
c
2007 DigiPen Institute of Technology and DigiPen (USA) Corporation. All rights re-
served.

1

Goal planning for automated agents

BY

Michael Dawe
B.S., Computer Science, Rensselaer Polytechnic Institute, 2002

B. S., Philosophy, Rensselaer Polytechnic Institute, 2002

THESIS

Submitted in partial fulfllment of the requirements
for the degree of Master of Science

in the graduate studies program
of DigiPen Institute of Technology

Redmond, Washington
United States of America

Fall, 2007

2

Oral defense signature page goes here

3

Thesis approval signature page goes here

4

Contents

1 Acknowledgments 8

2 Problem statement 9

3 Planning overview and early history 10

4 Variations on planning algorithms 12
4.1 Satisfability and planning . 12

4.1.1 Differences between deduction and satisfability 12
4.1.2 Summary of results . 13

4.2 Planning with graph analysis . 14
4.2.1 Planning graph structure . 14
4.2.2 Summary of results . 16
4.2.3 Graphplan for multiple agents 16

4.3 Applicability to games . 17

5 Parallelizing plans with partial-order planners 17
5.1 When actions can be performed in parallel 17
5.2 Types of parallel plans . 18

5.2.1 Independent actions . 18
5.2.2 Independent actions relative to a goal 18
5.2.3 Independent subplans relative to a goal 18
5.2.4 Interacting actions . 19

5.3 Partial-order planning with interacting actions 19
5.4 Applicability to games . 20

6 Plan recognition 21
6.1 Plan recognition overview . 21
6.2 Planning and plan recognition . 21
6.3 Applicability to games . 22

7 Plan merging 22
7.1 Positive goal interactions . 22
7.2 Avoiding resource conficts . 25

7.2.1 Applicability to games . 26
7.3 Operator merging . 27

7.3.1 Applicability to games . 27

5

8 Hierarchical Task Network planning 28
8.1 Overview of HTN planning . 28
8.2 Applicability to games . 30

9 Applications of planning in games 30

10 Proposal for research 32

11 Research products 33
11.1 Planning system . 33

11.1.1 Search algorithm . 33
11.1.2 Goal classes . 34
11.1.3 Action classes . 34
11.1.4 Plan class . 35

11.2 World representation . 35
11.3 Agent defnition . 37
11.4 The Planning Algorithm as used in an Agent 37

12 Improving the planner 38
12.1 Scheduling . 38
12.2 Goal merging . 39
12.3 Plan merging . 42

12.3.1 Implementing a plan merging algorithm 43
12.3.2 Beyond single-agent merges 44
12.3.3 Strategies for improving action searching 45

13 Conclusions and future work 46

6

List of Figures

1 Operators and the generated Planning Graph for a particular planning
problem. Taken from [3]. Dots in action layers represent no-op actions. 15

2 An example goal-plan tree. From [25]. 23
3 Symbols and terms used in Figure 2. From [25]. 23
4 Basic HTN planning algorithm. From [7]. 29
5 An agent’s logic to determine the most important goal for planning

purposes. 38
6 Algorithm to place actions into the correct order based on scheduling

precedence relations. 40
7 Algorithm to merge two goals into a single goal. 41
8 A plan merging algorithm with a known action to merge on. 45

7

1 Acknowledgments

At DigiPen, Dr. Bikram Banerjee served as a frequent sounding board for ideas and
consistently asked the right questions to make sure I understood every paper I read.
Dr. Dmitri Volper also provided useful feedback and served as chairman of the thesis
committee. Dr. Xin Li provided much encouragement as well. Dr. Michael Jahn and
Dr. Rania Hussein were both kind enough to serve as committee members. Steve Rabin
provided insightful comments and enough of a push to have me write up a similar idea
for a book. Finally, the idea for this work was inspired by Jeff Orkin, who was always
provided thoughtful, polite, and timely responses to all my questions.

8

Abstract

Goal planning is a well-researched method for automated agents to formulate

a plan of action to solve a problem. This paper presents an overview of the devel-

opment of planning in the general artifcial intelligence setting and specifcally its

recent applications to reasoning for artifcial agents in real-time games. Addition-

ally, the author presents research on plan merging algorithms as applied to game

applications.

2 Problem statement

Real-time simulations and games in particular have demanding technical requirements
as well as high consumer expectation for delivering the best possible experience. Ar-
tifcial intelligence is one area of game production that is particularly demanding in a
wide variety of ways: programmers must have their agents interact with increasingly
complex environments, exhibit myriad different behaviors, and interact intelligently
with the player and other agents. As games and hardware grow more complex, so
must the AI systems designed to control those agents. Yet complexity is increasingly a
problem for both designers and engineers as more complex systems have more subtle
interactions and the possibility for unintended behavior. Indeed, several major talks at
the Game Developer’s Conference in recent years have dealt with handling complexity
in artifcial intelligence systems for games [21], [12].

Traditionally, game systems have utilized fnite state machines (FSM’s) to control
character behavior. In part, FSM’s are widely used because they are widely used; the
collective knowledge about FSM’s is vast from both practical experience and academic
research, and the concept behind them is easy to understand. However, state machines
have some disadvantages as well. As fnite state machines grow larger, they also be-
come more diffcult to understand, making accurate prediction of their behavior under
a variety of circumstance nearly impossible. Larger FSM’s take up more space in mem-
ory and are more challenging to design consistent behaviors for as well. Additionally,
and especially as projects become larger, it is desirable to be able to design behaviors
for characters and reuse those behaviors for other characters. Yet in the past, reusing
FSM’s for other characters has proved diffcult or impossible [21].

Why is reusing a fnite state machine so diffcult? It should be simple enough to
write a FSM for a particular behavior, such as "Attack," or "Chase," and reuse that
particular FSM for any character that needs to perform those actions. The diffcult part
comes when designers wish those behaviors to be slightly different for different char-
acters. The FSM’s become much larger as the behaviors incorporate special logic, and

9

tweaking or changing one part of the FSM means extensive testing. Each tweak could
have unintended effects on the behavior, or even other behaviors, often in unexpected
ways. This risk is often unacceptable, particularly as the project cycle ends.

Jeff Orkin has suggested planning as a way of overcoming these obstacles in game
design [21]. The motivation for examining real-time planning for artifcial agents in
games came about from a desire for characters to have atomic, reusable actions that
can be easily shared between characters while providing more complex and realistic
behaviors with reduced complexity.

3 Planning overview and early history

Planning in artifcial intelligence was developed as an alternative way of looking at
problem solving through a search of states. Traditional searching algorithms, such as
breath-frst search or depth-frst search, are used to search through a set of states in
search of a target state, optionally using a heuristic function to help guide the search.
However, such searching algorithms can only blindly follow the heuristic while search-
ing for the target goal state. Goal planning systems were developed to help agents
reason about how they were to accomplish their goals.

Russell and Norvig [23] present an example concerning an agent with a shopping
list: the agent is at home, and has a number of items it needs to acquire (say, a ham-
mer and a quart of milk). Traditional searching algorithms could search through a
signifcant number of states in their searches for the goal state (being at home with the
hammer and milk). Such searches are mostly blind, considering equally all possible
actions, including going to sleep, reading a book, or going to the hardware store, when
in actuality only one of those actions holds any hope of being fruitful for the agent.
Planning systems attempt to codify information about the actual actions an agent can
take in order to help the agent think and act rationally about the problem given.

Planners usually represent goals (a target world state) and actions (ways for the
agent to change the world state) using some derivative of frst-order logic or another
formal language. Indeed, the frst major planning system, STRIPS, uses a form of
predicate logic to represent the state of the world and actions an agent can perform
[16]. STRIPS was originally written for a robot named Shakey, a robot at the Stanford
Research Institute1 in the early 1970’s. Since then, STRIPS has become a standard for
planning languages in numerous projects.

Most planners have some terminology in common. An planner is given a goal, an

1Now SRI International.

10

initial state, and a set of actions to use in accomplishing the goal. A goal is quite simply
a target world state: the state of the problem as the agent wants it to be. In the example
above, the goal was for the agent to be at home with a hammer and a quart of milk. The
initial state is the starting point of the search, or the world state as it is currently. Using
the above example again, the initial state might just be the agent at home. It may, of
course, include other things, such as the fact that the agent has some bananas, although
such things will be irrelevant to the planner. Actions or operators are the things an
agent can do in order to change the state of the world. Some possible actions for our
example problem would be buying an item or moving to a different place in the world.
Many planners allow for actions to have variables, allowing the planner to have a single
action such as Buy(x) for all possible values of x. An action can have preconditions and
effects. For instance, a precondition of Buy might be having enough money to buy the
item. Effects of actions explain to the planner how the action changes the world state;
Buy(x) has an effect of the agent now possessing the item x. It would also specifcally
state other consequences of the action, such as the agent having less money than it did
before the action was executed.

With these defnitions, planners can then examine problems to come up with plans,
a formalized solution to the problem. A plan consists of an ordering of actions the
agent should take to achieve the goal state. Plans should also contain variable bind-
ings for actions with variables. Plans can be partially-ordered, where some actions
may be left unordered relative to each other, or totally-ordered, where all actions are
given in a specifc execution order. Both types of planners output a set of ordering
constraints, indicating which actions must be performed before any other particular
action. Partially-ordered planners are more widespread for a variety of reasons. First,
note that for a given partially-ordered plan, there are an exponentially increasing num-
ber of totally-ordered plans. For example, a partially-ordered plan for putting on socks
and shoes that ignores the ordering of left/right foot frst has six totally-ordered plans
(called linearizations). A partially-ordered planner ignores ordering of actions if the
ordering is not important to the outcome of the plan. Additionally, planners have found
use for agents capable of executing multiple actions simultaneously, or creating plans
for groups of agents acting cooperatively, so plans not enforcing a strict ordering of
actions are desirable in those cases. Plans can also be combined with other plans at a
later time, and a more fexible ordering of those plans may assist in their combination.

Partial-order planners begin by taking the initial state and goal states as the begin-
ning and end of a plan respectively, then iteratively adding actions leading to interme-
diate states between the starting and ending states. At each step, the planner focuses its
search by only adding actions that serve to meet a precondition of some part of the plan

11

that is not yet achieved. Additionally, the planner needs to check to make sure that the
plan is consistent at each step; that is, the action added in a step cannot cause a contra-
diction in the plan. Contradictions can be formed by actions requiring an impossible
ordering (A must be before B must be before A, etc.) or requiring a dual assignment
to a variable (say, a variable v = A and v = B for A 6 B). Beyond these subtleties, =

this algorithm for a partial-order planner is both sound and complete, and forms the
original POP planning algorithm.

4 Variations on planning algorithms

A great number of algorithms based on the same idea of partial-order planning have
been developed, such as NONLIN, O-PLAN [5] and UCPOP [22]. However, several
non-traditional approaches to planning have also been attempted with varying levels of
success.

4.1 Satisfability and planning

Many formalized analyses of planning algorithms approach the solution as a type of
deductive reasoning. This method interprets the planning problem as fnding a deduc-
tive proof in a system whose axioms state that action effects are implications of the
action’s occurrence when that action’s preconditions hold. By formalizing planning
in such a way, traditional methods of deductive proof can be used to analyze specifc
planning problems.

Deduction’s complimentary problem is known as satisfability [13], creating a model
of a set of axioms. Kautz and Selman tested two different satisfability algorithms, DP

and GSAT, on a variety of planning-as-satisfability problems, with several interesting
results.

4.1.1 Differences between deduction and satisfability

As mentioned earlier, deductive planning formalization is generally based on a logical
system, such as the situational calculus or a specially-designed predicate logic sys-
tem. Using this sort of language to represent a planning problem allows it to be solved
deductively, by using the ’axioms’ of action effects and preconditions. However, satis-
fability moves in the opposite direction; starting with the ’axioms’ of actions, it creates
a model of the world that is consistent with those actions. This can easily lead to prob-
lems in which a plan satisfying the axioms is not a reasonable one. Put another way,

12

satisfability can string together actions in such a way that the plan is consistent, but
impossible to execute. For example, the formalization of an action as an axiom says
that an action’s effects take place when an action is performed while its preconditions
are held true. This means that a satisfability approach can execute actions without their
preconditions being true, since it is consistent to say that the effect still occurs! (Recall
in logic that the statement false ! true is itself true.) This problem can be overcome
by introducing the notion of time into the formal language, where one unit of time rep-
resents the time it takes for an action to be executed. Using this notion of time, actions
can be rewritten to imply their effects at the time after they are completed, but also
to imply their preconditions at the previous unit of time. In doing so, the satisfabil-
ity planner will no longer create situations where actions are performed without their
preconditions being true. Other extensions to the planning-as-satisfability approach
include a restriction to only allow one action at any particular time, and an assertion
that an action occurs at every time step. Since it is always possible to defne a "do
nothing" action, this last declaration is noted as not being particularly restrictive.

Satisfability has the unique advantage of being able to place arbitrary constraints
on the solution to the problem. Because of the introduced notion of time, it is easy
to assert any particular attribute about the world should be held true at any particular
time. Deductive reasoning systems have a much more diffcult time enforcing such
constraints. On the other hand, the explicit notion of time enforces a total-order-like
structure to the resultant plan.

4.1.2 Summary of results

Several key elements contribute to the running time of the satisfability planner. The
length of the instantiated plan is bounded by O(kcd), where c is the number of con-
stants (that is, the largest number of elements that could be assigned to a particular vari-
able), d is the maximum depth of quantifer nesting, and k is the number of literals in
the longest statement. Clearly, the depth of quantifers in the statements has the greatest
effect on the size of the output. Thus, replacing a predicate such as move(x,y,z,i) with
three predicates object(x,i), source(y,i), and dest(z,i) has a greatly benefcial effect.

Better results were obtained when axioms that explicitly ruled out illegal states
were included (such as an object being on top of itself). While plans leading to such
states would fail, their explicit exclusion increased performance of the algorithm.

Two algorithms were used; one, GSAT, was a local greedy search algorithm, which
performed well on general satisfability problems, while the other, DP, a well-known
backtracing algorithm, provided superior performance on a variety of traditional plan-

13

ning problems. While GSAT failed to solve several of the traditional planning problems
presented to it on its frst try, the exclusion of illegal states as mentioned above signif-
cantly improved its performance on those problems.

4.2 Planning with graph analysis

Another alternative way of looking at planning was proposed by Blum and Furst in
1997, using a structure they created known as a Planning Graph [1]. Their algorithmic
planner, GRAPHPLAN, constructs a Planning Graph before searching for a relevant
plan. Planning Graphs, which can be built in polynomial time and polynomial space,
do not cover the entire search space of a problem, but rather represent an organized
structure of possible actions for STRIPS-like domains.

GRAPHPLAN has several interesting features of note. First, like the planning-as-
satisfability planners above, it requires an explicit notion of time, where every action
takes one time unit. This, again, does not restrict the plan generated to take a state-
changing action at every time, so long as a "no-operation" style action is included in
the allowable action set. Thus, GRAPHPLAN makes total-order planning-like commit-
ments to the times in which actions occur. However, this is not to imply that the plans
generated are total-order; rather, they imply orderings only among actions at different
steps. For instance, GRAPHPLAN can generate plans where several actions occur at a
particular timestep. Such plans therefore have partial-order fexibility concerning the
ordering of actions during one arbitrary timestep. The authors also note that with mul-
tiple agents, or perhaps an agent capable of more than one action simultaneously, times
in the plan where more than one action occurs could be handled in parallel by those
agents.

GRAPHPLAN is provably sound and complete, and is also guaranteed to return the
shortest possible plan for the given problem. It operates on traditional STRIPS-like
problem domains, with the expected defnitions of actions, objects, initial conditions
and goal states. Additionally, it base algorithm has the attractive beneft of being ex-
tendable in order to detect if the goals of the problem are unattainable by any valid plan
and halt with failure in such a case.

4.2.1 Planning graph structure

Planning Graphs are similar in structure to valid plans, meaning that each "layer" of the
graph contains allowable actions for that given time. Actions and propositions alternate
layers in the structure of the graph (see Figure 1). Unlike valid plans, actions at a given
time in the graph are allowed to interfere with each other, meaning that actions at a

14

(define (operator move)
:parameters ((rocket ?r) (place ?from) (place ?to))
:precondition (:and (:neq ?from ?to) (at ?r ?from) (has-fuel ?r))
:effect (:and (at ?r ?to) (:not (at ?r ?from)) (:not (has-fuel ?r))))

(define (operator load)
:parameters ((rocket ?r) (place ?p) (cargo ?c))
:precondition (:and (at ?r ?p) (at ?c ?p))
:effect (:and (:not (at ?c ?p)) (in ?c ?r)))

(define (operator unload)
:parameters ((rocket ?r) (place ?p) (cargo ?c))
:precondition (:and (at ?r ?p) (in ?c ?r))
:effect (:and (:not (in ?c ?r)) (at ?c ?p)))

time 3
propositions

time 2
propositions

time 1
propositions

fuel R L

at A L

at B L

at R L

fuel R Lfuel R L

at R Lat R L

at B Lat B L

actions

at A Lat A L

time 1

load A L

load B L

move L P

unload B P

unload A P
in A R in A R

in B R

at R P

in B R

at R P
load A L

move L P

load B L

time 3
actions

goals

at B P

at A P

actions
time 2

Figure 1: The operators and the planning graph for the Simple Rocket Domain [3]. ’No-operation’ actions (no-ops) are
marked with dots.

The collaborative situation is the easiest to deal with and can be tackled almost directly using the Graphplan algorithm
from [3]. One must be careful, however, to define the domain (i.e. the operators, objects etc.) in a proper way so that the
resulting Planning Graph and the resulting plan indeed refer to the problem we wanted to solve. Some suggestions about
this can be found in section 2.

The adversarial case (discussed in section 3) lies at the heart of Game Theory – in the form of zero-sum games theory –
with a tradition going back at least to the works by von Neumann and Mogenstern in the 1940s [9]. This reflects a bias of
the classical Game Theory: we want our agent to play safe; we want him to be protected against the worst line of events.
It is worth noting that such a perspective is not restricted to traditional games with numerical utility function only. Some
of the recent work on multi-agent planning through model checking logical formulae derives from the same tradition: a
goal is achievable only when it can be enforced for every possible response from the rest of the agents; otherwise no plan
can be generated [2, 8]. Two planning algorithms (a forward-chaining and a backward-chaining one) are analyzed for the
adversarial planning case.1

Since a situation when no plan is generated is not acceptable from the planning agent’s perspective, we propose an
extension of this approach in section 4. The agent’s goals can be satisfied to various degrees, according to a linear utility
function. The best plan can be found with a forward-chaining minimaxing algorithm.

The implications of the classical Game Theory standpoint go beyond the zero-sum games. Even for the games where
the players can have independent utility functions, most widely accepted rational decision making criteria assume (implic-
itly or explicitly) that the agent must look for a plan against the worst possible line of events – since such a model refers
to the lower bound of his capabilities. Two approaches to the planning problem for agents with independent goals are
proposed in section 5. First, we may follow the Game Theory perspective completely (independent search). Alternatively,
the agent can look for some coalition with other agents and involve collaborative planning to the greatest possible extent.

A number of simplifying assumptions were adopted within this paper:

• the agents have complete knowledge of the situation (no uncertainty, no probabilistic beliefs),

• the agents have complete knowledge of the outcomes of every action,

• the outcome of every action is deterministic (there are no probabilistic actions or actions with uncertain outcome),

• the planning graph forms a synchronous turn-based structure: time is discrete and at every time point only one agent
proceeds with an action or actions (the agents take turns),

• the goals of every agent are public.

2 Collaborative Multi-Agent Planning
When all the agents can fully cooperate to bring about some set of goals, the whole coalition can be treated as a single
agent trying to search for a single-agent plan. Therefore the original Graphplan planner can be used to find it. However,

1a different approach to the adversarial planning seems to be proposed in [6]. The author suggests that a planning graph for multi-agent turn-based
situations can be rebuilt to include conditional actions instead of other agents’ nodes; then we can run some standard conditional planner on it. According
to the available materials, the work is still in progress.

2

Figure 1: Operators and the generated Planning Graph for a particular planning prob-
lem. Taken from [3]. Dots in action layers represent no-op actions.

particular time in the graph could undo effects of each other. In fact, any particular
level of the graph containing actions may contain every possible action such that the
action’s precondition are true at the previous level. This lack of restrictions on the
graph make them relatively quick to create, and it is provable true that if a valid plan
exists in n steps, such a plan is contained with a Planning Graph with n action levels
(that is, a Planning Graph with n levels containing actions).

Once a Planning Graph is created, the planner examines it for actions that are mu-
tually exclusive, which are actions at a given action level in the graph that no valid
plan could possibly contain. While the planner does not fnd every mutually exclusive
action pair, it does fnd a great many of them, which helps speed the search for a valid
plan later. Mutually exclusive actions are identifed by determining if they interfere
with each other (one action deletes an effect of the other) or have competing needs
(the preconditions of the actions are marked as being mutually exclusive at a previous
time).

The planning algorithm itself is a backward-chaining recursive algorithm, taking
advantage of actions marked as mutually exclusive in its previous steps. As before, the
largest impact on the running time of the algorithm is the greatest number of formal
parameters in the given allowable actions, so limiting the number of parameters within
the operators of the problem is benefcial. Even with that note, though, GRAPHPLAN

runs in polynomial time with respect to the number of objects in the problem, the length
of the effect lists of the actions, and the number of initial conditions and operators. Of
course, the required size of the graph (and thus, the size of the shortest valid plan) is a
bounding factor as well.

15

4.2.2 Summary of results

GRAPHPLAN ran to successful completion in shorter CPU times (on slower computers,
no less) than several competing planners, including PRODIGY and UCPOP. In general,
the graph structure that GRAPHPLAN uses in its problem analysis seems to have pro-
vided it the greatest advantage over traditional planners.

4.2.3 Graphplan for multiple agents

The Duy Bui and Jamroga provided an extension for GRAPHPLAN for use in multi-
agent environments [3]. In general, they provide for three classifcations of multi-agent
environments: agents that collaborate, working together towards common goals; agents
that are adversarial and work against each other, or alternatively work towards opposing
goals; and fnally, agents that are indifferent towards other agents’ goals.

A number of assumptions are adopted for this analysis. In particular, agents are
assumed to have known goals and complete knowledge of their situation. Additionally,
using the explicit time structure of the Planning Graph, agents are assumed to act in
distinct turns. Finally, agents in adversarial cases adopt a kind of minimax planning
goal; that is, they want to act such that they accomplish their goals, but will favor plans
that protect them from the worst possible consequences.

The collaborative agent situation is not terribly different from a single agent act-
ing towards a goal, so the GRAPHPLAN algorithm needs no real extension to handle
collaborative agents. However, the authors add the concept of identifying the agent
performing a particular action inside of the action instantiation, in order to ensure that
a single agent does not perform more than one action simultaneously. Adding such a
defnition also allows the planner to provide an assurance that any particular agent only
performs a single action at any point in time.

For the adversarial situation, both a forward-chaining and a backward-chaining al-
gorithm are provided. While both algorithms provide plan searching capabilities for
any given problem, their difference lies in the running time for a given type of prob-
lem. If the Planning Graph generated is a shallow graph, the forward-chaining algo-
rithm provides superior results, even for particularly wide graphs (i.e., ones with high
branching factors). Backwards-chaining, on the other hand, is a much better algorithm
for graphs with a particularly high depth. It is conceivable, then, that in practice a plan-
ning system would frst be well-served to examine the properties of the planning graph
before searching for a suitable plan within it. In adversarial situations, the algorithms
can be extended to provide plans accomplishing some partial subset of the desired goal
state, should the complete goal state prove to be unattainable.

16

4.3 Applicability to games

Unfortunately, the differences in planning algorithms themselves are unlikely to pro-
duce signifcantly different results for artifcial agents in games. While the algorithms
themselves have interesting differences, at the end of their execution, a partial-order
planner produces an applicable plan, which is all the agent (and the player) cares about.
Indeed, the only specifc instances of using planners in games uses a generic search al-
gorithm, A*, over any other algorithm specifcally oriented towards planning. While
planning algorithms may work more effciently on the problem space, the additional
requirement on game planning to not adversely affect the framerate requires that the
algorithm be fast and easily divided across several frames if necessary. It is possible
that replacing A* with a planning algorithm could produce results faster, but it is more
interesting to examine particular features of partial-order planners (such as scheduling)
and try to apply them to an A* planner already implemented in games. It should further
be remembered that the push for planning in gaming stems not from the desire to get
results from any particular algorithm, but rather the ease of development of character
behaviors and the sharing of those behaviors between different character types.

5 Parallelizing plans with partial-order planners

Many of the existing partial-order planners will return a plan in which actions could
be executed in parallel, as alluded to above. Craig Knoblock provides an overview of
the situations in which a general partial-order planner can be used to generate parallel-
action plans, and further provides a classifcation of those situations, as well as an
implementation of a partial-order planner that can generate such parallel plans [14].

5.1 When actions can be performed in parallel

Partial-order planners generally consider actions to be atomic, meaning that an indi-
vidual action is completed uninterrupted without any infuence from external factors.
This is convenient when defning actions, since actions can specify their preconditions
and effects without concern for other actions being executed simultaneously. Indeed,
such defnitions seem to preclude the notion of simultaneous action execution, as there
is an unanswered question as to what conditions would need to hold for two actions to
be executed simultaneously.

In parallel programming for multiple processors or threads, there are three possible
kinds of conficts: procedural, which is when an instruction must explicitly be ordered

17

before another; operational, when a resource needed may be unavailable; and data,
when one instruction requires the result of another. Data conficts are analogous to
actions accomplishing preconditions of other actions, and procedural conficts are al-
ready handled by partial-order planners by their explicit order of (some) actions. Thus,
the only type of confict not explicitly handled by partial-order planners is a resource
confict. Several planners generate parallel execution plans by simply ignoring the
problem, assuming all actions to be independent from each other. However, planners
can be extended to detect resource conficts and correctly plan for them with the simple
addition of an explicit representation of resources.

5.2 Types of parallel plans

Knoblock identifes four different types of parallel plans that may be generated: plans
with independent actions, plans with independent actions relative to a goal, plans with
independent subplans relative to a goal, and plans with fully interacting actions.

5.2.1 Independent actions

Independent actions are the simplest type of parallel execution plans. Such plans en-
force that any two actions executed in parallel be completely independent of each other.
Here, independence is defned as the effect of the actions being executed in parallel be-
ing the same as ". . . the union of the effects of the actions being done in isolation."
[14] In other words, the effect of the actions in parallel must be the same as the ef-
fects of each action done in in sequence, or that the effects of the actions don’t interact
with each other. It should be noted that partial-order planners that generate unordered
actions does not necessarily imply that those actions are independent.

5.2.2 Independent actions relative to a goal

Several planners, such as UCPOP, only allow actions to remain unordered when there
is no threat between those actions. Two actions are said to threaten each other when
one action could delete a relevant condition with respect to the fnal goal state. Condi-
tions, then, are defned to be relevant when they are either a condition of the goal or a
precondition of an action that achieves a relevant condition.

5.2.3 Independent subplans relative to a goal

Once a planner determines all relevant conditions, it could then examine threats not
only at an action level, but on the level of subplans, possibly producing several actions

18

in a row that can be executed in parallel. Subplans, then, are independent relative to a
goal if, for all conditions relevant for that goal, executing the subplans in either order
has the same effect as executing the subplans simultaneously.

5.2.4 Interacting actions

Interacting actions are ones that alter the total outcome based on their simultaneous
execution. Specifcally, if the effect of executing the actions simultaneously is different
than the combined effect of executing the actions one at a time, the actions are said to
be interacting. In order to account for the possibility of interacting actions, a planner
needs either an explicit or an implicit representation of time, and most partial-order
planners do not. In the next section, a method of dealing with concurrent interacting
actions will be presented.

5.3 Partial-order planning with interacting actions

Temporal planners are planners that deal with an explicit representation of time when
forming plans, and while these planners are certainly helpful when dealing with prob-
lems requiring interacting actions, in many situations, they may not be necessary.
Boutilier and Brafman present a simple extension to STRIPS-style problem represen-
tations that allow for parallel execution plans with interacting actions [2]. Specifcally,
the algorithm they present is targeted towards an agent that can perform multiple ac-
tions simultaneously, although this is equivalent to a situation with multiple agents that
can act independent of each other.

Actions can interact in several different ways; their interactions can be negative,
such as when one action cancels the effect of another, or they may be positively in-
teracting, such as when an intended effect is only achieved when two actions are per-
formed simultaneously. Therefore, a planner needs to be able to specify which actions
occur at some particular time. More generally, the planner should be able to specify
that certain actions must or must not be performed at the same time as another action’s
execution. One way of doing this is to treat every possible combination of available
actions at a given time as one action. For example, say we have two agents, A1 and A2,
both of which can perform actions b, c, d. At any given time, the planner could specify
A1 doing any of those three actions, as well as A2 doing any of the three actions. If
we represent these as an ordered pair, our possible actions are (b, b), (b, c), (b, d) and
so on, for every possible combination of action for each agent. However, this way of
representing joint actions increases exponentially in size as the number of agents and

19

actions increase, and further enforces all agents to be performing a specifc action at
any time that one agent is performing some action.

Boutilier and Brafman therefore propose the addition of a concurrent action list, a
description of the actions that can and cannot be performed simultaneously with a given
action. Of course, the action descriptions themselves must also be modifed so that the
planner can determine the differing effects of the actions when they are performed in
conjunction with some other action. This is done by introducing a when clause to the
effect list. The when clause specifes that if an action is performed while some other
event is true, the effect of this action is modifed to include the antecedent of the when

clause. This allows the planner to determine how the outcome of specifc actions will
change depending on other simultaneously performed actions. Actions can have zero,
one, or many when clauses, with the restriction that if multiple when clauses exist, the
preconditions of those clauses must be disjoint.

Additionally, actions have been extended to include variables specifying the agent
performing the action. This allows the planner to ensure that no agent is performing
more than one action at a time, as well as that no action is being done by more than one
agent concurrently.

With these defnitions, a joint action (several actions performed simultaneously by
several agents) is defned to be consistent if a) all of the actions’ preconditions and
when clause preconditions are not contradictory, b) all of the actions’ effects are not
contradictory, and c) the concurrent action list of each action is satisfed for the rest of
the actions within the joint action. With this, we can specify valid joint actions, and
develop a partial-order planner to generate joint actions for multiple agent situations.

5.4 Applicability to games

The analysis of interacting actions has several important implications for games. First,
examining interacting actions has immediate applications for a single agent merging
plans. In any situation where an agent could create plans to accomplish more than one
goal simultaneously, the agent must examine the ways in which the goals and actions
contained within the generated plans interact. Furthermore, agents acting simultane-
ously to other agents could clearly beneft from coordinating their actions to achieve
maximum results, or alternatively restrict or thwart the results of an opposing player.

20

6 Plan recognition

A closely related feld to planning is plan recognition, where agents attempt to deter-
mine the plans and goals of other agents through their observations of the world. Mao
and Gratch present an overview of plan recognition and discuss some approaches to
the problem [15].

6.1 Plan recognition overview

Plan recognition refers to the problem of determining the plan of other agents through
the observation of their behaviors in the world. An agent attempting plan recognition
observes a sequences of actions in some other agent, then attempts to map those actions
into some sort of plan representative of the goals of the other agent. One of the chief
problems in plan recognition, then, is disambiguating among possible plans that match
the observed sequence of actions.

There are three main categories for types of plan recognition. Cohen et al identify
keyhole and intended recognition [4], while Geib and Goldman deal with adversarial

plan recognition [9]. Intended recognition describes the situation in which the actor
whose plan is to be determined is cognizant of the intended recognition and performs
actions in order to facilitate the plan determination. Conversely, in adversarial recog-
nition, the agent is aware of the intended recognition but takes actions to deliberately
hinder recognition. Keyhole recognition is the most common form, where the observed
agent makes no attempt to infuence the recognition process in any way.

The actions that the observer is able to see also lends itself to a classifcation: if
the observer detects every action in the subject agent’s plan, this is known as a fully-

observable action sequence; otherwise, the action sequence is partially-observable.
Partially-observable systems include situations where some actions are unobserved,
or cases where actions themselves are unobservable but may have some observable
effects.

6.2 Planning and plan recognition

In some sense, plan recognition is the inverse problem of planning. Partial-order plan-
ners take a goal and generate a plan intended to accomplish that goal, whereas plan
recognition fnds the intended goal or plan of an agent when presented with a list of
possible plans. Therefore, a plan recognition system could conceivably use a planning
system to generate a list or repository of possible plans.

21

6.3 Applicability to games

Plan recognition could be used by agents working with or against a human player. An
artifcial agent that recognizes the goal of a player based on the actions the player has
taken can then take steps to assist or hinder the player in whatever endeavors are being
pursued. Clearly, an agent cannot take these steps without explicitly knowing what is
to be accomplished.

7 Plan merging

While many partial-order planners specialize in creating a plan for a single goal, this is
rarely representative of intelligent agents in nature. Typically, rational agents have sev-
eral goals to pursue simultaneously. While it may be the case that an agent may choose
to concentrate its efforts on a single goal, it would be overly restrictive to enforce that
our agents may only pursue one goal at a time.

There are additional considerations when attempting to plan for multiple goals,
of course. It would not appear rational if an agent were to attempt to pursue two
conficting goals simultaneously, for example. Furthermore, if two or more goals have
positive infuence on each other, it would behoove the agent to take advantage of that
overlap. If our agent were to make a plan to obtain a screwdriver and a hammer, it
would not appear rational for the agent to go to the hardware store, buy a screwdriver,
return home, then go back to the hardware store, and fnally buy a hammer. Certainly
it would appear more intelligent for the agent to go to the hardware store once and
obtain both items before returning home. We would like our agent to recognize the
overlapping parts of the plans and take advantage of them, should they exist.

7.1 Positive goal interactions

One way of identifying possible positive goal and action interactions involves exam-
ining the subgoals of generated plans. In the system described in [25], agents have
pre-defned plans used to achieve their goals. Subgoals are defned as the conditions
necessary for successfully completing a plan. In a sense, subgoals are the preconditions
of the actions in a given plan. From this, agents can create a goal-plan tree, consisting
at alternating levels of goals and plans. The top level goals are high-level goals, de-
cided upon by the agent. The next level down, then, would be plans that could be used
to achieve those goals. Each plan would have sub-goal nodes below them, representing
the conditions needed for that plan to be completed. In turn, those sub-goals would

22

DE − {(AT(A){P2})}

PE − {}
DE − {(SoilAnalysedAt(A){P3})}

PE − {}
DE − {(AT(A){P2})}

PE − {}
DE − {(CloseToLander{P7})}

EF − {CloseToLander}

MoveClosePlan

DE − {(CloseToLander {P7})}
PE − {} PE − {}

EF − {CloseToLander}

MoveCloseToLander

 DE − {(DataTransmitted {P6})}

DE − {(DataTransmitted {P6})}
PE − {}

PE − {}

 TransmitDataPlan

EF − {DataTransmitted}

P6

DE − {(DataTransmitted {P6})}

DE − {(SoilAnalysedAt(A){P3})}

TransmitResultsPlan2TransmitResultsPlan1
AnalyseSoilPlan(A)

EF − {SoilAnalysedAt(A)}

PerformSoilAnalysisAt(A)

G1 :Perform Soil Experiment Goal At (A)

P1

SG1 SG2

P4

SG3

P7 P8

SG4 SG5 SG6

EF − {DataTransmitted}

TransmitData

DE − {(DataTransmitted{P8})}
PE = {}

EF − {DataTransmitted}

 TransmitDataPlan

DE − {(DataTransmitted {P8})}

EF − {DataTransmitted}

TransmitData

PE − {(CloseToLander, {P7})}
DE − {(AT(A){P2}), (SoilAnalysedAt(A){P3}), (Data Transmitted{P6, P8})}

PE − {}

EF − {AT(A)}

MoveToPlan(A)

EF − {AT(A)}

MoveToLocation (A)

DE − {(DataTransmitted{P8}), (CloseToLander{P7})}

P5

PE −{}

PE − {(CloseToLander {P7})}
DE − {(DataTransmitted {P6, P8})}

EF − {SoilAnalysedAt(A)}

Transmit Results

EF − {DataTransmitted}

P3P2

G1
DE − {(AT(A){P2}), (SoilAnalysedAt(A){P3}), (Data Transmitted{P6, P8})}

PE − {(CloseToLander, {P7})}

PE − {}PE − {}

SoilExperimentPlan

EF − {SoilAnalysedAt(A), DataTransmitted}

Figure 2: Interaction Tree example

• Effects - The effects of executing the actions within
the plan (excluding subgoal effects) represented as log-
ical conditions, i.e. what becomes true as a result of
executing the plan’s actions. The effects of a plan that
are not effects of a goal are side-effects, or secondary
expectations [12]3.
e.g. RockExperimentPlan.Effects(RocksAnalysed and
StorageSpaceFull4).

• plan body - The body of the plan which contains
actions and sub-goals. These are combined by either
sequencing them (e.g. “achieve goal G1 and then per-
form action A” written as “G1; A”) or by performing
them in parallel (e.g. “achieve goals G1 and G2” writ-
ten as “G1‖G2”).

Similarly each goal-type consists of:

• Type - A label which indicates the type of the goal.

• In Condition - a logical condition that must be true
during the entire execution of the goal.

• Effects (i.e. Success condition [16]) - logical condition
that the goal is trying to achieve. The goal is satisfied

3Pollack defines expectations as beliefs about future ac-
tivities and circumstances. Primary expectations are those
that are directly intended by the agents actions and sec-
ondary expectations are those that are side effects of in-
tended actions.

4In this example RocksAnalysed is a primary expectation
and StorageSpaceFull is a secondary expectation

when the success condition evaluates to true. This is
used to identify the primary expectations [12]3of a goal.

• Plans - The possible set of plan-types that can satisfy
the goal [16].

In addition, each plan and goal instance have an Instan-
ceName which is a label created at run-time to provide a
handle to the plan/goal. This is basically a path expression
in a goal-plan tree instance. e.g. G1 →
PerformRockExpGoal → RockExperimentP lan,
where G1 is the label of the relevant goal-plan tree instance.

3. A SIMPLE EXAMPLE
Consider a mars rover that is deployed on the Martian

surface to perform soil and rock analysis experiments at
various designated locations. For illustration purposes we
assume that the rover has storage space for results of four
experiments, and regularly uploads stored data to the lan-
der.

Assume that one such location is location A and the two
goals related to it are PerformSoilExperimentAt(A) (lets call
it G1) and PerformRockExperimentAt(A) (G2). Some of the
sub-goals in the plans to achieve G1 may include, moving to
location A, analysing the soil, and transmitting the results.
Plans to achieve G2 may have sub-goals of moving to loca-
tion A, analysing rock samples and transmitting the results.
It can be seen that there are some common elements in the
execution of G1 and G2, that could possibly be merged, al-
lowing plans and/or sub-goals to be executed only once.

403

Figure 2: An example goal-plan tree. From [25].

EF − Effects

 be definitely merged. With each effect the goals and the plans of the goals that bring about the effect is stored.
DMP − [(EF, goal{plan, plan}, goal{plan, plan}) , (EF , goal{..}, ..)] is the data structure that contains plans that can

PMP − [(EF, goal d/p {plan, plan}, goal d/p {plan, plan}) , ..)] similar to DMP except that the plans here are only

Common effect of G1 and G2 − an effect that is an effect of G1 and an effect of G2

WGL − The Waiting Goals List. A list of goals currently suspended due to scheduling. Assists in deadlock prevention.

 potentialy mergable. For each goal of an effect the flag (d or p) indicates if the effect is definite or potential.

DE − Definite Effect PE − Potential Effects

DE − { (EF, [plan, plan ..]), (EF, [..]) ..} each effect has the set of plans that bring about the effect. Similar for PE .

SE (G) − Effect−summary of goal G. It is a two tuple < DE, PE >

Figure 1: Legend of terms

plan steps and how plan merging reduces the cost of the
overall goal. Their work is interesting in that they evaluate
potential goals in the context of other goals being pursued,
which has some similarity to our approach. For example,
assume an agent pursuing a goal of buying a shirt and con-
sidering a new goal of buying a tie. In this case even if
buying a tie is not as important as some other goal, be-
cause buying a tie and buying a shirt have many aspects in
common such as going to the shopping centre, going to a
clothing shop etc, it may be pursued.

Their work does however, like many others, require com-
plete plans. They also assume that plans do not fail, which
is inappropriate for the kinds of systems we are dealing with.
They also use explicit notions of temporal constraints, and
causal links in their representation of plans. In contrast
our approach performs online scheduling and monitoring of
plans, taking plan failure into consideration and although we
have no notion of explicit time constraints we generate suffi-
cient information to perform reasoning about future positive
interactions.

Pollack in [12] discusses ways in which intentions may be
overloaded and argues that this can improve plan genera-
tion as well as plan recognition. Although [12] does not
provide any detailed mechanisms, they provide a good theo-
retical foundation for overloading intentions. Our work then
provides detailed mechanisms for exploiting positive goal in-
teractions that can be directly implemented in agent devel-
opment platforms such as PRS[9], JAM[8], dMARS [4], and
JACK [1].

2. PLAN AND GOAL REPRESENTATION
The type of agents that we develop have a library of pro-

grammer defined plans which are utilised to satisfy goals at
run-time. Goals are achieved by executing plans. Each goal
has a number of alternative plans that can be used to achieve
it. Each plan has a number (possibly zero) of sub-goals, all
of which must be achieved to successfully execute the plan.
This naturally defines a goal-plan tree where the children of
each goal are the alternative plans that achieve it and the
children of each plan are its sub-goals. The children of a goal
node are alternatives, and thus are “or’d”, whereas the chil-
dren of a plan node are “anded”. Given this goal-plan tree
we denote nodes by a path expression from the root to the
node. For example from figure 2 the node MoveToP lan(A)
is denoted as PerformSoilExperimentGoal(A)→
SoilExperimentP lan →MoveToLocation(A) →
MoveToP lan(A).

A goal-type is a template for a goal (similar to a class in

Object-oriented terms). When an agent decides to pursue
a goal, a goal-instance of the goal-type is created (instanti-
ated). The same applies to a plan-type and plan-instance.
Each goal-type will have a template goal-plan tree at com-
pile time which gets instantiated at run-time with each goal.
Sub-goals share the goal-plan tree of their respective top-
level goal.

The execution cycle of an agent consists of the steps [15]:
1. Instantiate a goal-type creating a goal-instance.
2. Match the goal instance against plans in the plan li-

brary obtaining a set of relevant plan-types.
3. For each relevant plan-type, evaluate its context con-

dition giving a plan instance for each context condition
which evaluates to true.

4. Remove any plan instances which are equivalent to pre-
viously failed plan instances for this goal-instance. The
remaining set of plan instances are the applicable plans.

5. Select an applicable plan and execute it.
If a plan fails, the goal-instance remains active and new
applicable plans are calculated and tried. If there are no
applicable plans left, the goal-instance fails.

The above description characterises what are known as
BDI (belief Desire Intention) systems [13], such as PRS [9],
dMARS [4], and JACK [1].

In the work that we are doing we require the plans and
goals of the agent to contain particular information.2

We require each plan-type to contain the following:

• Type - A label for the type of plan. e.g. MoveToPlan
〈some location〉

• Pre-Condition - A logical condition that must be
true in order for an instance of the plan to begin ex-
ecution. The condition need not hold once the plan
has begun execution. Pre-conditions can be viewed as
context conditions in systems such as JACK.
e.g. TransmitDataPlan.preCondition(DataCollected)

• In-Condition - A logical condition that must be true
for the duration of a plan-instance. The pre-condition
is implicitly extended with the in-condition: a plan
with pre-condition P and in-condition I is treated as
though it really had pre-condition P ∧I . The reason is
that if P is true but I false then the plan will be cho-
sen for execution and immediately fail because the in-
condition is violated! e.g. AnalyseSoilPlan.inCondition
(RoverStationary)

2Not all this information is required for the reasoning de-
scribed in this paper but it is provided here for completeness
and for consistency with our other work.

402

Figure 3: Symbols and terms used in Figure 2. From [25].

have plans that could accomplish them, and so on. An example goal-plan tree is shown
in Figure 2.

An interesting note about the proposed system is the pre-generation of plans. Each
agent has a set of goals and actions available to it, and so it is possible to develop a
comprehensive list of all possible plans an agent could execute. One consequence of
this is that it become easier to match plans to goals at runtime, meaning that the system
need only look up all applicable plans for a particular goal. If a plan fails, the agent
can mark that plan as being no longer applicable and move on to another plan. This
also makes it easy to identify cases where the agent has no other available plans to try.
A direct consequence of this is that individual goal instances need to keep a list of the
available plans that can satisfy them.

Another difference in this system as compared to other partial-order planners is the
introduction of in-conditions. In addition to plans and goals knowing of their possible

23

pre-conditions and effects, in-conditions are a way of representing a condition that must
be true throughout the duration of the plan or goal. For plans and actions, it is simple
enough to treat in-conditions as a pre-condition, since a plan that begins executing
without satisfying an in-condition will immediately fail.

For planning, an agent initially decides upon the goals it wishes to pursue. This
creates a goal-plan tree with all possible plans that can be used to achieve the agent’s
goals. From there, the planning system can examine the goal-plan tree to determine
the effects of each plan, and classify them into defnite effects and potential effects.
Defnite effects are those effects that must always take place for a given goal or plan.
These effects are either those that are required by a goal or every subgoal, or side effects
of particular actions that cannot be avoided, no matter what plan is chosen. Defnite
effects are not necessarily required by every plan, but every defnite effect is required
by at least one plan in every possible way the agent has of accomplishing its goal.
Potential effects are those that only occur down at least one plan path, but not all paths.
Potential effects can occur with many different plans, but do not occur for all plans.
There are two further important notes about potential and defnite effects: frst, the sets
are defned to be exclusive, so any effect that is a defnite effect is by defnition not a
potential effect; second, all effects hold only if the plan’s execution is successful.

Potential and defnite effects tell us precisely how the goals and actions in our goal-
plan tree interact. Thus, every time a plan is successfully completed or fails to execute
to completion, the tree must be updated to refect the changes in possible and def-
nite interactions. This same logic holds for sub-plans, as well. With this information,
though, we can build data structures to inform the planner of plans that could beneft
from being merged. Defnitely mergeable plans are plans that share some defnite ef-
fect. Possibly mergeable plans are all plans that could possibly be merged based on
some shared effect.

Defnitely mergeable plans necessarily share defnite effects, but potentially merge-
able plans could have any effect in common; the effect could be a defnite effect of one
plan and potential effects of the rest, potential effects of all plans, or some combination
of defnite and potential effects of the plans in question. Agents have the choice to be
cautious about potential effects and always execute all plans concerned, or optimistic
about an overlap in plans and effects by only executing some part of the plans involved.
Depending on whether the agent is more constrained by time or resources, one of the
two approaches may be clearly better for the agent. In any case, an agent can examine
several plans to determine their effects and use their interacting effects to decide on
how to merge the plans. For any two plans with the same single effect, the agent can
pick to execute one plan or the other. If one plan achieves a potential effect that the

24

other does not, the agent can again pick to execute either plan, since potential effects
are not required for the goal. If one plan achieves a defnite effect the other does not,
the frst plan must be executed for the successful completion of the goal. Finally, if
the plans have differing defnite effects, the plans cannot be merged and both must be
executed for the successful completion of the goal.

In order to accomplish maximum utility out of plan merging, it may be necessary
for the agent to delay the execution of some plans until other plans are ready to execute.
This, in particular, is where an agent being cautious or optimistic about potentially
mergeable plans comes into play. An overly cautious agent may end up not merging
plans that could have been, resulting in wasted and unnecessary effort. On the other
hand, an overly optimistic agent could wait to merge a plan that has no chance of being
merged! This is known as useless wait, and is extremely ineffcient. However, it is
more unlikely to occur with plans that have only a single effect, and can be either
eliminated or reduced through goal fltering. Balancing the goal fltering is important
to get the maximum effciency out of an agent, as strict goal fltering can have the effect
of making a large number of mergeable plans run individually. Less strict strategies,
though, have been relatively effective in reducing useless wait, although these less strict
methods cannot guarantee that useless wait will never occur.

7.2 Avoiding resource conficts

The opposite problem from taking advantage of positive goal interactions is avoiding
conficts between goals or actions. The appearance of rationality in an agent can be
severely hampered by the agent attempting to pursue goals that confict in any way, so
agents and planners must take care to identify any potential confict and prevent it from
becoming an issue. Some conficts are easily identifed, such as when goals have clearly
conficting world states, or when one action undoes a precondition or effect of another
action. Thangarajah et al present some issues surrounding conficts of resources [26].

Resources, like effects above, can be classifed as being necessary, meaning that
the resource is required for every possible way of accomplishing a particular goal, or
possible, for resources that may be used in some plans for a goal but not every possible
plan. Resources may also be consumable and lost forever once used, or they could
be reusable and available for use again after a particular action or agent is fnished
with it. An agent that considers resource conficts in planning to avoid irrationally
pursuing multiple plans using resources must be able to reason about these different
types of resources. For example, if an agent has 10 units of energy and two goals, each
requiring 5 and 8 units of energy respectively, it is certainly irrational for the agent to

25

pursue both goals, as one or the other will certainly fail. On the other hand, an agent
with two goals requiring a single reusable resource may be able to accomplish both
goals with some scheduling.

Again, a system is proposed involving complete foreknowledge of all possible plans
for all possible goals, allowing an agent to quickly determine every possible path avail-
able to it in order to accomplish its goals. In order to allow agents to reason about
resources, a list of every possible resource is defned. Then resource requirements
on actions and plans can be formalized into a list of resource types with the amounts
needed. For each action defned, a list of all required resources is also defned such
that every resource type is listed once in the defnition, with an amount of zero for re-
sources not required. Then for entire subgoals, an agent can compute the total amount
of each resource that is necessarily required or possibly required. Unlike potential and
necessary effects, any necessarily required resource is by defnition possibly required
as well. In this way, the set of all necessarily required resources for a plan forms the
lower bound of resources required, while the set of possibly required resources gives
an upper bound on resource amounts.

From these defnitions, agents can again combine necessary and possible resource
amounts for individual actions or entire subplans to determine resource requirements
when those actions or subplans are combined. Furthermore, the agents can examine the
different resource requirements for when the actions or subplans are to be performed
in sequence or in parallel. With this information, an agent can determine that a given
plan will certainly fail if its necessary resource requirements are above the available
resource amounts, or that a given plan can always succeed, no matter what order the
actions are performed in, if its combined possible resource requirements are less than
the available amounts. In cases between these two, it is not clear if the agent will
be able to accomplish all desired sub-goals. There are two sub-cases here for agents
being able to determine more information about the goals. Goals are said to be schedu-

lable if the planner can guarantee that there will be suffcient resources available to
accomplish the goals provided that the plans are executed in the proper order. Goals
are schedule-dependent if the planner can determine that if resources are not properly
used, then some part of the plan will fail due to lack of resource availability. Goals can
be schedulable and schedule-dependent simultaneously.

7.2.1 Applicability to games

On an individual basis, examining the interactions of actions between several plans
allows an agent to plan more effectively for several prioritized goals simultaneously.

26

Especially for games where an agent has a wide variety of goals and many ways to
accomplish them, careful examination of the varying plans could quite easily lead to a
more intelligent opponent for a player. Within a group, agents examining interacting
actions would more easily be able to coordinate actions and produce more realistic
group behavior.

7.3 Operator merging

Another approach to plan merging takes the merging operations down to a lower level,
concerning itself with the merging of operators (actions) rather than entire plans. Foulser
et al [8] present a series of plan merging algorithms concerning themselves with group-
ing actions together based on their effects and their relations. In general, two or more
actions can be grouped together if there exist no other actions outside of the group that
would have to occur in between the execution of actions within the group. An example
of this would be a chain of three actions, each establishing preconditions of the next
action in the chain. In this case, the frst and third actions could not be grouped individ-
ually, since the second action must occur between the execution of the frst and third
actions. However, the three actions may be grouped as a whole.

Grouped actions can then have their net preconditions and useful effects defned.
Here, net preconditions is simply the logical set of preconditions of actions within the
group that is not achieved by actions within the group, and useful effects are those
effects of the actions in the group that establish preconditions for either other actions
in the plan, or establish part of the goal directly.

Grouped actions between plans can fnally be examined for replacement by a single
action with the same set of useful effects. Ideally, the cost of this replacement action
should be less than that of all the grouped actions.

7.3.1 Applicability to games

As this algorithmic approach does not require a large number of plans, it is more read-
ily applicable to time-sensitive situations that often occur in real-time games. An agent
could generate a plan for its most important goal, then generate a plan for its second
most important goal, and examine just the two plans for useful operator merging sit-
uations. Since actions that have different useful effects cannot be merged, an agent
with contradictory goals will end up with two completely separate plans that must be
executed independently.

The algorithms presented have running times dependent on both the length of the
plans presented and the number of different actions contained within the plan. In fast-

27

http:real-timegames.An

paced games such as frst-person shooters, plans should be relatively short as agents
tend to not have much time to perform complicated actions and maneuvers, keeping
the execution time of these algorithms down to a reasonable amount.

8 Hierarchical Task Network planning

Hierarchical Task Network planning was developed shortly after STRIPS-style plan-
ners, although much more analytical work has been done on STRIPS-style partial
order planners. More recently, though, HTN planning has been garnering more atten-
tion in academic literature and research. Erol et al present an overview and analytical
semantics for HTN planners in [7] and [6].

8.1 Overview of HTN planning

HTN planners share some similar ideas with partial-order planners. Each represent
world states with a collection of atomic statements, and actions change the world state
through associated effects. The most important difference is how HTN planners repre-
sent their desired world state changes. In partial-order planning, the planner examines
a goal state, then comes up with a series of actions designed to change the world in such
a way that the desired goal is met. Instead of goals, HTN planners use tasks and task

networks to bring about specifc changes in the world. Tasks are divided into three main
categories. Goal tasks are specifc properties in the world that the planner attempts to
make true by the end of the plan. These can generally be represented as a conjunction
of literal statements, just as partial-order planning goals are. An example of a goal task
would be a state representative of "owning a house." Primitive tasks are atomic tasks
that can be accomplished by an agent with a single action. Any task that corresponds to
a partial-order planning action can be considered a primitive task. Some examples of
primitive tasks are tasks such as buying lumber or nailing two boards together. Finally,
compound tasks, or non-primitive tasks, are higher-level tasks that cannot be repre-
sented atomically. Compound tasks can be thought of as any desired change that can
be constructed out of goal tasks and/or primitive tasks, or anything that can be accom-
plished in a variety of different ways. "Building a house" is a compound task, since
constructing a house is made up of many smaller tasks.

In HTN planning, tasks are strung together in structures known as task networks.
Task networks are ways of organizing tasks together to form a unit with some as-
sociated effects. These task networks are analogous to actions or even subplans in
partial-order planners. During the planning stage, compound tasks are replaced with

28

Figure 4: Basic HTN planning algorithm. From [7].

task networks based on applicability. Each task network that accomplishes a given
compound task is denoted as such in a method, indicating that the compound task can
be replaced in the plan by the given task network. Note that task networks themselves
are not restricted on the type of tasks they can contain, allowing task networks them-
selves to have multiple compound tasks if necessary. Additionally, task networks can
be associated with any number of methods, and in turn can be accomplished by any
number of different task networks themselves. Owning a house, for example, can be
accomplished by building one, buying one, or winning a contest.

The basic HTN planning algorithm is shown in Figure 4. Steps 3–5 are the ex-
pansions steps, in which the planner replaces higher-level compound tasks with task
networks. However, the plan is not guaranteed to be free of conficts at the end of
step 5. Step 6, then, is an opportunity for the planner to deal with any kind of con-
fict present in the plan. Traditional conficts, such as deleted preconditions, are dealt
with here, but any kind of confict could be included. Critics are a way of identifying
potentially crippling interactions in a plan early, in order to limit expensive plan back-
tracking. [24] provides an overview of the various ways critics have been used in HTN
planning.

Critics contribute to one of the major benefts of HTN planning, especially when
being applied to agents that act in real-time. If a plan fails, generally it will mean
that a particular action or task has failed to be completed successfully. In partial-order
planners, there is no formal mechanism for planning from a partially complete plan.
HTN planners, however, have the option of just replacing the failed task network with
another based on alternative methods [27]. If no other methods remain, the planner can

29

http:completedsuccessfully.In

replan in a more traditional way.
It should be made clear that while the output plan from HTN planners is made

up of the same kind of atomic actions that partial-order planners produce, there are
substantial differences in the kinds of problems that HTN planners can solve. While
both partial-order planners and HTN planners could derive a plan to bring an agent to a
different city, HTN planners have the ability to create a plan for a round-trip vacation.
Traditional partial-order planners would have diffculty even expressing this as a goal,
since the desired end state is the same as the starting state! Indeed, it is provably
true that HTN planning is more expressive than traditional planning, which does not
include any kind of decomposition.

8.2 Applicability to games

The ability to quickly replan specifc parts of an otherwise valid plan is important
for agents in a quickly-changing environment. In a game environment, it would save
valuable computation time for an agent to just discard a part of a plan, rather than have
to plan again from scratch. Agents with similar or the same task network within their
plans may be able to use the matching task network to more easily coordinate their
actions, producing better squad-based behaviors.

9 Applications of planning in games

The core of any artifcial agent is a decision-making process. Whether the agent is
a research robot doing scientifc testing or a computer chess opponent, the only real
output an agent has are the things that it does as determined by its own internal deci-
sions. Therefore, the only qualitative differences between two artifcial agents are the
decisions that it makes.

In many real-time simulations, agents use either fnite state machines or rules-based
systems to make decisions as to what actions they take. Finite state machines keep track
of an internal state that determines an agent’s actions. Based on some internal mecha-
nism or an external force or observation, the rules of the state machine determine what
state an agent changes to, thus changing the behavior and actions of the agent. Rules-
based systems match external stimuli to a series of rules the agent has for determining
behaviors. The best-matching rule for a given situation determines the action an agent
will take.

While fnite state machines and rules-bases systems are widespread, they are not the
only way of controlling an agent’s decisions. In fact, as worlds and desired behaviors

30

become more complex, so do the complexity of state machines and the number of
required rules. An agent’s decision-making processes need not be one of these two
systems, though; so long as we can represent the world state and an agent’s goals and
actions, we could use a planning system instead.

Jeff Orkin presents several key elements to a real-time planning system for use in
games in [18] and [17]. The frst is that a goal planning system composed of small,
atomic actions without an explicit coupling to the goals they might accomplish allow
a natural division of work between engineers and designers. Designers can focus on
what actions an agent is able to perform, and let engineers worry about the details
of how and when the agents perform actions. While it is certainly possible to design
rules-based systems of fnite state machines that are data-driven, such systems are still
heavily technical and require an understanding of the workings of FSM’s and rule-
based systems. This is not an ideal system, as designers are not always able to concern
themselves with the inner workings of particular algorithms.

Another advantage of goal-based planning are that complex behaviors occur natu-
rally due to the nature of partial-order planners. An agent that comes across an obstacle
to completing its plan can simply replan to fnd another solution to its problem. Finite
state machines or rules based systems could handle the same situation with the same
results, but they would need to have explicit rules for every conceivable kind of ob-
stacle, whether it be a grenade or simply a blocked door. With goal planning systems,
these behaviors come out of planning naturally, with no need to write specifc rules.

The major challenge for implementing a goal planning system for games is imple-
menting a symbolic representation of the world. Agents need to be designed in such a
way that they have an internal world state, representing their interpretation of the world
space [19]. These can be represented as facts, each containing a value and how conf-
dent the agent is in their correctness. Goals, then, can be represented as a target world
state based on some combination of target values. Actions store their effects upon the
world, and can be stored in a hash table on those values in order to be quickly found by
the planner. Additionally, actions can specify context preconditions, or preconditions
that the planner should not try to make true through other actions. For example, if the
"GetToCover" action requires a valid and available cover position to be near, there is
nothing an agent can directly do to create a cover node if one does not exist. A context
precondition can inform the planner that this particular action is not currently available,
based on the current world state of the agent.

Rather than use an existing partial-order planning algorithm, it is possible to cre-
ate plans using a traditional search algorithm, A*. A* was chosen for a variety of
reasons [20]. First, most games already have a highly-optimized, generic A* search

31

implemented, so reusing an existing algorithm saves time and effort in both develop-
ment and testing. A* searches are also easy to divide across several frames, which is
a necessary requirement for games; AI planning must not adversely affect the game’s
framerate.

10 Proposal for research

Based on the research presented, the most directly applicable area for improvement for
planners in games seems to be the addition of analysis into interacting actions for both
individual agents pursuing multiple goals and multiple agents working in a group. I
would like to produce a planning system based on Jeff Orkin’s A* planner and imple-
ment several improvements, including scheduling and ways for an agent to generate
plans to pursue multiple goals simultaneously with respect for interacting actions be-
tween merged plans.

Once this functionality is in place, the planner could be extended to account for
higher-level goals on a squad level for a multitude of agents working together. This
sort of higher-level planning would allow greater cohesion between cooperative agents
working towards a common squad goal. The interactions of this higher-level "squad"
planner and each agent’s individual planner would be have to be specifed, allowing
the agent to obey orders but override orders for more pressing individual needs. The
specifc behaviors resulting from this planner should be quantifed and differentiated
from the results of a squad of agents acting only with individual planners.

Besides scheduling, defning compound actions could be a useful addition for the
designer. Should a designer desire that a specifc chain of actions should occur, such
behavior should be allowable within the language of the planner.

The output of this research would be a fully functional A* planner suitable for use
in real-time gaming applications. The additional features above and beyond those al-
ready used in games would be examined and analyzed to show specifc advantages or
disadvantages over the simpler planner, with respect to running time, language com-
plexity for specifying goals and actions, perceived intelligence of the behaviors of the
agent, diffculty of creating complex and realistic behaviors of agents, and workfow
considerations for both engineers and designers in using such a system.

32

11 Research products

As proposed, a full planning system suitable for use in games was produced. The
planning system is functional and was used to control the AI opponents in a graduate-
team fight combat game, Paper Cuts, produced for DigiPen’s GAM550 and GAM551
classes.

11.1 Planning system

The planning system is described in detail in the following sections. Particular compo-
nents of the system are described in their own section for convenience.

11.1.1 Search algorithm

After careful consideration of the various algorithms, it was decided that the A* search
algorithm was best suited for use in the searching part of the planner. Following the
reasoning of the discussion above, there were several reasons for choosing A* over a
more particular planning algorithm. First, it should be noted that A* is perfectly suited
for planning, as planning ultimately comes down to a guided search with heuristics.
Second, games are unique in having a requirement that any planning done must not
affect the framerate of the game. Ideally, the plan processing should be split up over
several frames of the game if the algorithm requires any signifcant amount of time
to create the plan. A* is easily split up over several frames of running time. Third,
A* is a well-examined algorithm with many proposed speed improvements and widely
accepted strategies for writing a generic algorithm that can nonetheless be tuned for
improvements in specifc cases.

The A* search algorithm implemented takes into consideration the advice offered
in a variety of articles, in particular the strategies for making the algorithm generic
and fast given in [10] and [11]. Without using templated classes suggested in [10],
the A* algorithm uses hierarchically defned Goal and Storage classes for representing
whatever states are necessary to search and store. In this way, different Goal classes
can be defned to specify target states, and different Storage classes can be defned for
particular needs in storing and retrieving search nodes off of the open and closed lists
used in the A* algorithm.

A Node class is defned to handle the specifc needs of keeping track of a node’s
cost, its parent and children nodes, and whether a search space is already on the open
or closed list. Storage classes are, at simplest, a organized collection of Nodes. These
storage classes can be customized for the particular needs of a specifc type of Node.

33

For the purposes of the planning system, a Storage class was implemented to store
nodes on the Open list in a priority queue structure, such that the cheapest possible node
was stored for quick retrieval. Other storage classes are suggested in [11], but were not
implemented for this planner. If the A* algorithm was to be used for pathfnding as
well as planning, alternative storage classes might be prudent to develop and use, but
this was not necessary in the course of development for either the planning system or
Paper Cuts. Likewise to the Node and Storage classes, different Goal classes can be
defned for particular needs from the A* algorithm. Again, neither the planner nor the
game needed these additional class defnitions, but having a generic Goal class that can
determine which child states are valid for the goal and when the goal is reached was a
useful design for creating a variety of different goal states for agents in the game.

11.1.2 Goal classes

Goal classes are defned to have a name, a priority, and list of target world states. In
this way, Goals themselves can determine whether or not they have been accomplished
and when it is time for them to run. The mechanism for determining what goal to run
is described below, as is the defnition of target states. For now, it is enough for the
description of the design to note that these desired target states allow the Goal to be
able to determine if the current state of the world is such that the goal is accomplished.
Additionally, Goals can determine if taking a particular action would bring the world
state closer or further away from accomplishing the goal. Towards this end, the Goal
class has functions taking a single action and returning values indicating if this action
would help accomplish any part of the goal. A Goal can perform similar functions
on an entire plan, with a function defned to quickly tell if the goal is complete or
not after the plan is completed, and if not, what properties of the world remain to be
accomplished after running the plan.

Outside of functionality for searching, goals have a function to produce a single
goal from two disparate goal types, and a list of goals that this particular goal is exclu-
sive with. These aspects of goals are discussed in greater detail below in the section on
goal merging.

11.1.3 Action classes

Actions are descriptive of how the world simulation changes in response to agents
completing the action, but in the context of the planning search, it is more instructive
to think of them as the nodes over which A* searches. In this sense, Action classes are
simple classes containing world state preconditions for running and world state effects

34

after the action is complete. As described in [17], Action classes also have context

preconditions, which are any kind of preconditions that need to be true for the action
to be successfully completed, but require more intensive computation to determine or
do not ft neatly into the particular world state defnition.

Besides the list of preconditions and effects used for search, an Action class can
defne a precedence list of actions it should run before. This is used to schedule actions
and is described in more detail below.

Most importantly, Actions defne logic for an agent to use when performing the
action. For example, a FireMissile action would defne logic for an agent to obtain
missile lock-on and perform the fring action. Actions return a value to indicate when
they are complete or have failed. In this way, an agent knows to move on to the next
action or report the plan as failed.

Originally, Actions were implemented following the Singleton design pattern, as
an individual Action class describes a specifc and unchanging outcome and action.
However, as improvements to the planning system were made, this was changed so
that each agent would own an instance of each particular action it could undertake,
and that copies of these action instantiations could be made as necessary. This became
necessary as particular versions of plan merging were implemented in the system.

11.1.4 Plan class

The Plan class is merely a list of Actions to be performed. This is the ultimate output
of our planning system, and the structure used by the agent when actually executing
actions. Plans were very simple, containing only this list of actions and a pointer to
the current action in the plan being performed. This kept the agent from having to
know how far along in the plan it was, while still providing a convenient means of
determining when a plan was complete.

11.2 World representation

Actions need to have a way of representing the effects they have on the world and any
requirements of the world state that must be met before the action can be run. Likewise,
agents need a way of representing the world state as they detect things in the world,
learn new facts, and forget old ones. This current state is the starting point for the
search when agents are determining their plan.

The main structure through which agents keep track of things in the world is World-
State, which is merely a list of WorldProperties. WorldProperties, in turn, are simple

35

key/value structures representing things about the world that can be changed via some
action. For example, the keys used in Paper Cuts were

• kTargetIsDead,

• kTargetInMissileRange,

• kTargetInGunRange,

• kAtLocation,

• kPatrolling,

• kHasItem,

• kReturnedItem,

• kBelowMinimumAltitude,

• kProvideCover,

• kDie

Each WorldProperty has an associated value, which can be a boolean, integer, or
foating-point value. Additionally, WorldProperties have space to keep track of an
object id, used to refer to an important reference object. For example, a WorldProperty
with the kProvideCover would keep an object id of the game object that this agent
is supposed to be providing cover for. In this way, agents are able to keep track of the
current state of the world as dependent upon their actions, and thus be able to provide
the planning system with their current state and the actions they can use to change that
state.

Agents need a different way to detect and keep track of things in the world outside
of their direct infuence, however. Enemy agents need a way of tracking the player
and representing that location. The precise methods of agent sensing are outside the
scope of this system description, but the storage of these facts can infuence the values
in WorldProperties. Agents store facts that they become aware of in WorkingMemo-
ryFacts, which are modeled after those described in [19]. WorkingMemoryFacts have
a templated type for whatever value needs to be stored and a foat value indicating the
confdence in that value. For example, when an agent detects the player on radar, it
stores the vector of the player’s position in a WorkingMemoryFact with a confdence
value of 1.0f. As time passes without the agent seeing or otherwise detecting the player,
this confdence value decays down to 0.

36

11.3 Agent defnition

Agents are the computer-controlled characters in the world, also known as non-player
characters or NPC’s. All agents have a memory system, a sensory system, and goals
and actions as discussed above. Other information may be stored on the agent depend-
ing on the needs of the simulation, such as an agent’s location or inventory, but these
details are at most used to check particular preconditions or context preconditions of
actions during planning and are otherwise unimportant to the discussion here.

In the system created, agents are loaded into the game with a particular "type,"
with the type defning an agent’s goals and actitons. The agents to be loaded and their
type are defned in a Lua scripting language fle, which is loaded when the game starts
running. Which goals and actions are given to a particular type of agent is defned
within C++ code. Once the game is running, though, agents are unaware of their type
and the processing of all agents is handled in the same way. The behavior of different
agents then comes from the differences in their allowable goals and actions and the
relative weighting or importance they give to particular goals at particular times.

11.4 The Planning Algorithm as used in an Agent

In the traditional Sense-Think-Act cycle for artifcial agents, our planning algorithm
only takes care of the Think part of the cycle. Thus, frst an agent must complete a
sensory update of the world. If this sensory update indicates that the agent should
replan, or if the agent doesn’t have a plan to begin with, the agent potentially needs to
come up with a new plan. The frst step in determining if a new plan is needed is to
reevaluate which goal is most important to the agent at the current time.

In the system created, all agents own copies of the goals that they can pursue. The
relevance of the goal is stored as a foating-point number on the goal itself. Events
in the world, such as noticing an enemy or taking damage, change the importance of
particular goals as necessary. Once the most important goal is determined, the agent
attempts to make a plan for that goal. However, it’s possible that the agent is unable
to create a plan to accomplish that goal, in which case the goal needs to be marked as
impossible to achieve. This marking persists until the world changes in such a way as
to make it possible to accomplish that goal, at which point it can be reevaluated during
a regular update. One fnal caveat exists: if the agent’s most important goal is the same
as the goal for which its current plan was made, the agent shouldn’t replan for the same
goal and should instead just continue executing its current plan. Figure 5 shows the
code used to determine the best goal and create a plan for it.

This system as described is a fully implemented planning system, suitable for use

37

Figure 5: An agent’s logic to determine the most important goal for planning purposes.

in agent planning in a game situation. As written, the system handles creating and
executing plans for whichever goal is most important to an agent, reevaluating for
failed plans or plans that are no longer relevant to the current situation, and the creation
of agents with varying actions and goals. The system is similar to that described in [21]
and others, and is a suitable place to start making improvements upon the algorithm.

12 Improving the planner

Several improvements were made to the existing planning system. They vary in tech-
nique and required effort, but all allow greater fexibility for designers or improved
behaviors in agents.

12.1 Scheduling

One of the unique aspects of partial-order planning systems is how (or in many cases,
if) they create a totally-ordered plan from a complete partially-ordered plan. Since a
single partial-order plan has many totally-ordered instantiations, the resultant totally-
ordered plan could vary widely between planners. Several partially-ordered plans use
scheduling to determine the order of actions or groups of actions in the ultimate total-
order plan. Scheduling is usually denoted as a precedence ordering between actions, as
in "Action A should occur before Action B." While this language immediately brings to
mind the ordering enforced by a planner for establishing preconditions between actions,
scheduling here means a less strict way of ensuring action ordering. For example, a

38

scheduling rule could be used to make sure that a "ReloadWeapon" action occurs before
a "FireWeapon" action. Without scheduling, the only way to make such an ordering
occur would be to put a precondition on the "FireWeapon" action that is established
as a result of "ReloadWeapon." However, this could lead to extra processing as the
"ReloadWeapon" must always be run as part of the plan to attack an opponent. With
scheduling, the correct ordering will occur whenever the two actions are part of the
same plan without forcing the "ReloadWeapon" action to be in the plan unnecessarily.

Scheduling is a rather simple addition to the planning system. Each action spec-
ifes a list of precedence relations, indicating the actions that it should occur before
or after, as needed. For the purposes of demonstrating the feature, this project only
implemented precedence for actions occurring before some other action. Once these
relations are identifed, ordering can be done after a plan is fnished or during the cre-
ation of the plan itself. Since A* produced totally ordered plans to begin with, putting
actions into the correct order at plan creation could avoid more expensive searches per-
formed after all actions are in the plan. Care must be taken that reordering the actions
does not undo any orderings required by the plan itself. This can be ignored, though, if
the precedence relations put into place by an action avoid indicating any actions whose
preconditions or effects have the same category as preconditions or effects on the orig-
inal action. For example, an action whose effects include a change to the kHasItem

WorldProperty should avoid stipulating a scheduling precedence relation with any ac-
tion whose preconditions or effects include a kHasItem value. Figure 6 shows the
algorithm used to insert actions into the correct precedence relation order during plan
creation.

12.2 Goal merging

One of the central ideas put forth in [25] was combining the effects of several plans
over several goals into lists denoting the particular effects of each possible plan, then
merging the results. While this idea holds great promise for increasing the effciency
and believability of behaviors in artifcial agents, one of its major restrictions is its
need for several goals, or at minimum, several plans for a single goal. Certainly some
games could beneft from the inclusion of such an algorithm, but for the games cur-
rently using planning algorithms, the requirement of several plans places too high of
a computational price to make using the algorithm worthwhile. A similar result at a
lower cost can be obtained through goal merging.

Goal merging is an algorithm developed to take two compatible goals and produce a
single plan accomplishing both of them. As discussed in the research summary earlier,

39

http:accomplishingbothofthem.As

Figure 6: Algorithm to place actions into the correct order based on scheduling prece-
dence relations.

goals can interact in a positive or negative fashion, or they could not interact at all.
The algorithm merely takes two goals that positively interact or fail to impact each
other, and returns a goal with mutually compatible target world states, such that a plan
accomplishing the merged goal will accomplish each of the original goals.

The savings in the resultant plan depend entirely on the state of the goals that are
merged. If the goals do not interact, the resultant plan cannot be any shorter than two
independently generated plans for each separate goal. In the case of positively inter-
acting goals, the resultant plan would be shorter than executing plans for each goal
separately. This does not seem to have an immediate impact, though, as whatever mu-
tually desired result will be accomplished by the execution of the frst plan, shortening
the plan for the second goal! However, in practice, actions can have multiple effects,
and it is not always the case that a result accomplished during the execution of the frst
plan will still hold by the time the second plan is executed. Further, there is no wasted
time processing a new plan after the completion of the frst plan.

Negatively interacting goals can be detected by having mutually incompatible tar-
get states. For the purposes of this system, incompatible target states were defned
as any target state with the same key type (kHasItem, for example), but a different
value. Note that this could be overly restrictive in the case of foating-point valued
target states, but it was an acceptable tradeoff for this system. It was further useful
to allow a designer to specify certain goals as never being compatible; for example, a

40

Figure 7: Algorithm to merge two goals into a single goal.

"Retreat" goal might never be allowed to combine with an "Attack" goal. Having an
early-out check in the algorithm could potentially save a lot of time in processing goals
that would have ended up being incompatible in any case.

Figure 7 shows a listing of the algorithm used to merge two goals into a single
target goal. In the case of incompatibility, a fag is set indicating that the goals failed to
merge. As noted in the code comments, it would be possible to improve on the speed of
this algorithm by keeping the goal’s target states and values in keyed hashmaps, rather
than searching lists for compatible or incompatible items. However, in the tests run for
the system, most goals had so few target states that this was deemed an unnecessary
optimization.

One drawback of this approach is the large amount of time searching on goals that
are non-interacting. This would be reduced but not eliminated by implementing the
hashtable optimization above. Another shortcoming of this method is that no plan is
generated until after goal merging is complete. This means that an agent wishing to
use goal merging would need to wait until all processing is complete on goal merging

41

http:merge.As

before even starting to plan for attainment of the goal. With small goals and plans, this
may not be an issue, but careful consideration should be taken before deciding to use
this method.

12.3 Plan merging

Plan merging refers to the process of taking several independently generated plans and
creating a single plan out of them, usually with the intention of reducing the overall
cost of the plan. Often, a reduced-cost plan has the beneft of also producing more
rational-looking behavior. To demonstrate the power of plan merging, an example will
be examined before getting into the details of the algorithm.

Suppose an agent has the task of collecting items from around the world and return-
ing those items to a home base. If the agent can only carry one item at a time, then it is
apparent that it has no better choice than to go to an item, collect it, and return to base.
However, if the agent can carry multiple items, it is also evident that many situations
exist where the agent could reduce its total distance traveled by collecting several items
at once. There are several ways we could accomplish this behavior utilizing a planning
system. Suppose that the goal of collecting items and returning them to base was the
"ReturnItems" goal. One could write a "GatherItems" action that accomplishes that
goal. An agent executing the "GatherItems" action would look for the nearest items,
gather as many as it could, and return them to base. While this is an acceptable so-
lution, it is clear that our "GatherItems" action would be quite complicated. It would
need to include code to pathfnd and travel between items, pick up items, pathfnd and
travel back to base, and drop off the items once arrived. The increased functionality
contained within one action works to defeat the purpose of having a fexible planning
system. It is much easier to write smaller, reusable, atomic actions, such as GoTo for
pathfnding, GetItem to gather the item from the world, and ReturnItem to drop off the
item at base. These multiple actions allow the planner to do the complicated work of
stringing together the actions into the right order, and further allow reuse of actions
among many types of NPC’s. Yet none of these actions can communicate to the agent
that it should try to gather multiple items at a time. Instead, the agent can accomplish
the desired behavior through plan merging.

The general idea is to take two plans with some overlapping actions, and combine
the plans to produce a single plan with a lower cost than independently executing each
of the original plans. In the given example, the agent could plan to gather each item
independently, producing two plans that were unrelated but very similar, each with its
own separate instance of a "GetItem" action. A possible result from a merge of those

42

http:behavior.To

two plans would combine as many possible actions together, producing a single plan
with fewer actions. When the agent executes this plan, it collects both items before
making the return trip to base.

12.3.1 Implementing a plan merging algorithm

Academically, the interest in plan merging centers mostly on plan optimization. [8]
points out two major components to optimizing a plan: fnding actions that can be
merged, and then computing the optimal way to merge the actions if there exists more
than one way to put the operators together. It is easiest to deal with these problems
separately, so that is the approach taken here.

The frst challenge in fnding mergeable actions is discovering precisely what kinds
of actions can be merged. Put simply, any number of actions can be merged together
if there is another action that can replace the merged actions with 1) the same useful
effects, and 2) the replaced action costs less than the sum of the merged actions it is
replacing. Effects are defned as "useful" if they directly establish a precondition of
another action in the plan, or a precondition of the goal itself. For example, suppose
an agent has a plan to destroy a target and has the FireWeapon and ReloadWeapon
actions at its disposal. The ReloadWeapon action has several effects: frst, it makes the
weapon be loaded, and second, it reduces the agent’s ammunition store. The frst effect
is a useful effect, as it accomplishes a precondition of another action in the plan. The
second effect isn’t useful, as it has no ultimate bearing on the execution of the plan.
While the effect may matter to the agent and may need to be considered in the creation
of the plan, it can safely be ignored for plan merging.

Searching plans for mergeable actions would be incredibly expensive without knowl-
edge of the actions themselves, so it is most effcient to specifcally look for actions that
are known to be mergeable. In an implemented system, this means either looking for
a specifc action that can be merged with itself, or looking for a known combination
of actions that could be merged. In the earlier resource-gathering example, it is known
that our agent is likely to have multiple plans, each with an instance of the "Retur-
nItems" action. This is an excellent candidate action to look for, since merging two
ReturnItems actions together is known to be possible. In this specifc case, the algo-
rithm might even start its search at the end of the plan, since the ReturnItems action is
likely to be the last action in each of the plans that are being merged. GoTo(Base) can
similarly be merged with itself, as it obviously accomplishes the same effect.

The second challenge is creating an optimal plan once a possible merge has been
discovered. [8] deals with the diffculties of creating an optimal plan, noting that creat-

43

ing an optimal plan quickly becomes computationally expensive, and is thus probably
overkill to pursue in games. For the resource gathering NPC, its behavior is already
much improved simply by allowing the agent to collect multiple resources at once.
Rather than spend time worrying about the optimality of the plan, an algorithm could
just place the rest of the two plans together. If more intelligent-looking behavior is
desired or required of the system beyond a simple plan merge, an algorithm could
employ critics, special-purpose checks used to help order any actions remaining after
the merge. In our resource gathering example, it is known that there are two pairs of
GoTo(Item) and Get Item actions that need to be placed before the merged ReturnItems
action, so a critic could be written and employed to make sure the agent goes to the
closest item frst. Critics are general rules written to enforce a desired behavior in plan
merges. The specifc design and implementation of critics depend highly on the system
for which they are needed.

At its simplest, then, a plan merging algorithm accepts two plans generated through
the general-purpose A* planning system. An agent sends its two most important goals
to the planner, for example, and then sends those two independently generated plans to
the plan merger. For every action in the frst plan, the algorithm checks to see if it can be
merged with an action in the second. If a merge can be performed, those two actions are
put together into a single plan, being careful to put preceding actions from both plans
before the merged action, and likewise putting any actions occurring after the merged
action afterwards. If more precise control over the order of the non-merged actions
is needed, critics can be employed to determine the best ordering and rearrange the
actions as necessary. For a wider range of possible merges, a complete plan merging
algorithm should examine the net effects of every possible group of actions in each
plan, looking for situations where a sequence of actions could be replaced by a single
cheaper action. Such an algorithm produces the most impressive improvements to
mergeable plans, but is also expensive to run. An example of an algorithm checking
for merges on a particular known action is shown in Figure 8.

12.3.2 Beyond single-agent merges

While merging two plans for a single agent certainly offers opportunities for improved
behavior, plan merging also offers remarkable benefts in the areas of squad-based
planning. For instance, an agent utilizing plan merging could merge an individual goal
(picking up a weapon or health power-up) with a squad-issued goal (providing cover
fre). Utilizing plan merging in these situations allows an agent to maintain its own
goals and personality in the face of squad-issued orders and even allows for situations

44

Figure 8: A plan merging algorithm with a known action to merge on.

where the agent can accomplish many goals at once.
A plan merging algorithm for such an application has no discernible differences

from the one described for an agent pursuing two self-generated goals. However, as the
variety of possible goals and actions increase, a generalized version of the algorithm
that checks for compatible combinations of useful effects between actions becomes
more important for the overall success of the merging operation.

12.3.3 Strategies for improving action searching

Searching two or more plans for actions with similar effects is expensive, especially
if the merger considers replacing groups of actions with different net effects. If the
game that the merging operator is developed for is fast-paced, typical of many FPS’s,
an agent’s primary and secondary goals could change more quickly than it could even
devise a plan for its secondary goal. Clearly, plan merging is of no use unless we can
quickly perform the merge.

One possible strategy to reduce the time needed to search through actions is to only
look for mergeable actions when specifc actions are present in the plan, something that
can be determined in the middle of the plan-making process. For extremely long plans,
hooks direct to possibly-mergeable actions could be included in the plan structure itself,
directing the algorithm not only into the correct places immediately, but also informing

45

it if a merge is worth looking for at all. In specifc kinds of agents, it might even be
worth only looking for a specifc action to merge in each plan. In cases where the
agent’s primary goal does not contain any mergeable actions, the planning process for
the secondary goal can be entirely avoided.

Similarly, we might only attempt a merge when the goals being planned for are
compatible. Conversely, it makes sense to not even bother to attempt a merge if the
two intended goals are incompatible. Indeed, even making a plan for a secondary goal
is wasted time if our goals are incompatible. This determination is probably best made
by the programmer, much as was described above in the section on goal merging. It
may be obvious to us that an Attack and a Retreat goal will never produce mergeable
plans, but a generically written algorithm would search through every action of each
plan before reporting that no mergeable actions exist. This extra work can be avoided
with a little extra initial effort on the part of designers and programmers.

13 Conclusions and future work

Plan merging is a clear method of improving the perceived intelligence of agents in in-
teractive simulations. Based on the variety of methods available to perform merging, a
suitable plan merging algorithm balancing a variety of mergeable actions with runtime
complexity can be chosen for nearly any situation imaginable. Plan merging is a more
fexible merging alternative to goal merging, although the latter can be performed more
cheaply in the general case. In either situation, planners can be improved at not much
cost in order to improve planning results.

Different plan merging algorithms may be better suited to different situations. The
algorithms described in [25] and [26] are not well suited to fast-acting agents, but may
prove useful for agents acting over longer periods of time, such as in strategy games.
These situations remain to be formally examined.

Several improvements are readily suggested for the system as described. It would
be benefcial to determine a more general solution to determine when goals are in-
compatible with each other, especially with similar goal effects on real-valued world
properties. Further, all of the actions and goals are defned within C++ classes. While
this was acceptable for the purposes of this research, in a professional game develop-
ment environment there would be a greater emphasis on developing a reusable script
or tool for both designers and programmers to more readily tweak and create actions.

46

References

[1] Avrim Blum and Merrick Furst. Fast planning through planning graph analysis. In
Proceedings of the 14th International Joint Conference on Artifcial Intelligence

(IJCAI 95), pages 1636–1642, 1995.

[2] Craig Boutilier and Ronen I. Brafman. Partial-order planning with concurrent
interaction actions. Journal of Artifcial Intelligence Research, 14:105–136, 2001.

[3] The Duy Bui and Wojciech Jamroga. Multi-agent planning with planning graph.
In Proceedings of eunite, 2004.

[4] P. R. Cohen, C. R. Perrault, and J. F. Allen. Beyond question answering. In W. G.
Lehnert and M. H. Ringle, editors, Strategies for Natural Language Processing,
pages 245–274. Erlbaum, Hillsdale, NJ, 1982.

[5] Ken Currie and Austin Tate. O-Plan: The open planning architecture. Artifcial

Intelligence, 52(1):49–86, 1991.

[6] Kutluhan Erol, James A. Hendler, and Dana S. Nau. Semantics for HTN planning.
Technical Report CS-TR-3239, Institute for Systems Research and Institute for
Advanced Computer Studies, 1994.

[7] Kutluhan Erol, James A. Hendler, and Dana S. Nau. UMCP: A sound and com-
plete procedure for hierarchical task-network planning. In Artifcial Intelligence

Planning Systems, pages 249–254, 1994.

[8] David E. Foulser, Ming Li, and Qiang Yang. Theory and algorithms for plan
merging. Artifcial Intelligence, 57(2–3):143–181, 1992.

[9] C. Geib and R. Goldman. Plan recognition in intrusion detection systems, 2001.

[10] Daniel Higgens. Generic a* pathfnding. In Steve Rabin, editor, AI Game Pro-

gramming Wisdom. Charles River Media, 2002.

[11] Daniel Higgens. How to achieve lightning fast a*. In Steve Rabin, editor, AI

Game Programming Wisdom. Charles River Media, 2002.

[12] D. Isla. Handling complexity in the Halo 2 AI. In Game Developer’s Conference

Proceedings, 2005.

[13] Henry Kautz and Bart Selman. Planning as satisfability. In Proceedings of the

10th European Conference on Artifcial Intelligence, August 1992.

47

http:HandlingcomplexityintheHalo2AI.In
http:MerrickFurst.Fastplanningthroughplanninggraphanalysis.In

[14] Craig A. Knoblock. Generating parallel execution plans with a partial-order plan-
ner. In Artifcial Intelligence Planning Systems, pages 98–103, 1994.

[15] Wenji Mao and Jonathan Gratch. Decision-theoretic approach to plan recognition.
Technical report, Institute for Creative Technologies, 2004.

[16] N. J. Nilsson. Artifcial Intelligence: A New Synthesis, pages 373–400. Morgan
Kaufmann Publishers, Inc., San Francisco, 1998.

[17] Jeff Orkin. Applying goal-oriented action planning to games. In Steve Rabin,
editor, AI Game Programming Wisdom 2, pages 217–227. Charles River Media,
2004.

[18] Jeff Orkin. Symbolic representation of game world state: Toward real-time plan-
ning in games. AAAI Challenges in Game AI Workshop Technical Report, 2004.

[19] Jeff Orkin. Agent architecture considerations for real-time planning in games. In
AIIDE Proceedings, 2005.

[20] Jeff Orkin, 2006. Personal communications.

[21] Jeff Orkin. 3 states & a plan: The A.I. of F.E.A.R. In Game Developer’s Confer-

ence Proceedings, 2006.

[22] J. Scott Penberthy and Daniel S. Weld. UCPOP: A sound, complete, partial order
planner for ADL. In Bernhard Nebel, Charles Rich, and William Swartout, ed-
itors, KR’92. Principles of Knowledge Representation and Reasoning: Proceed-

ings of the Third International Conference, pages 103–114. Morgan Kaufmann,
San Mateo, California, 1992.

[23] Stuart Russell and Peter Norvig. Artifcial Intelligence: A Modern Approach.
Prentice-Hall, Inc., Upper Saddle River, NJ, frst edition, 1995.

[24] Austin (Ed.) Tate and James (Ed.) Hendler. Readings in Planning, pages 291–
296. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1994.

[25] John Thangarajah, Lin Padgham, and Michael Winikoff. Detecting & exploiting
positive goal interaction in intelligent agents. In AAMAS ’03: Proceedings of

the second international joint conference on Autonomous agents and multiagent

systems, pages 401–408, New York, NY, USA, 2003. ACM Press.

48

[26] John Thangarajah, Michael Winikoff, Lin Padgham, and Klaus Fischer. Avoid-
ing resource conficts in intelligent agents. In Proceedings of the 15th European

Conference on Artifcial Intelligence, 2002.

[27] Neil Wallace. Hierarchical planning in dynamic worlds. In Steve Rabin, editor,
AI Game Programming Wisdom 2, pages 229–236. Charles River Media, 2004.

49

	Copyright
	Title Page
	Table of Contents
	List of Figures
	1 Acknowledgments
	Abstract
	2 Problem Statement
	3 Planning overview and early history
	4 Variations on Planning Algorithms
	4.1 Satisfiability and Planning
	4.1.1 Differences between Deduction and Satisfiability
	4.1.2 Summary of Results

	4.2 Planning with Graph Analysis
	4.2.1 Planning Graph Structure
	4.2.2 Summary of Results
	4.2.3 Graphplan for Multiple Agents

	4.3 Applicability to Games

	5 Parallelizing Plans with Partial Order Planners
	5.1 When Actions can be Performed in Parallel
	5.2 Types of Parallel Plans
	5.2.1 Independent Actions
	5.2.2 Independent Actions Relative to a Goal
	5.2.3 Independent Subplans Relative to a Goal
	5.2.4 Interacting Actions

	5.3 Partial Order Planning with Interacting Actions
	5.4 Applicability to games

	6 Plan Recognition
	6.1 Plan Recognition Overview
	6.2 Planning and Plan Recognition
	6.3 Applicability to Games

	7 Plan Merging
	7.1 Positive Goal Interactions
	7.2 Avoiding Resource Conflicts
	7.2.1 Applicability to Games

	7.3 Opterator Merging
	7.3.1 Applicability to Games

	8 Hierarchical Task Network Planning
	8.1 Overview of HTN Planning
	8.2 Applicability to Games

	9 Applications of Planning in Games
	10 Proposal for Research
	11 Research Products
	11.1 Planning System
	11.1.1 Search Algorithm
	11.1.2 Goal Classes
	11.1.3 Action Classes
	11.1.4 Plan Class

	11.2 World Representation
	11.3 Agent Definition
	11.4 The Planning Algorithm as used in an Agent

	12 Improving the Planner
	12.1 Scheduling
	12.2 Goal Merging
	12.3 Plan Merging
	12.3.1 Implementing a plan merging algorithm
	12.3.2 Beyond Single Agent Merges
	12.3.3 Strategies for Improving Action Searching

	13 Conclusions and Future Work
	References

