produces layering artifacts.[JB09] However, the layering artifacts can be softened
and reduced at the cost of some efficiency.[JB09] In regard to rendering particle clouds

with shadows, an OSM requires all of the particles to be sorted twice.

HAS is another approach to rendering volumetric shadows. HAS uses less
memory than DSMs.[JB09] HAS has a bounded memory requirement, unlike DSMs.
HAS can be expensive, because it requires multiple geometry passes and render-target
switches.[JB09] In regard to rendering particle clouds with shadows, HAS requires all of

the particles to be sorted only once, which is an improvement upon OSMs.

The introduction of DOMs focused on rendering hair, but the method is applicable
for rendering other semi-transparent objects.[YK08] DOMs combine traditional depth
shadow mapping [W78] and OSMs [KNO1] to give a better distribution of opacity layers.
[YKO8] Layering artifacts that are apparent in OSMs, unless a very high number of slices
are used, can be avoided with a DOMs.[YKO08] Moreover, far fewer layers are necessary

to generate high quality shadows.[YKO08]

FOMs are another approach to rendering a volumetric shadow. FOMs improve
upon slice-based methods like OSMs, by avoiding layering artifacts.[JB09] Instead,
FOMs have a loss of high-frequency detail, and have some amount of ringing which is a
different type of artifact.[JB0O9] However, FOMs cope well with outliers (in this context,
an outlier is a primitive that is apart from the main group).[JB09] FOMs cannot be used
with opaque volumes.[JB09] In regard to rendering particle clouds with shadows, FOMs
require all of the particles to be sorted only once, which is the same as HAS, and it is an

improvement upon OSMs.

3.3.3.1 Deep Shadow Map

A DSM [LVO0O0] is a rectangular array of pixels in which a visibility function is

35

stored for every pixel. Intuitively, a visibility function is defined by considering a beam
of light that moves from the light into a scene. The function value at a given depth is
simply the fraction of the beam's initial power that penetrates to that depth. The power of
light is attenuated as it passes through material giving lower visibility at greater depth.
Two functions are combined in order to create the final transmittance function for a single
pixel. The two functions are called surface transmittance and volume transmittance.

[LVO0O]

The surface transmittance t° function is a combination of opaque object
coverage and semitransparent object coverage. Opaque object coverage is determined by
the amount of opaque object surface considered for a single pixel. The image below on
the left represents opaque object coverage and a corresponding visibility function.
Semitransparent object coverage is determined by the amount of opacity and thickness of
semitransparent objects considered for a single pixel sample. Starting with a transparency
of 1, we multiple a value of 1—a for each surface hit. Each surface hit lowers surface
transmittance for a pixel for a single depth. The image below on the right represents a

stack of semitransparent objects and a corresponding visibility function.[LV00]

(a) (b)

Figure 15: Visibility functions. Each diagram shows a beam of light that starts at the
shadow camera origin (i.e the light source) and passes through a single pixel of the deep
shadow map, accompanied by the pixel's visibility function. (a) The blockers are opaque,
but each covers only part of the pixel's area; the emphasized segments of the function
correspond to visible portions of the blockers. (b) The beam's power is reduced as it
passes through consecutive semitransparent surfaces. Image derived from [LV00].

36

The volume transmittance t" function is generated using an atmospheric density
field. An atmospheric density field can be generated using noise, like Simplex Noise, or a
physics simulation can be used, and the density field can be stored in a voxel buffer or a
3D texture. The atmospheric density field is used to generate extinction values which are
a measure of light attenuation for points inside of the medium. The extinction values
themselves are computed by sampling and accumulating atmospheric density from a
point in the medium to the light. The extinction function is denoted by k . Other names
for extinction are absorption and attenuation. An image of volume attenuation due to a
cloud, and a corresponding visibility function appears below. With a measure of
extinction for any point in the medium, we can use an approximation of Beer's Law to

compute the final value transmittance for a linear segment as

[LVOO] _ (Z):e—(2¥+1—zf)(k,-+.—k,~)/2

where z; isthe depth, and &, is extinction for sample i along a viewing ray.

Figure 16: Visibility function for volume attenuation due to a cloud. The diagram shows
a beam of light that starts at the shadow camera origin (i.e the light source) and passes
through a single pixel of the deep shadow map, accompanied by the pixel's visibility
function. Image derived from [LV00].

The final transmittance is the product of the surface transmittance and the volume
transmittance. It is a piece-wise linear function of many segments, so we compress it. The

final visibility for a single pixel is a weighted combination of the transmittance function

37

http:field.An

T at nearby sample points.[LV0O0]

T_\—__\(i) ko 7\ (b)
| ¥

Figure 17: Constructing a transmission function. (a) The object intersections along a
given ray yield the surface transmittance function t" , which has a discontinuity at the
depth of each surface. (b) The extinction function k is obtained by sampling the
atmospheric density at regular intervals along the ray. (¢) The extinction function is
integrated and exponentiated to yield the volume transmittance t” . The surface
transmittance and volume transmittance are multiplied to obtain the final transmittance
function T for each ray. Image derived from [LVO0O].

3.3.3.2 Opacity Shadow Map

Opacity shadow maps (OSMs) use a set of parallel opacity maps oriented
perpendicular to a light's direction.[KNO1] The opacity maps are embedded in the scene.
On each opacity map, the scene is rendered from the light's point of view, clipped by
map's depth.[KNO1] The rendering order of the primitives is from the nearest to the light
to the furthest from the light which requires sorting. Rendered primitives can be points,
lines, and polygons. Each primitive contributes its associated alpha valued for a single
pixel. Each pixel in the map stores an alpha value that approximates the opacity relative

to the light at the pixel's positions. The opacity values from adjacent maps are sampled

38

and linearly interpolated at the position of each shadow computation. The interpolated

opacity €2 isused to calculate transmittance T using Beer's Law
[KNO1] T=e 2
The final shadow @ is computed from the transmittance as

[KNO1] d=1-7

A
y

A

{Q}“
4
CCMOR

NG

¥
g

Figure 18: (a) The opacity function Q(/) shown in solid gray curve is approximated
by a set of opacity maps. (b) The volume is rendered on each opacity map, clipped by the
map's depth D, .The region outside of the triangle is clipped. Image derived from
[KNO1].

3.3.3.3 Half-Angle Slicing

Half-Angle Slicing (HAS) is a technique that is used in order to render volumetric
shadows for volume rendering without needing to sort primitives twice like we would if
we were using an opacity shadow map. In addition, with HAS we use less texture

memory than we would if we were using an opacity shadow map.[GOS]

39

As light from a source moves through a semi-transparent volume, the material of
the volume attenuates the light, which produces volumetric shadows. With HAS, the
amount of light attenuated from the light's point of view is accumulated using a pixel
buffer. Slices of a volume can be thought of as billboards which are commonly aligned
perpendicular to the view direction. However, we render the volume as a series of slices
perpendicular to a half-angle vector § in order to increase efficiency. The half-angle
vector is a vector halfway between the view and the light direction. We slice along the
half-angle vector, so that the sorting of the slices is roughly the same for rendering from
both the eye and the light point of view. Therefore, we can accumulate the shadowing
from the light at the same time as we are blending the slices to form the final image.

[FIKLHO4]

-

(a) (b)

Figure 19: (a) The dot product of the light and view directions is positive. The slice is set
halfway between the light and view directions. The volume is rendered front-to-back for
the eye using the Under operator (Equation 1.4). (b) The dot product of the light and
view directions is negative. Slice along the vector halfway between the light and the
inverted view directions. Render the volume back-to-front for the eye using the Over
operator (Equation 1.5). Image derived from [FIKLHO04].

The direction of rendering depends on the orientation of the light relative to the

viewer. We want to always render from front-to-back from the lights point of view, so

that we can accumulate the shadow correctly.[FIKLH04]

40

http:viewer.We

When the viewer is pointing in approximately the same direction as the light (a),
we render the slices from front-to-back from the eye's point of view. When the camera is
pointing toward the light (b), we negate the view vector, and render the slices from back-

to-front from the eye's point of view.[FIKLHO04]

The amount of light arriving at a particular slice is equal to one minus the
accumulated opacity of the previously rendered slices. Each slice is first rendered from
the eye's point of view, using the results of the previous pass rendered from the light's
point of view, which are used to modulate the brightness of samples in the current slice.
The same slice is then rendered from the light's point of view to calculate the intensity of
light arriving at the next slice.[FIKLHO04]

C=CxC, Transfer function

Eye Buffer,
Current Render
Target

<

Slice Direction

2D Texture
Coordinates

A Light Buffer,

VC)V Bound As
Slice Pass 1 LA Texture

Figure 20: Two-pass volumetric shadow Slice Pass 1.

41

Eye Buffer, Not
Used In This Pass

Transfer function

@ P = (0,0,0,A)'/

Slice Direction b

gy Light Buffer,
Slice Pass 2 QQE Current Render
Target

Figure 21: Two-pass volumetric shadow Slice Pass 2. Image derived from [FIKLHO04].

3.3.3.4 Deep Opacity Map

A Deep Opacity Map (DOM) is an extension of the concept of OSMs.[YKO08] It
combines TDSMs and OSMs to give a better distribution of opacity layers.[YKO08] First,
the geometry is rendered from the view of the light, recording the depth values in a
shadow map.[YKOS8] Next, an opacity map similar to an OSM from the view of the light
is generated.[YKO8] The novelty of the algorithm lies in the way the opacity maps are
distributed.[YKO08] Instead of using regular slices of the geometry in between two planes
normal to the light direction, the depth information in the shadow map is used to create
layers that vary in depth from the light source on a pixel-by-pixel basis.[YKO08] When
creating the DOM, the shadow map gives us the depth at which the geometry starts.
Starting from the depth at which the geometry starts, the geometry is divided into a small
number of layers by offsetting from the starting depth. The spacing does not have to be

42

uniform. The final shape of the separators between layers is not planar but it is similar to

the shape of the geometry.[YKO08]

.Fr‘-"'”’rl
e —
o $i”
v xh&h“""-—-—.__._ v —
T
\\

Opacity Shadow Map Deep Opacity Map

Figure 22: Opacity shadow maps use regular spaced planar layers. Deep opacity maps
use fewer layers, conforming to the shape of the object.

The advantage of using a DOM over an OSM is that by shaping the opacity
layers, visual layering artifacts are eliminated and interpolation between layers occurs
within the volume, thus hiding possible inaccuracies.[YKOS8] This allows high quality
results with far fewer layers.[YKO08] One disadvantage of using a small number of layers
is that it can be more difficult to ensure all points in the volume are assigned to a layer.
[YKOS8] Points can lie beyond the last layer. Points beyond the end of the last layer do not
correspond to any layer.[YKO8] When implementing DOM, one has a choice to ignore
such points, include them in the last layer, or ensure that last layer lies beyond the
volume.[YKO08] Ignoring such points means that they will not cast shadows.[YKO08]
Including them in the last layer means that they cast shadows on themselves.[YKO0S8]
Ensuring that the last layer lies beyond the volume can be done by either increasing the
layer sizes or the number of layers.[YKO08] While the last option might seem “ideal,” it
can lead to unnecessary computational cost, since the light intensity beyond a certain
point in the volume is expected to vanish.[YKO08] For reasonable results, [YKO0S]

recommends mapping the points to the last layer.

43

3.3.3.5 Fourier Opacity Map

A Fourier Opacity Map (FOM) reformulates and approximates variable absorption
o(z) ofaray of light traveling through a translucent medium using a Fourier series for
each pixel in light space. Given absorption, we use use Beer's Law in order to compute

transmittance 7' (d) . The generalize form of transmittance that is approximated is

z=d

T(d)=e =

The Fourier series approximation that we use to reconstruct the transmittance function is

o(z)dz [JBO9]

z=d
- f O(Z)dz ao k=n

T(d)=e » ~2q+Y Y sin(2nkd)

’

[JBO9]

k=n !
bk
+k§=l znk(l—cos(Zde))

where the Fourier coefficients @, and b, are

a,;z—ZZ In(1—oy)cos(2nkd,;)
, d JB09
bk:—221n(l—oc[)sin(27[kd[) [|
For a given light ray i, the Fourier coefficients can be computed exactly in a single
rasterization pass by additive blending without sorting the primitives. Each primitive
contributes to the accumulation of Fourier coefficients for a single pixel. We store the

first n coefficients in a FOM. The coefficients are used to reconstruct the transmittance

function which is used during rendering to apply shadowing.[JB09]

Using a FOM instead of a opacity shadow map has the advantage that we only
need to sort the particles once. In addition, opacity shadow maps have slice artifacts that
a FOM will not have. However, a FOM may have an artifact know as ringing if not

enough coefficients are used.[JB09]

44

http:pixel.We

Chapter 4: Results

We used several of the techniques from chapter 3 in order to render clouds of
smoke with shadows using vertex and pixel shaders. The techniques are OSMs from
section 3.3.3.2, DOMSs from section 3.3.3.4, and FOMs from section 3.3.3.5. We render
smoke using particle systems with three different volumetric shadow techniques in order
to analyze actual levels of accuracy and performance for drawing clouds of smoke with

shadows.

Accuracy and performance is measured for a fixed amount of memory, so that a
comparison can be made between image and speed results for differing techniques. In
terms of performance, we desire fast rendering speed and low memory usage, and the
results can be directly compared, because actual numeric quantities are reported. In terms
of accuracy, we use a large fixed amount of memory for slices or coefficients to establish
a highly accurate baseline image that is nearly the same for all shadow techniques. Using
smaller fixed amounts of memory reduces accuracy and increases artifacts. The
difference between a baseline image and one produced using a lower fixed amount of

memory shows inaccuracies that can be compared to other techniques.

First, the platform that was used in order to perform all of the speed
measurements is described. The results and analysis of the techniques used to render
clouds of smoke with shadows are found in section 4.2. Images produced by each

implementation can be found in section 4.2.2.1.

45

4.1 Platform

Processor: Intel(R) Core(TM) 13-2100 CPU @ 3.10 GHz (2 CPUs), 3.10 GHz
Installed memory (RAM): 6.00 GB

DirectX version: DirectX 11

Card name: NVIDIA GeForce GTX 550 Ti

Display memory: 3787 MB (Dedicated Memory: 992 MB)

4.2 Rendering Clouds of Smoke with Shadows

Performance is perhaps the most important consideration when choosing a
technique to render clouds of smoke. Smoke and shadow rendering performance is
largely influential on total performance, and it is what is analyzed in this section. For
each smoke rendering technique with shadows, we use the name of the shadow technique
to identify it, because each shadow technique is distinct. The attributes that make a smoke
rendering technique with shadows more desirable than another is fast rendering speed,

low memory usage, and high accuracy or realism.

4.2.1 Speed Results

A number of time measurements were taken for each shadow technique using
varying fixed amounts of memory. The number of render target texture components
(r,g,b,a) used for each test was 16, 8, and 6. Note that DOMs use one render target texture
component for depths from the light, so there is one less slice than OSMs for each test.
The final speed that we compare is the sum of the time in milliseconds that it took to

build the shadow information, and the time that it took in milliseconds to render the

46

smoke with shadows. Time measurements are averaged over 100 samples. Particle

sorting time is includes too.

In regard to Fourier Opacity Mapping, we varied the number of coefficients used
to reconstruct the transmittance function. Increasing the number of coefficients increases
accuracy by decreasing ringing. In regard to Opacity Shadow Maps and Deep Opacity
Maps, we varied the number of slices used to compute the shadow map. Increasing slices
increases accuracy. Adding slices to OSMs and DOMs, or coefficients to FOMs improves
the ability of each technique to draw thin features of smoke more correctly. The
resolution of the screen remained at a constant 1024x768 for all of the tests. The shadow
map resolution remained at 512x512 as well. The number of particles that were used in
all tests was fixed to 2500, and the position of the camera and light relative to the smoke
remained constant. In addition, the same smoke volume was used for all measurements.

The results are listed in the table below.

FOM, 16 Coefs, 512 I 0 .09
DOM, 15 Slices, 512 I 8 .99
OSM, 16 Slices, 512 NN 8 .24

DOM, 7 Slices, 512 I 6 .53

OSM, 8 Slices, 512 I 6.02

DOM, 5 Slices, 512 I .02

OSM, 6 Slices, 512 I 5 63

FOM, 8 Coefs, 512 GGG 5 .16

FOM, 6 Coefs, 512 I /4 .52

01 2 3 4 5 6 7 8 9 10

Figure 25: Millisecond timings for all 3 implementations sorted from fastest to slowest.
The time that it took to build the shadow information plus the time that it took to render
the smoke with shadows is the number shown. Particle sorting time is included, and time

measurements were averaged over 100 samples. The IDirect3DQuery9 interface was used

47

to perform all time measurements. Each sort of all of the particles took 0.96 milliseconds.

4.2.2 Accuracy Results

We show a few of the resulting images of clouds of smoke rendered with our
implementations in the section below. Section 4.2.2.2 shows more detailed accuracy

results. All of the images shown are generated using a single spotlight.

4.2.2.1 Images

Image 1: Smoke with an Opacity Shadow Map

48

49

Image 2: Smoke with an Opacity Shadow Map after a wind
effect

Image 3: Smoke with a Deep Opacity Map

50

Image 4: Smoke with a Deep Opacity Map after a wind
effect

Image 5: Smoke with a Fourier Opacity Map

Image 6: Smoke with a Fourier Opacity Map after a wind
effect

4.2.2.2 Accuracy Comparison

The number of render target texture components (r,g,b,a) used for the baseline
images was 24. The difference between baseline images for all techniques is below,
followed by the difference between baseline images and images with lower numbers of

components including 16, 8, and 6.

51

Image 7: 24 slice OSM baseline Image 10: Image 7 and Image 8
difference enhanced by 4x

Image 8: 23 slice DOM baseline
Image 11: Image 7 and Image 9
difference enhanced by 4x

Image 9: 24 coefficient FOM baseline

Image 12: Image 8 and Image 9
difference enhanced by 4x

52

Image 13: 24 slice OSM baseline

Image 17: Image 13 and Image 14
difference enhanced by 4x

Image 14: 16 slice OSM

Image 18: Image 13 and Image 15
difference enhanced by 4x

Image 15: 8 slice OSM

Image 19: Image 13 and Image 16
Image 16: 6 slice OSM difference enhanced by 4x

53

Image 20: 23 slice DOM baseline

Image 21: 15 slice DOM

Image 22: 7 slice DOM

Image 23: 5 slice DOM

54

Image 24: Image 20 and Image 21
difference enhanced by 4x

Image 25: Image 20 and Image 22
difference enhanced by 4x

Image 26: Image 20 and Image 23
difference enhanced by 4x

Image 27: 24 coefficient FOM baseline

Image 31: Image 27 and Image 28
difference enhanced by 4x

Image 28: 16 coefficient FOM

\

Image 32: Image 27 and Image 29
difference enhanced by 4x

Image 29: 8 coefficient FOM

\

_ Image 33: Image 27 and Image 30
Image 30: 6 coefficient FOM difference enhanced by 4x

55

The baseline images are considered to be ground truth images, because they use
the most slices or coefficients to compute the shadow. The same volume and scene
conditions were used in order to render all of the baseline images for all of the
techniques. In addition, the same fixed amount of memory was used. The baseline images
are similar to each other, but some differences show when we compute the difference
between baseline images from two different techniques, as we have done for images 10,
11, and 12 above. For this case, it appears that OSMs and DOMSs have represented the
shadow most accurately, because the highest quality baseline images were almost
identical. In addition, there was almost no difference between images 13 and 14, as well
as images 20 and 21. All of the techniques become more accurate when larger amounts
off memory are used for slices or coefficients. By taking the difference between a
baseline image, and an image produced using a lower fixed amount of memory, we
validate that the accuracy error has to be at least the amount shown in the resulting image
difference. Moreover, the closer the baseline image is to the exact image, the better the
bound on error is. Consistent with image results of hair from [YKO08], DOMs appears to
be more accurate than OSMs for low fixed amounts of memory, because images 18 and
19 are more noticeable than images 25 and 26. On the other hand, FOMs appeared to
perform most poorly in terms of accuracy. The baseline image for FOMs was greatly
different from the baseline images of OSMs and DOMs, and the difference between the
baseline image (/mage 27) and images of lower fixed amounts of memory (/mage 28, 29,
and 30) were large. Inaccuracies of FOMs consistent to those shown here can be found in
[SVLL10], and are attributed to ringing and a less-than-optimal depth bounds.
Inaccuracies with OSMs and DOMs are attributed to slicing artifacts. Note that the scene
used to produce our accuracy results does not show additional artifacts that may be

caused by outliers.

56

4.2.3 Rendering Clouds of Smoke with Shadows Analysis

The techniques have differences that may have led some to perform better or
worse than others. All of the methods had competitive rendering speed for the varying
fixed amounts of memory used. One reason for FOMs rendering slightly more quickly
than the others with low fixed amounts of memory is that particles do not have to be
sorted when building a FOM, but they need to be sorted when building an OSM or a
DOM. With larger fixed amounts of memory and more accuracy, rendering with FOMs
slowed down significantly and became the slowest of all. Building an OSM is simply
additive blending of opacity, and rendering is simply linear interpolation. OSMs only
slightly outperforms DOMs in rendering speed, because they are only slightly different
techniques. On the other hand, building a FOM is additive blending of Fourier
coefficients with trigonometric functions, and reconstructing the transmittance function

for rendering is the evaluation of more trigonometric functions.

Looking at accuracy, FOMs performed most poorly, because the differences
between its baseline image and each image using a lower fixed amount of memory was
large. The accuracy of OSMs and DOMs was higher with lower fixed amounts of
memory, and baseline images of the techniques were similar to each other. They both had
slicing artifacts with lower fixed amounts of memory, but the artifacts of DOMs appeared
to be significantly less in magnitude, because the slices conform to the shape of the
smoke. On the other hand, FOMs had ringing artifacts. With the same fixed amount of
memory used for the baseline images, FOMs appeared to be furthest from matching the

baseline images of the other techniques.

OSMs and DOMs performed the best in terms of memory usage and rendering
speed with larger fixed amounts of memory. With nearly the same number of slices,
OSMs is faster and uses less memory. However, DOMs uses less slices for comparable
accuracy. There are ways of adding accuracy or reducing artifacts. With slicing methods

like OSMs and DOMs, we can add more slices, position them without uniformity, or use

57

cubic spline interpolation instead of linear interpolation. With FOMs, we could certainly
add more coefficients used to represent the transmittance function. However, combating
accuracy issues in such a way comes at the cost of reduced performance in speed and

memory usage.

58

Chapter 5: Conclusion and Future Work

We achieved our goal of determining levels of accuracy and performance of
methods used for rendering clouds with shadows using vertex and pixel shaders. We
implemented techniques used to render clouds with shadows, produced results for our
implementations, and analyzed the results. Before the techniques were implemented, we
did a survey of many techniques specifically used for modeling clouds, rendering clouds,
and rendering cloud shadows. The survey gave use the knowledge that we needed for or

own implementations, so that we could generate our own results.

We have highlighted strengths and weaknesses of many of the techniques used to
model and render clouds with shadows, and we organized the progression of the field of
cloud volume graphics with shadows for reference. It is not known what future changes
to hardware might make a technique that is researched here improve in some aspect. An
improvement could amount to a more desirable technique in the long run. However, this
research makes choosing the appropriate method for rendering clouds with shadows

easier.

One possible improvement would be to use cubic spline interpolation for
sampling opacity from slice-based techniques like OSMs and DOMs in order to attempt
to smooth slice artifacts. Another improvement would be to use a mesh or some other
approximation of clouds in order to render the front-most depths from the light when
building a DOM. The goal would be to improve cloud shape approximation, and it could
make building a DOM more efficient and smooth out artifacts caused by using the
particles themselves. Another possible improvement would be to handle opaque polygons
in the volumetric shadow maps. All of our shadow maps are computed using a spot light.
An omnidirectional light using environment mapped shadows might be possible and
worthwhile. Another improvement would be to handle intersections of clouds with
opaque terrain polygons without artifacts using Spherical Billboards discussed in section
3.2.2.3. The use of OpenCL, Nvidia's CUDA, or some of the techniques found in [JB11]

would increase efficiency. One possible way to increase the speed of OSMs and DOMs

59

http:aspect.An
http:reference.It

might be to use the half-angle described in section 3.3.3.3 in order to combine HAS with
OSMs or DOMs for the purpose of performing only one sort for the light pass and the
view pass combined. Sorting a large number of particles can be costly in terms of speed,

so sorting the particles once, instead of twice, could increase efficiency.

60

References
[EHKRWO6]

[R83]

[C74]

[BN76]

[MHHO8]

[TY09]

[W07]

[GO5]

[S08]

[R10]

[LC87]

[L88]

[LO3]

[J01]

61

Klaus Engel, Markus Hadwiger, Joe Kniss, Christof Rezk-Salama,
Daniel Weiskopf, "Real-Time Volume Graphics." A K Peters, 2006

William T. Reeves, "Particle Systems-A Technique for Modeling a
Class of Fuzzy Objects", 1983

Edwin Earl Catmull, "A Subdivision Algorithm for Computer
Display of Curved Surfaces",
1974 <www.pixartouchbook.com/storage/catmull thesis.pdf>

James F. Blinn, Martin E. Newell, "Texture and Reflection in
Computer Generated Images", ACM, 1976

Tomas Akenine-Moller, Eric Haines, Naty Hoffman, "Real-Time
Rendering." A K Peters, 2008

Junichiro Toriwaki, Hiroyuki Yoshida, "Fundamentals of Three-
dimensional Digital Image Processing." Springer, 2009

Daniel Weiskopf, "GPU-Based Interactive Visualization
Techniques." Springer, 2007

Stefan Gustavson, "Simplex Noise Demystified",
2005.<www.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf>

Allen Sherrod, "Game Graphics Programming." Cengage Course
Technology, 2008

Steve Rabin,"Introduction to Game Development 2010.", 2010

William E. Lorensen, Harvey E. Cline, "Marching Cubes: A High
Resolution 3D Surface Construction Algorithm", ACM,1987

Marc Levoy,University of North Carolina, "Display of Surfaces
from Volume Data", ACM, 1988

Mats Lindh,"Marching Cubes",
2003.<http://www.ia.hiof.no/~borres/cgraph/explain/marching/p-
march.html>

Andreas Jonsson, "Fast Metaballs",
2001.<http://www.angelcode.com/dev/metaballs/metaballs.htm]>

[MO1]

[CO5]

[USS06]

[PPLSHS99]

[DKCBK98]

[L90]

[H09]

[04]

[W78]

[DLO6]

[JB09]
[LVOO]

[KNO1]

62

Radomir Mech, "Hardware-Accelerated Real-Time Rendering of
Gaseous Phenomena", Journal of Graphics Tools, 2001

Francesco Carucci, "GPU Gems 2: Programming Techniques for
High-Performance Graphics and General-Purpose Computation."
Addison-Wesley Professional, 3 (Inside Geometry Instancing),
2005

Tamas Umenhofter, Laszlo Szirmay-Kalos, Gabor Szijarto,
Budapest University of Technology, "Spherical Billboards and
their Application to Rendering Explosions", ACM, 2006

Steven Parker, Michael Parker, Yarden Livnat, Peter-Pike Sloan,
Charles Hansen, Peter Shirley, "Interactive Ray Tracing for
Volume Visualization", ACM, 1999

Frank Dachille, Kevin Kreeger, Baoquan Chen, Ingmar Bitter, Arie
Kaufmany, "High-Quality Volume Rendering Using Texture
Mapping Hardware", Siggraph, 98

Marc Levoy, University of North Carolina,, "Efficient Ray Tracing
of Volume Data", ACM, 1990

Kyle Hayward, "Volume Rendering 102: Transfer Functions ",
2009.<http://graphicsrunner.blogspot.com/2009/01/volume-
rendering-102-transfer-functions.html>

Nvidia, "SDK White Paper : Fog Polygon Volumes (Rendering
Objects as Thick Volumes)", 2004

Lance Williams, New York Institute of Technology, "Casting
Curved Shadows on Curved Surfaces", Computer Graphics

(SIGGRAPH °78 Proceedings), 1978

William Donnelly, Andrew Lauritzen ,University of Waterloo,
"Variance Shadow Maps", ACM, 2006

Jon Jansen, Louis Bavoil, "Fourier Opacity Mapping", ACM, 2009
Tom Lokovic, Eric Veach, "Deep Shadow Maps", ACM, 2000

Tae-Young Kim, Ulrich Neumann, University of Southern
California, "Opacity Shadow Maps", ACM, 2001

[KPHSMO03]

[YKOS]

[HKSBO6]

[GO8]

[FIKLHO4]

[SVLL10]

[JB11]

63

Joe Kniss, Simon Premoze, Charles Hansen, Peter Shirley, Allen
McPherson, "A Model for Volume Lighting and Modeling", ACM,
2003

Cem Yuksel, John Keyser, "Deep Opacity Maps",
EUROGRAPHICS, 2008

Markus Hadwiger, Andrea Kratz, Christian Sigg, Katja Buhler,
"GPU-Accelerated Deep Shadow Maps for Direct Volume
Rendering", Proceedings of Graphics Hardware, 2006

Simon Green, "Volumetric Particle Shadows", 2008

Randima Fernando, Milan Ikits, Joe Kniss, Aaron Lefohn, Charles
Hansen,"Volume Rendering Techniques." Pearson Education, 39,
2004

Marco Salvi, Kiril Vidimce, Andrew Lauritzen, Aaron Lefohn,
"Adaptive Volumetric Shadow Maps", ACM, 2010

Jon Jansen, Louis Bavoil, "Fast Rendering of Opacity Mapped
Particles Using DirectX 11 Tessellation and Mixed Resolutions",
2011

	Copyright
	Title Page
	Table of Contents
	Abstract
	Chapter 1: Introduction
	1.1 Goal
	1.2 Organization

	Chapter 2: Volume Rendering Equation
	Chapter 3: Survey
	3.1 Techniques Used for Modeling Clouds
	3.1.1 Introduction
	3.1.2 Particle System
	3.1.2.1 Modeling Clouds

	3.1.3 Volume Texture
	3.1.3.1 Modeling Clouds

	3.1.4 Mesh
	3.1.4.1 Marching Cubes
	3.1.4.2 Modeling Clouds

	3.2 Techniques Used for Rendering Clouds
	3.2.1 Introduction
	3.2.2 Particle System
	3.2.2.1 Billboarding
	3.2.2.1.1 Screen-Aligned Billboarding

	3.2.2.2 Rendering Clouds Using a Particle System
	3.2.2.2.1 Shader Constant Instancing

	3.2.2.3 Spherical Billboards

	3.2.3 Volume Ray Tracing
	3.2.3.1 Rendering Clouds Using Volume Ray Tracing
	3.2.3.1.1 Transfer Function

	3.2.4 Fog Polygon Volumes
	3.2.4.1 Rendering Clouds Using Fog Polygon Volumes

	3.3 Techniques Used for Rendering Cloud Shadow
	3.3.1 Introduction
	3.3.2 Surface Shadows
	3.3.2.1 Traditional Depth Shadow Map

	3.3.3 Volumetric Shadows
	3.3.3.1 Deep Shadow Map
	3.3.3.2 Opacity Shadow Map
	3.3.3.3 Half-Angle Slicing
	3.3.3.4 Deep Opacity Map
	3.3.3.5 Fourier Opacity Map

	Chapter 4: Results
	4.1 Platform
	4.2 Rendering Clouds of Smoke with Shadows
	4.2.1 Speed Results
	4.2.2 Accuracy Results
	4.2.2.1 Images
	4.2.2.2 Accuracy Comparison

	4.2.3 Rendering Clouds of Smoke with Shadows Analysis

	Chapter 5: Conclusion and Future Work
	References
	[EHKRW06] 	Klaus Engel, Markus Hadwiger, Joe Kniss, Christof Rezk-Salama, Daniel Weiskopf, "Real-Time Volume Graphics." A K Peters, 2006
	[R83]	William T. Reeves, "Particle Systems-A Technique for Modeling a Class of Fuzzy Objects", 1983
	[C74] 	Edwin Earl Catmull, "A Subdivision Algorithm for Computer Display of Curved Surfaces", 1974.<www.pixartouchbook.com/storage/catmull_thesis.pdf>
	[BN76]	James F. Blinn, Martin E. Newell, "Texture and Reflection in Computer Generated Images", ACM, 1976
	[MHH08] 	Tomas Akenine-Möller, Eric Haines, Naty Hoffman, "Real-Time Rendering." A K Peters, 2008
	[TY09] 	Junichiro Toriwaki, Hiroyuki Yoshida, "Fundamentals of Three-dimensional Digital Image Processing." Springer, 2009
	[W07] 	Daniel Weiskopf, "GPU-Based Interactive Visualization Techniques." Springer, 2007
	[G05] 	Stefan Gustavson, "Simplex Noise Demystified", 2005.<www.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf>
	[S08] 	Allen Sherrod, "Game Graphics Programming." Cengage Course Technology, 2008
	[R10] 	Steve Rabin,"Introduction to Game Development 2010.", 2010
	[LC87]	William E. Lorensen, Harvey E. Cline, "Marching Cubes: A High Resolution 3D Surface Construction Algorithm", ACM,1987
	[L88]	Marc Levoy,University of North Carolina, "Display of Surfaces from Volume Data", ACM,1988
	[L03]	Mats Lindh,"Marching Cubes", 2003.<http://www.ia.hiof.no/~borres/cgraph/explain/marching/p-march.html>
	[J01]	Andreas Jönsson, "Fast Metaballs", 2001.<http://www.angelcode.com/dev/metaballs/metaballs.html>
	[M01]	Radomir Mech, "Hardware-Accelerated Real-Time Rendering of Gaseous Phenomena", Journal of Graphics Tools, 2001
	[C05] 	Francesco Carucci, "GPU Gems 2: Programming Techniques for High-Performance Graphics and General-Purpose Computation." Addison-Wesley Professional, 3 (Inside Geometry Instancing), 2005
	[USS06]	Tamas Umenhoffer, Laszlo Szirmay-Kalos, Gabor Szijarto, Budapest University of Technology, "Spherical Billboards and their Application to Rendering Explosions", ACM, 2006
	[PPLSHS99]	Steven Parker, Michael Parker, Yarden Livnat, Peter-Pike Sloan, Charles Hansen, Peter Shirley, "Interactive Ray Tracing for Volume Visualization", ACM, 1999
	[DKCBK98] Frank Dachille, Kevin Kreeger, Baoquan Chen, Ingmar Bitter, Arie Kaufmany, "High-Quality Volume Rendering Using Texture Mapping Hardware", Siggraph, 98
	[L90]	Marc Levoy, University of North Carolina,, "Efficient Ray Tracing of Volume Data", ACM, 1990
	[H09]	Kyle Hayward, "Volume Rendering 102: Transfer Functions ", 2009.<http://graphicsrunner.blogspot.com/2009/01/volume-rendering-102-transfer-functions.html>
	[04]	Nvidia, "SDK White Paper : Fog Polygon Volumes (Rendering Objects as Thick Volumes)", 2004
	[W78]	Lance Williams, New York Institute of Technology, "Casting Curved Shadows on Curved Surfaces", Computer Graphics (SIGGRAPH ’78 Proceedings), 1978
	[DL06]	William Donnelly, Andrew Lauritzen ,University of Waterloo, "Variance Shadow Maps", ACM, 2006
	[JB09]	Jon Jansen, Louis Bavoil, "Fourier Opacity Mapping", ACM, 2009
	[LV00]	Tom Lokovic, Eric Veach, "Deep Shadow Maps", ACM, 2000
	[KN01]	Tae-Young Kim, Ulrich Neumann, University of Southern California, "Opacity Shadow Maps", ACM, 2001
	[KPHSM03]	Joe Kniss, Simon Premoze, Charles Hansen, Peter Shirley, Allen McPherson, "A Model for Volume Lighting and Modeling", ACM, 2003
	[YK08]	Cem Yuksel, John Keyser, "Deep Opacity Maps", EUROGRAPHICS, 2008
	[HKSB06]	Markus Hadwiger, Andrea Kratz, Christian Sigg, Katja Buhler, "GPU-Accelerated Deep Shadow Maps for Direct Volume Rendering", Proceedings of Graphics Hardware, 2006
	[G08]	Simon Green, "Volumetric Particle Shadows", 2008
	[FIKLH04] 	Randima Fernando, Milan Ikits, Joe Kniss, Aaron Lefohn, Charles Hansen,"Volume Rendering Techniques." Pearson Education, 39, 2004
	[SVLL10]	Marco Salvi, Kiril Vidimce, Andrew Lauritzen, Aaron Lefohn, "Adaptive Volumetric Shadow Maps", ACM, 2010
	[JB11]	Jon Jansen, Louis Bavoil, "Fast Rendering of Opacity Mapped Particles Using DirectX 11 Tessellation and Mixed Resolutions", 2011

