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Abstract 

Goal planning is a well-researched method for automated agents to formulate 

a plan of action to solve a problem. This paper presents an overview of the devel-

opment of planning in the general artifcial intelligence setting and specifcally its 

recent applications to reasoning for artifcial agents in real-time games. Addition-

ally, the author presents research on plan merging algorithms as applied to game 

applications. 

2 Problem statement 

Real-time simulations and games in particular have demanding technical requirements 
as well as high consumer expectation for delivering the best possible experience. Ar-
tifcial intelligence is one area of game production that is particularly demanding in a 
wide variety of ways: programmers must have their agents interact with increasingly 
complex environments, exhibit myriad different behaviors, and interact intelligently 
with the player and other agents. As games and hardware grow more complex, so 
must the AI systems designed to control those agents. Yet complexity is increasingly a 
problem for both designers and engineers as more complex systems have more subtle 
interactions and the possibility for unintended behavior. Indeed, several major talks at 
the Game Developer’s Conference in recent years have dealt with handling complexity 
in artifcial intelligence systems for games [21], [12]. 

Traditionally, game systems have utilized fnite state machines (FSM’s) to control 
character behavior. In part, FSM’s are widely used because they are widely used; the 
collective knowledge about FSM’s is vast from both practical experience and academic 
research, and the concept behind them is easy to understand. However, state machines 
have some disadvantages as well. As fnite state machines grow larger, they also be-
come more diffcult to understand, making accurate prediction of their behavior under 
a variety of circumstance nearly impossible. Larger FSM’s take up more space in mem-
ory and are more challenging to design consistent behaviors for as well. Additionally, 
and especially as projects become larger, it is desirable to be able to design behaviors 
for characters and reuse those behaviors for other characters. Yet in the past, reusing 
FSM’s for other characters has proved diffcult or impossible [21]. 

Why is reusing a fnite state machine so diffcult? It should be simple enough to 
write a FSM for a particular behavior, such as "Attack," or "Chase," and reuse that 
particular FSM for any character that needs to perform those actions. The diffcult part 
comes when designers wish those behaviors to be slightly different for different char-
acters. The FSM’s become much larger as the behaviors incorporate special logic, and 
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tweaking or changing one part of the FSM means extensive testing. Each tweak could 
have unintended effects on the behavior, or even other behaviors, often in unexpected 
ways. This risk is often unacceptable, particularly as the project cycle ends. 

Jeff Orkin has suggested planning as a way of overcoming these obstacles in game 
design [21]. The motivation for examining real-time planning for artifcial agents in 
games came about from a desire for characters to have atomic, reusable actions that 
can be easily shared between characters while providing more complex and realistic 
behaviors with reduced complexity. 

3 Planning overview and early history 

Planning in artifcial intelligence was developed as an alternative way of looking at 
problem solving through a search of states. Traditional searching algorithms, such as 
breath-frst search or depth-frst search, are used to search through a set of states in 
search of a target state, optionally using a heuristic function to help guide the search. 
However, such searching algorithms can only blindly follow the heuristic while search-
ing for the target goal state. Goal planning systems were developed to help agents 
reason about how they were to accomplish their goals. 

Russell and Norvig [23] present an example concerning an agent with a shopping 
list: the agent is at home, and has a number of items it needs to acquire (say, a ham-
mer and a quart of milk). Traditional searching algorithms could search through a 
signifcant number of states in their searches for the goal state (being at home with the 
hammer and milk). Such searches are mostly blind, considering equally all possible 
actions, including going to sleep, reading a book, or going to the hardware store, when 
in actuality only one of those actions holds any hope of being fruitful for the agent. 
Planning systems attempt to codify information about the actual actions an agent can 
take in order to help the agent think and act rationally about the problem given. 

Planners usually represent goals (a target world state) and actions (ways for the 
agent to change the world state) using some derivative of frst-order logic or another 
formal language. Indeed, the frst major planning system, STRIPS, uses a form of 
predicate logic to represent the state of the world and actions an agent can perform 
[16]. STRIPS was originally written for a robot named Shakey, a robot at the Stanford 
Research Institute1 in the early 1970’s. Since then, STRIPS has become a standard for 
planning languages in numerous projects. 

Most planners have some terminology in common. An planner is given a goal, an 

1Now SRI International. 
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initial state, and a set of actions to use in accomplishing the goal. A goal is quite simply 
a target world state: the state of the problem as the agent wants it to be. In the example 
above, the goal was for the agent to be at home with a hammer and a quart of milk. The 
initial state is the starting point of the search, or the world state as it is currently. Using 
the above example again, the initial state might just be the agent at home. It may, of 
course, include other things, such as the fact that the agent has some bananas, although 
such things will be irrelevant to the planner. Actions or operators are the things an 
agent can do in order to change the state of the world. Some possible actions for our 
example problem would be buying an item or moving to a different place in the world. 
Many planners allow for actions to have variables, allowing the planner to have a single 
action such as Buy(x) for all possible values of x. An action can have preconditions and 
effects. For instance, a precondition of Buy might be having enough money to buy the 
item. Effects of actions explain to the planner how the action changes the world state; 
Buy(x) has an effect of the agent now possessing the item x. It would also specifcally 
state other consequences of the action, such as the agent having less money than it did 
before the action was executed. 

With these defnitions, planners can then examine problems to come up with plans, 
a formalized solution to the problem. A plan consists of an ordering of actions the 
agent should take to achieve the goal state. Plans should also contain variable bind-
ings for actions with variables. Plans can be partially-ordered, where some actions 
may be left unordered relative to each other, or totally-ordered, where all actions are 
given in a specifc execution order. Both types of planners output a set of ordering 
constraints, indicating which actions must be performed before any other particular 
action. Partially-ordered planners are more widespread for a variety of reasons. First, 
note that for a given partially-ordered plan, there are an exponentially increasing num-
ber of totally-ordered plans. For example, a partially-ordered plan for putting on socks 
and shoes that ignores the ordering of left/right foot frst has six totally-ordered plans 
(called linearizations). A partially-ordered planner ignores ordering of actions if the 
ordering is not important to the outcome of the plan. Additionally, planners have found 
use for agents capable of executing multiple actions simultaneously, or creating plans 
for groups of agents acting cooperatively, so plans not enforcing a strict ordering of 
actions are desirable in those cases. Plans can also be combined with other plans at a 
later time, and a more fexible ordering of those plans may assist in their combination. 

Partial-order planners begin by taking the initial state and goal states as the begin-
ning and end of a plan respectively, then iteratively adding actions leading to interme-
diate states between the starting and ending states. At each step, the planner focuses its 
search by only adding actions that serve to meet a precondition of some part of the plan 
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that is not yet achieved. Additionally, the planner needs to check to make sure that the 
plan is consistent at each step; that is, the action added in a step cannot cause a contra-
diction in the plan. Contradictions can be formed by actions requiring an impossible 
ordering (A must be before B must be before A, etc.) or requiring a dual assignment 
to a variable (say, a variable v = A and v = B for A 6 B). Beyond these subtleties, = 

this algorithm for a partial-order planner is both sound and complete, and forms the 
original POP planning algorithm. 

4 Variations on planning algorithms 

A great number of algorithms based on the same idea of partial-order planning have 
been developed, such as NONLIN, O-PLAN [5] and UCPOP [22]. However, several 
non-traditional approaches to planning have also been attempted with varying levels of 
success. 

4.1 Satisfability and planning 

Many formalized analyses of planning algorithms approach the solution as a type of 
deductive reasoning. This method interprets the planning problem as fnding a deduc-
tive proof in a system whose axioms state that action effects are implications of the 
action’s occurrence when that action’s preconditions hold. By formalizing planning 
in such a way, traditional methods of deductive proof can be used to analyze specifc 
planning problems. 

Deduction’s complimentary problem is known as satisfability [13], creating a model 
of a set of axioms. Kautz and Selman tested two different satisfability algorithms, DP 

and GSAT, on a variety of planning-as-satisfability problems, with several interesting 
results. 

4.1.1 Differences between deduction and satisfability 

As mentioned earlier, deductive planning formalization is generally based on a logical 
system, such as the situational calculus or a specially-designed predicate logic sys-
tem. Using this sort of language to represent a planning problem allows it to be solved 
deductively, by using the ’axioms’ of action effects and preconditions. However, satis-
fability moves in the opposite direction; starting with the ’axioms’ of actions, it creates 
a model of the world that is consistent with those actions. This can easily lead to prob-
lems in which a plan satisfying the axioms is not a reasonable one. Put another way, 
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satisfability can string together actions in such a way that the plan is consistent, but 
impossible to execute. For example, the formalization of an action as an axiom says 
that an action’s effects take place when an action is performed while its preconditions 
are held true. This means that a satisfability approach can execute actions without their 
preconditions being true, since it is consistent to say that the effect still occurs! (Recall 
in logic that the statement false ! true is itself true.) This problem can be overcome 
by introducing the notion of time into the formal language, where one unit of time rep-
resents the time it takes for an action to be executed. Using this notion of time, actions 
can be rewritten to imply their effects at the time after they are completed, but also 
to imply their preconditions at the previous unit of time. In doing so, the satisfabil-
ity planner will no longer create situations where actions are performed without their 
preconditions being true. Other extensions to the planning-as-satisfability approach 
include a restriction to only allow one action at any particular time, and an assertion 
that an action occurs at every time step. Since it is always possible to defne a "do 
nothing" action, this last declaration is noted as not being particularly restrictive. 

Satisfability has the unique advantage of being able to place arbitrary constraints 
on the solution to the problem. Because of the introduced notion of time, it is easy 
to assert any particular attribute about the world should be held true at any particular 
time. Deductive reasoning systems have a much more diffcult time enforcing such 
constraints. On the other hand, the explicit notion of time enforces a total-order-like 
structure to the resultant plan. 

4.1.2 Summary of results 

Several key elements contribute to the running time of the satisfability planner. The 
length of the instantiated plan is bounded by O(kcd), where c is the number of con-
stants (that is, the largest number of elements that could be assigned to a particular vari-
able), d is the maximum depth of quantifer nesting, and k is the number of literals in 
the longest statement. Clearly, the depth of quantifers in the statements has the greatest 
effect on the size of the output. Thus, replacing a predicate such as move(x,y,z,i) with 
three predicates object(x,i), source(y,i), and dest(z,i) has a greatly benefcial effect. 

Better results were obtained when axioms that explicitly ruled out illegal states 
were included (such as an object being on top of itself). While plans leading to such 
states would fail, their explicit exclusion increased performance of the algorithm. 

Two algorithms were used; one, GSAT, was a local greedy search algorithm, which 
performed well on general satisfability problems, while the other, DP, a well-known 
backtracing algorithm, provided superior performance on a variety of traditional plan-
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ning problems. While GSAT failed to solve several of the traditional planning problems 
presented to it on its frst try, the exclusion of illegal states as mentioned above signif-
cantly improved its performance on those problems. 

4.2 Planning with graph analysis 

Another alternative way of looking at planning was proposed by Blum and Furst in 
1997, using a structure they created known as a Planning Graph [1]. Their algorithmic 
planner, GRAPHPLAN, constructs a Planning Graph before searching for a relevant 
plan. Planning Graphs, which can be built in polynomial time and polynomial space, 
do not cover the entire search space of a problem, but rather represent an organized 
structure of possible actions for STRIPS-like domains. 

GRAPHPLAN has several interesting features of note. First, like the planning-as-
satisfability planners above, it requires an explicit notion of time, where every action 
takes one time unit. This, again, does not restrict the plan generated to take a state-
changing action at every time, so long as a "no-operation" style action is included in 
the allowable action set. Thus, GRAPHPLAN makes total-order planning-like commit-
ments to the times in which actions occur. However, this is not to imply that the plans 
generated are total-order; rather, they imply orderings only among actions at different 
steps. For instance, GRAPHPLAN can generate plans where several actions occur at a 
particular timestep. Such plans therefore have partial-order fexibility concerning the 
ordering of actions during one arbitrary timestep. The authors also note that with mul-
tiple agents, or perhaps an agent capable of more than one action simultaneously, times 
in the plan where more than one action occurs could be handled in parallel by those 
agents. 

GRAPHPLAN is provably sound and complete, and is also guaranteed to return the 
shortest possible plan for the given problem. It operates on traditional STRIPS-like 
problem domains, with the expected defnitions of actions, objects, initial conditions 
and goal states. Additionally, it base algorithm has the attractive beneft of being ex-
tendable in order to detect if the goals of the problem are unattainable by any valid plan 
and halt with failure in such a case. 

4.2.1 Planning graph structure 

Planning Graphs are similar in structure to valid plans, meaning that each "layer" of the 
graph contains allowable actions for that given time. Actions and propositions alternate 
layers in the structure of the graph (see Figure 1). Unlike valid plans, actions at a given 
time in the graph are allowed to interfere with each other, meaning that actions at a 
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(define (operator move)
:parameters ((rocket ?r) (place ?from) (place ?to))
:precondition (:and (:neq ?from ?to) (at ?r ?from) (has-fuel ?r))
:effect (:and (at ?r ?to) (:not (at ?r ?from)) (:not (has-fuel ?r))))

(define (operator load)
:parameters ((rocket ?r) (place ?p) (cargo ?c))
:precondition (:and (at ?r ?p) (at ?c ?p))
:effect (:and (:not (at ?c ?p)) (in ?c ?r)))

(define (operator unload)
:parameters ((rocket ?r) (place ?p) (cargo ?c))
:precondition (:and (at ?r ?p) (in ?c ?r))
:effect (:and (:not (in ?c ?r)) (at ?c ?p)))

time 3
propositions

time 2
propositions

time 1
propositions

fuel R L

at A L

at B L

at R L

fuel R Lfuel R L

at R Lat R L

at B Lat B L

actions

at A Lat A L

time 1

load A L

load B L

move L P

unload B P

unload A P
in A R in A R

in B R

at R P

in B R

at R P
load A L

move L P

load B L

time 3
actions

goals

at B P

at A P

actions
time 2

Figure 1: The operators and the planning graph for the Simple Rocket Domain [3]. ’No-operation’ actions (no-ops) are
marked with dots.

The collaborative situation is the easiest to deal with and can be tackled almost directly using the Graphplan algorithm
from [3]. One must be careful, however, to define the domain (i.e. the operators, objects etc.) in a proper way so that the
resulting Planning Graph and the resulting plan indeed refer to the problem we wanted to solve. Some suggestions about
this can be found in section 2.

The adversarial case (discussed in section 3) lies at the heart of Game Theory – in the form of zero-sum games theory –
with a tradition going back at least to the works by von Neumann and Mogenstern in the 1940s [9]. This reflects a bias of
the classical Game Theory: we want our agent to play safe; we want him to be protected against the worst line of events.
It is worth noting that such a perspective is not restricted to traditional games with numerical utility function only. Some
of the recent work on multi-agent planning through model checking logical formulae derives from the same tradition: a
goal is achievable only when it can be enforced for every possible response from the rest of the agents; otherwise no plan
can be generated [2, 8]. Two planning algorithms (a forward-chaining and a backward-chaining one) are analyzed for the
adversarial planning case.1

Since a situation when no plan is generated is not acceptable from the planning agent’s perspective, we propose an
extension of this approach in section 4. The agent’s goals can be satisfied to various degrees, according to a linear utility
function. The best plan can be found with a forward-chaining minimaxing algorithm.

The implications of the classical Game Theory standpoint go beyond the zero-sum games. Even for the games where
the players can have independent utility functions, most widely accepted rational decision making criteria assume (implic-
itly or explicitly) that the agent must look for a plan against the worst possible line of events – since such a model refers
to the lower bound of his capabilities. Two approaches to the planning problem for agents with independent goals are
proposed in section 5. First, we may follow the Game Theory perspective completely (independent search). Alternatively,
the agent can look for some coalition with other agents and involve collaborative planning to the greatest possible extent.

A number of simplifying assumptions were adopted within this paper:

• the agents have complete knowledge of the situation (no uncertainty, no probabilistic beliefs),

• the agents have complete knowledge of the outcomes of every action,

• the outcome of every action is deterministic (there are no probabilistic actions or actions with uncertain outcome),

• the planning graph forms a synchronous turn-based structure: time is discrete and at every time point only one agent
proceeds with an action or actions (the agents take turns),

• the goals of every agent are public.

2 Collaborative Multi-Agent Planning
When all the agents can fully cooperate to bring about some set of goals, the whole coalition can be treated as a single
agent trying to search for a single-agent plan. Therefore the original Graphplan planner can be used to find it. However,

1a different approach to the adversarial planning seems to be proposed in [6]. The author suggests that a planning graph for multi-agent turn-based
situations can be rebuilt to include conditional actions instead of other agents’ nodes; then we can run some standard conditional planner on it. According
to the available materials, the work is still in progress.

2

Figure 1: Operators and the generated Planning Graph for a particular planning prob-
lem. Taken from [3]. Dots in action layers represent no-op actions. 

particular time in the graph could undo effects of each other. In fact, any particular 
level of the graph containing actions may contain every possible action such that the 
action’s precondition are true at the previous level. This lack of restrictions on the 
graph make them relatively quick to create, and it is provable true that if a valid plan 
exists in n steps, such a plan is contained with a Planning Graph with n action levels 
(that is, a Planning Graph with n levels containing actions). 

Once a Planning Graph is created, the planner examines it for actions that are mu-
tually exclusive, which are actions at a given action level in the graph that no valid 
plan could possibly contain. While the planner does not fnd every mutually exclusive 
action pair, it does fnd a great many of them, which helps speed the search for a valid 
plan later. Mutually exclusive actions are identifed by determining if they interfere 
with each other (one action deletes an effect of the other) or have competing needs 
(the preconditions of the actions are marked as being mutually exclusive at a previous 
time). 

The planning algorithm itself is a backward-chaining recursive algorithm, taking 
advantage of actions marked as mutually exclusive in its previous steps. As before, the 
largest impact on the running time of the algorithm is the greatest number of formal 
parameters in the given allowable actions, so limiting the number of parameters within 
the operators of the problem is benefcial. Even with that note, though, GRAPHPLAN 

runs in polynomial time with respect to the number of objects in the problem, the length 
of the effect lists of the actions, and the number of initial conditions and operators. Of 
course, the required size of the graph (and thus, the size of the shortest valid plan) is a 
bounding factor as well. 
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4.2.2 Summary of results 

GRAPHPLAN ran to successful completion in shorter CPU times (on slower computers, 
no less) than several competing planners, including PRODIGY and UCPOP. In general, 
the graph structure that GRAPHPLAN uses in its problem analysis seems to have pro-
vided it the greatest advantage over traditional planners. 

4.2.3 Graphplan for multiple agents 

The Duy Bui and Jamroga provided an extension for GRAPHPLAN for use in multi-
agent environments [3]. In general, they provide for three classifcations of multi-agent 
environments: agents that collaborate, working together towards common goals; agents 
that are adversarial and work against each other, or alternatively work towards opposing 
goals; and fnally, agents that are indifferent towards other agents’ goals. 

A number of assumptions are adopted for this analysis. In particular, agents are 
assumed to have known goals and complete knowledge of their situation. Additionally, 
using the explicit time structure of the Planning Graph, agents are assumed to act in 
distinct turns. Finally, agents in adversarial cases adopt a kind of minimax planning 
goal; that is, they want to act such that they accomplish their goals, but will favor plans 
that protect them from the worst possible consequences. 

The collaborative agent situation is not terribly different from a single agent act-
ing towards a goal, so the GRAPHPLAN algorithm needs no real extension to handle 
collaborative agents. However, the authors add the concept of identifying the agent 
performing a particular action inside of the action instantiation, in order to ensure that 
a single agent does not perform more than one action simultaneously. Adding such a 
defnition also allows the planner to provide an assurance that any particular agent only 
performs a single action at any point in time. 

For the adversarial situation, both a forward-chaining and a backward-chaining al-
gorithm are provided. While both algorithms provide plan searching capabilities for 
any given problem, their difference lies in the running time for a given type of prob-
lem. If the Planning Graph generated is a shallow graph, the forward-chaining algo-
rithm provides superior results, even for particularly wide graphs (i.e., ones with high 
branching factors). Backwards-chaining, on the other hand, is a much better algorithm 
for graphs with a particularly high depth. It is conceivable, then, that in practice a plan-
ning system would frst be well-served to examine the properties of the planning graph 
before searching for a suitable plan within it. In adversarial situations, the algorithms 
can be extended to provide plans accomplishing some partial subset of the desired goal 
state, should the complete goal state prove to be unattainable. 
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4.3 Applicability to games 

Unfortunately, the differences in planning algorithms themselves are unlikely to pro-
duce signifcantly different results for artifcial agents in games. While the algorithms 
themselves have interesting differences, at the end of their execution, a partial-order 
planner produces an applicable plan, which is all the agent (and the player) cares about. 
Indeed, the only specifc instances of using planners in games uses a generic search al-
gorithm, A*, over any other algorithm specifcally oriented towards planning. While 
planning algorithms may work more effciently on the problem space, the additional 
requirement on game planning to not adversely affect the framerate requires that the 
algorithm be fast and easily divided across several frames if necessary. It is possible 
that replacing A* with a planning algorithm could produce results faster, but it is more 
interesting to examine particular features of partial-order planners (such as scheduling) 
and try to apply them to an A* planner already implemented in games. It should further 
be remembered that the push for planning in gaming stems not from the desire to get 
results from any particular algorithm, but rather the ease of development of character 
behaviors and the sharing of those behaviors between different character types. 

5 Parallelizing plans with partial-order planners 

Many of the existing partial-order planners will return a plan in which actions could 
be executed in parallel, as alluded to above. Craig Knoblock provides an overview of 
the situations in which a general partial-order planner can be used to generate parallel-
action plans, and further provides a classifcation of those situations, as well as an 
implementation of a partial-order planner that can generate such parallel plans [14]. 

5.1 When actions can be performed in parallel 

Partial-order planners generally consider actions to be atomic, meaning that an indi-
vidual action is completed uninterrupted without any infuence from external factors. 
This is convenient when defning actions, since actions can specify their preconditions 
and effects without concern for other actions being executed simultaneously. Indeed, 
such defnitions seem to preclude the notion of simultaneous action execution, as there 
is an unanswered question as to what conditions would need to hold for two actions to 
be executed simultaneously. 

In parallel programming for multiple processors or threads, there are three possible 
kinds of conficts: procedural, which is when an instruction must explicitly be ordered 
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before another; operational, when a resource needed may be unavailable; and data, 
when one instruction requires the result of another. Data conficts are analogous to 
actions accomplishing preconditions of other actions, and procedural conficts are al-
ready handled by partial-order planners by their explicit order of (some) actions. Thus, 
the only type of confict not explicitly handled by partial-order planners is a resource 
confict. Several planners generate parallel execution plans by simply ignoring the 
problem, assuming all actions to be independent from each other. However, planners 
can be extended to detect resource conficts and correctly plan for them with the simple 
addition of an explicit representation of resources. 

5.2 Types of parallel plans 

Knoblock identifes four different types of parallel plans that may be generated: plans 
with independent actions, plans with independent actions relative to a goal, plans with 
independent subplans relative to a goal, and plans with fully interacting actions. 

5.2.1 Independent actions 

Independent actions are the simplest type of parallel execution plans. Such plans en-
force that any two actions executed in parallel be completely independent of each other. 
Here, independence is defned as the effect of the actions being executed in parallel be-
ing the same as ". . . the union of the effects of the actions being done in isolation." 
[14] In other words, the effect of the actions in parallel must be the same as the ef-
fects of each action done in in sequence, or that the effects of the actions don’t interact 
with each other. It should be noted that partial-order planners that generate unordered 
actions does not necessarily imply that those actions are independent. 

5.2.2 Independent actions relative to a goal 

Several planners, such as UCPOP, only allow actions to remain unordered when there 
is no threat between those actions. Two actions are said to threaten each other when 
one action could delete a relevant condition with respect to the fnal goal state. Condi-
tions, then, are defned to be relevant when they are either a condition of the goal or a 
precondition of an action that achieves a relevant condition. 

5.2.3 Independent subplans relative to a goal 

Once a planner determines all relevant conditions, it could then examine threats not 
only at an action level, but on the level of subplans, possibly producing several actions 
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in a row that can be executed in parallel. Subplans, then, are independent relative to a 
goal if, for all conditions relevant for that goal, executing the subplans in either order 
has the same effect as executing the subplans simultaneously. 

5.2.4 Interacting actions 

Interacting actions are ones that alter the total outcome based on their simultaneous 
execution. Specifcally, if the effect of executing the actions simultaneously is different 
than the combined effect of executing the actions one at a time, the actions are said to 
be interacting. In order to account for the possibility of interacting actions, a planner 
needs either an explicit or an implicit representation of time, and most partial-order 
planners do not. In the next section, a method of dealing with concurrent interacting 
actions will be presented. 

5.3 Partial-order planning with interacting actions 

Temporal planners are planners that deal with an explicit representation of time when 
forming plans, and while these planners are certainly helpful when dealing with prob-
lems requiring interacting actions, in many situations, they may not be necessary. 
Boutilier and Brafman present a simple extension to STRIPS-style problem represen-
tations that allow for parallel execution plans with interacting actions [2]. Specifcally, 
the algorithm they present is targeted towards an agent that can perform multiple ac-
tions simultaneously, although this is equivalent to a situation with multiple agents that 
can act independent of each other. 

Actions can interact in several different ways; their interactions can be negative, 
such as when one action cancels the effect of another, or they may be positively in-
teracting, such as when an intended effect is only achieved when two actions are per-
formed simultaneously. Therefore, a planner needs to be able to specify which actions 
occur at some particular time. More generally, the planner should be able to specify 
that certain actions must or must not be performed at the same time as another action’s 
execution. One way of doing this is to treat every possible combination of available 
actions at a given time as one action. For example, say we have two agents, A1 and A2, 
both of which can perform actions b, c, d. At any given time, the planner could specify 
A1 doing any of those three actions, as well as A2 doing any of the three actions. If 
we represent these as an ordered pair, our possible actions are (b, b), (b, c), (b, d) and 
so on, for every possible combination of action for each agent. However, this way of 
representing joint actions increases exponentially in size as the number of agents and 
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actions increase, and further enforces all agents to be performing a specifc action at 
any time that one agent is performing some action. 

Boutilier and Brafman therefore propose the addition of a concurrent action list, a 
description of the actions that can and cannot be performed simultaneously with a given 
action. Of course, the action descriptions themselves must also be modifed so that the 
planner can determine the differing effects of the actions when they are performed in 
conjunction with some other action. This is done by introducing a when clause to the 
effect list. The when clause specifes that if an action is performed while some other 
event is true, the effect of this action is modifed to include the antecedent of the when 

clause. This allows the planner to determine how the outcome of specifc actions will 
change depending on other simultaneously performed actions. Actions can have zero, 
one, or many when clauses, with the restriction that if multiple when clauses exist, the 
preconditions of those clauses must be disjoint. 

Additionally, actions have been extended to include variables specifying the agent 
performing the action. This allows the planner to ensure that no agent is performing 
more than one action at a time, as well as that no action is being done by more than one 
agent concurrently. 

With these defnitions, a joint action (several actions performed simultaneously by 
several agents) is defned to be consistent if a) all of the actions’ preconditions and 
when clause preconditions are not contradictory, b) all of the actions’ effects are not 
contradictory, and c) the concurrent action list of each action is satisfed for the rest of 
the actions within the joint action. With this, we can specify valid joint actions, and 
develop a partial-order planner to generate joint actions for multiple agent situations. 

5.4 Applicability to games 

The analysis of interacting actions has several important implications for games. First, 
examining interacting actions has immediate applications for a single agent merging 
plans. In any situation where an agent could create plans to accomplish more than one 
goal simultaneously, the agent must examine the ways in which the goals and actions 
contained within the generated plans interact. Furthermore, agents acting simultane-
ously to other agents could clearly beneft from coordinating their actions to achieve 
maximum results, or alternatively restrict or thwart the results of an opposing player. 
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6 Plan recognition 

A closely related feld to planning is plan recognition, where agents attempt to deter-
mine the plans and goals of other agents through their observations of the world. Mao 
and Gratch present an overview of plan recognition and discuss some approaches to 
the problem [15]. 

6.1 Plan recognition overview 

Plan recognition refers to the problem of determining the plan of other agents through 
the observation of their behaviors in the world. An agent attempting plan recognition 
observes a sequences of actions in some other agent, then attempts to map those actions 
into some sort of plan representative of the goals of the other agent. One of the chief 
problems in plan recognition, then, is disambiguating among possible plans that match 
the observed sequence of actions. 

There are three main categories for types of plan recognition. Cohen et al identify 
keyhole and intended recognition [4], while Geib and Goldman deal with adversarial 

plan recognition [9]. Intended recognition describes the situation in which the actor 
whose plan is to be determined is cognizant of the intended recognition and performs 
actions in order to facilitate the plan determination. Conversely, in adversarial recog-
nition, the agent is aware of the intended recognition but takes actions to deliberately 
hinder recognition. Keyhole recognition is the most common form, where the observed 
agent makes no attempt to infuence the recognition process in any way. 

The actions that the observer is able to see also lends itself to a classifcation: if 
the observer detects every action in the subject agent’s plan, this is known as a fully-

observable action sequence; otherwise, the action sequence is partially-observable. 
Partially-observable systems include situations where some actions are unobserved, 
or cases where actions themselves are unobservable but may have some observable 
effects. 

6.2 Planning and plan recognition 

In some sense, plan recognition is the inverse problem of planning. Partial-order plan-
ners take a goal and generate a plan intended to accomplish that goal, whereas plan 
recognition fnds the intended goal or plan of an agent when presented with a list of 
possible plans. Therefore, a plan recognition system could conceivably use a planning 
system to generate a list or repository of possible plans. 
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6.3 Applicability to games 

Plan recognition could be used by agents working with or against a human player. An 
artifcial agent that recognizes the goal of a player based on the actions the player has 
taken can then take steps to assist or hinder the player in whatever endeavors are being 
pursued. Clearly, an agent cannot take these steps without explicitly knowing what is 
to be accomplished. 

7 Plan merging 

While many partial-order planners specialize in creating a plan for a single goal, this is 
rarely representative of intelligent agents in nature. Typically, rational agents have sev-
eral goals to pursue simultaneously. While it may be the case that an agent may choose 
to concentrate its efforts on a single goal, it would be overly restrictive to enforce that 
our agents may only pursue one goal at a time. 

There are additional considerations when attempting to plan for multiple goals, 
of course. It would not appear rational if an agent were to attempt to pursue two 
conficting goals simultaneously, for example. Furthermore, if two or more goals have 
positive infuence on each other, it would behoove the agent to take advantage of that 
overlap. If our agent were to make a plan to obtain a screwdriver and a hammer, it 
would not appear rational for the agent to go to the hardware store, buy a screwdriver, 
return home, then go back to the hardware store, and fnally buy a hammer. Certainly 
it would appear more intelligent for the agent to go to the hardware store once and 
obtain both items before returning home. We would like our agent to recognize the 
overlapping parts of the plans and take advantage of them, should they exist. 

7.1 Positive goal interactions 

One way of identifying possible positive goal and action interactions involves exam-
ining the subgoals of generated plans. In the system described in [25], agents have 
pre-defned plans used to achieve their goals. Subgoals are defned as the conditions 
necessary for successfully completing a plan. In a sense, subgoals are the preconditions 
of the actions in a given plan. From this, agents can create a goal-plan tree, consisting 
at alternating levels of goals and plans. The top level goals are high-level goals, de-
cided upon by the agent. The next level down, then, would be plans that could be used 
to achieve those goals. Each plan would have sub-goal nodes below them, representing 
the conditions needed for that plan to be completed. In turn, those sub-goals would 
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Figure 2: Interaction Tree example

• Effects - The effects of executing the actions within
the plan (excluding subgoal effects) represented as log-
ical conditions, i.e. what becomes true as a result of
executing the plan’s actions. The effects of a plan that
are not effects of a goal are side-effects, or secondary
expectations [12]3.
e.g. RockExperimentPlan.Effects(RocksAnalysed and
StorageSpaceFull4).

• plan body - The body of the plan which contains
actions and sub-goals. These are combined by either
sequencing them (e.g. “achieve goal G1 and then per-
form action A” written as “G1; A”) or by performing
them in parallel (e.g. “achieve goals G1 and G2” writ-
ten as “G1‖G2”).

Similarly each goal-type consists of:

• Type - A label which indicates the type of the goal.

• In Condition - a logical condition that must be true
during the entire execution of the goal.

• Effects (i.e. Success condition [16]) - logical condition
that the goal is trying to achieve. The goal is satisfied

3Pollack defines expectations as beliefs about future ac-
tivities and circumstances. Primary expectations are those
that are directly intended by the agents actions and sec-
ondary expectations are those that are side effects of in-
tended actions.

4In this example RocksAnalysed is a primary expectation
and StorageSpaceFull is a secondary expectation

when the success condition evaluates to true. This is
used to identify the primary expectations [12]3of a goal.

• Plans - The possible set of plan-types that can satisfy
the goal [16].

In addition, each plan and goal instance have an Instan-
ceName which is a label created at run-time to provide a
handle to the plan/goal. This is basically a path expression
in a goal-plan tree instance. e.g. G1 →
PerformRockExpGoal → RockExperimentP lan,
where G1 is the label of the relevant goal-plan tree instance.

3. A SIMPLE EXAMPLE
Consider a mars rover that is deployed on the Martian

surface to perform soil and rock analysis experiments at
various designated locations. For illustration purposes we
assume that the rover has storage space for results of four
experiments, and regularly uploads stored data to the lan-
der.

Assume that one such location is location A and the two
goals related to it are PerformSoilExperimentAt(A) (lets call
it G1) and PerformRockExperimentAt(A) (G2). Some of the
sub-goals in the plans to achieve G1 may include, moving to
location A, analysing the soil, and transmitting the results.
Plans to achieve G2 may have sub-goals of moving to loca-
tion A, analysing rock samples and transmitting the results.
It can be seen that there are some common elements in the
execution of G1 and G2, that could possibly be merged, al-
lowing plans and/or sub-goals to be executed only once.
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Figure 2: An example goal-plan tree. From [25]. 

EF − Effects

             be definitely merged. With each effect the goals and the plans of the goals that bring about the effect is stored.
DMP − [ (EF, goal{plan, plan}, goal{plan, plan}) , (EF , goal{..}, ..)] is the data structure that contains plans that can 

PMP − [ (EF,  goal d/p {plan, plan}, goal d/p {plan, plan}) ,  ..)] similar to DMP except that the plans here are only 

Common effect of G1 and G2 − an effect that is an effect of G1 and an effect of G2  

WGL − The Waiting Goals List. A list of goals currently suspended due to scheduling. Assists in deadlock prevention.

             potentialy mergable. For each goal of an effect the  flag (d or p) indicates if the effect is definite or potential.

DE  − Definite Effect PE   − Potential Effects

DE  − { (EF, [plan, plan ..]), (EF, [..]) ..} each effect has the set of plans that bring about the effect. Similar for PE . 

SE (G) − Effect−summary of goal G. It is a two tuple  < DE, PE  >

Figure 1: Legend of terms

plan steps and how plan merging reduces the cost of the
overall goal. Their work is interesting in that they evaluate
potential goals in the context of other goals being pursued,
which has some similarity to our approach. For example,
assume an agent pursuing a goal of buying a shirt and con-
sidering a new goal of buying a tie. In this case even if
buying a tie is not as important as some other goal, be-
cause buying a tie and buying a shirt have many aspects in
common such as going to the shopping centre, going to a
clothing shop etc, it may be pursued.

Their work does however, like many others, require com-
plete plans. They also assume that plans do not fail, which
is inappropriate for the kinds of systems we are dealing with.
They also use explicit notions of temporal constraints, and
causal links in their representation of plans. In contrast
our approach performs online scheduling and monitoring of
plans, taking plan failure into consideration and although we
have no notion of explicit time constraints we generate suffi-
cient information to perform reasoning about future positive
interactions.

Pollack in [12] discusses ways in which intentions may be
overloaded and argues that this can improve plan genera-
tion as well as plan recognition. Although [12] does not
provide any detailed mechanisms, they provide a good theo-
retical foundation for overloading intentions. Our work then
provides detailed mechanisms for exploiting positive goal in-
teractions that can be directly implemented in agent devel-
opment platforms such as PRS[9], JAM[8], dMARS [4], and
JACK [1].

2. PLAN AND GOAL REPRESENTATION
The type of agents that we develop have a library of pro-

grammer defined plans which are utilised to satisfy goals at
run-time. Goals are achieved by executing plans. Each goal
has a number of alternative plans that can be used to achieve
it. Each plan has a number (possibly zero) of sub-goals, all
of which must be achieved to successfully execute the plan.
This naturally defines a goal-plan tree where the children of
each goal are the alternative plans that achieve it and the
children of each plan are its sub-goals. The children of a goal
node are alternatives, and thus are “or’d”, whereas the chil-
dren of a plan node are “anded”. Given this goal-plan tree
we denote nodes by a path expression from the root to the
node. For example from figure 2 the node MoveToP lan(A)
is denoted as PerformSoilExperimentGoal(A)→
SoilExperimentP lan →MoveToLocation(A) →
MoveToP lan(A).

A goal-type is a template for a goal (similar to a class in

Object-oriented terms). When an agent decides to pursue
a goal, a goal-instance of the goal-type is created (instanti-
ated). The same applies to a plan-type and plan-instance.
Each goal-type will have a template goal-plan tree at com-
pile time which gets instantiated at run-time with each goal.
Sub-goals share the goal-plan tree of their respective top-
level goal.

The execution cycle of an agent consists of the steps [15]:
1. Instantiate a goal-type creating a goal-instance.
2. Match the goal instance against plans in the plan li-

brary obtaining a set of relevant plan-types.
3. For each relevant plan-type, evaluate its context con-

dition giving a plan instance for each context condition
which evaluates to true.

4. Remove any plan instances which are equivalent to pre-
viously failed plan instances for this goal-instance. The
remaining set of plan instances are the applicable plans.

5. Select an applicable plan and execute it.
If a plan fails, the goal-instance remains active and new
applicable plans are calculated and tried. If there are no
applicable plans left, the goal-instance fails.

The above description characterises what are known as
BDI (belief Desire Intention) systems [13], such as PRS [9],
dMARS [4], and JACK [1].

In the work that we are doing we require the plans and
goals of the agent to contain particular information.2

We require each plan-type to contain the following:

• Type - A label for the type of plan. e.g. MoveToPlan
〈some location〉

• Pre-Condition - A logical condition that must be
true in order for an instance of the plan to begin ex-
ecution. The condition need not hold once the plan
has begun execution. Pre-conditions can be viewed as
context conditions in systems such as JACK.
e.g. TransmitDataPlan.preCondition(DataCollected)

• In-Condition - A logical condition that must be true
for the duration of a plan-instance. The pre-condition
is implicitly extended with the in-condition: a plan
with pre-condition P and in-condition I is treated as
though it really had pre-condition P ∧I . The reason is
that if P is true but I false then the plan will be cho-
sen for execution and immediately fail because the in-
condition is violated! e.g. AnalyseSoilPlan.inCondition
(RoverStationary)

2Not all this information is required for the reasoning de-
scribed in this paper but it is provided here for completeness
and for consistency with our other work.
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Figure 3: Symbols and terms used in Figure 2. From [25]. 

have plans that could accomplish them, and so on. An example goal-plan tree is shown 
in Figure 2. 

An interesting note about the proposed system is the pre-generation of plans. Each 
agent has a set of goals and actions available to it, and so it is possible to develop a 
comprehensive list of all possible plans an agent could execute. One consequence of 
this is that it become easier to match plans to goals at runtime, meaning that the system 
need only look up all applicable plans for a particular goal. If a plan fails, the agent 
can mark that plan as being no longer applicable and move on to another plan. This 
also makes it easy to identify cases where the agent has no other available plans to try. 
A direct consequence of this is that individual goal instances need to keep a list of the 
available plans that can satisfy them. 

Another difference in this system as compared to other partial-order planners is the 
introduction of in-conditions. In addition to plans and goals knowing of their possible 
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pre-conditions and effects, in-conditions are a way of representing a condition that must 
be true throughout the duration of the plan or goal. For plans and actions, it is simple 
enough to treat in-conditions as a pre-condition, since a plan that begins executing 
without satisfying an in-condition will immediately fail. 

For planning, an agent initially decides upon the goals it wishes to pursue. This 
creates a goal-plan tree with all possible plans that can be used to achieve the agent’s 
goals. From there, the planning system can examine the goal-plan tree to determine 
the effects of each plan, and classify them into defnite effects and potential effects. 
Defnite effects are those effects that must always take place for a given goal or plan. 
These effects are either those that are required by a goal or every subgoal, or side effects 
of particular actions that cannot be avoided, no matter what plan is chosen. Defnite 
effects are not necessarily required by every plan, but every defnite effect is required 
by at least one plan in every possible way the agent has of accomplishing its goal. 
Potential effects are those that only occur down at least one plan path, but not all paths. 
Potential effects can occur with many different plans, but do not occur for all plans. 
There are two further important notes about potential and defnite effects: frst, the sets 
are defned to be exclusive, so any effect that is a defnite effect is by defnition not a 
potential effect; second, all effects hold only if the plan’s execution is successful. 

Potential and defnite effects tell us precisely how the goals and actions in our goal-
plan tree interact. Thus, every time a plan is successfully completed or fails to execute 
to completion, the tree must be updated to refect the changes in possible and def-
nite interactions. This same logic holds for sub-plans, as well. With this information, 
though, we can build data structures to inform the planner of plans that could beneft 
from being merged. Defnitely mergeable plans are plans that share some defnite ef-
fect. Possibly mergeable plans are all plans that could possibly be merged based on 
some shared effect. 

Defnitely mergeable plans necessarily share defnite effects, but potentially merge-
able plans could have any effect in common; the effect could be a defnite effect of one 
plan and potential effects of the rest, potential effects of all plans, or some combination 
of defnite and potential effects of the plans in question. Agents have the choice to be 
cautious about potential effects and always execute all plans concerned, or optimistic 
about an overlap in plans and effects by only executing some part of the plans involved. 
Depending on whether the agent is more constrained by time or resources, one of the 
two approaches may be clearly better for the agent. In any case, an agent can examine 
several plans to determine their effects and use their interacting effects to decide on 
how to merge the plans. For any two plans with the same single effect, the agent can 
pick to execute one plan or the other. If one plan achieves a potential effect that the 
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other does not, the agent can again pick to execute either plan, since potential effects 
are not required for the goal. If one plan achieves a defnite effect the other does not, 
the frst plan must be executed for the successful completion of the goal. Finally, if 
the plans have differing defnite effects, the plans cannot be merged and both must be 
executed for the successful completion of the goal. 

In order to accomplish maximum utility out of plan merging, it may be necessary 
for the agent to delay the execution of some plans until other plans are ready to execute. 
This, in particular, is where an agent being cautious or optimistic about potentially 
mergeable plans comes into play. An overly cautious agent may end up not merging 
plans that could have been, resulting in wasted and unnecessary effort. On the other 
hand, an overly optimistic agent could wait to merge a plan that has no chance of being 
merged! This is known as useless wait, and is extremely ineffcient. However, it is 
more unlikely to occur with plans that have only a single effect, and can be either 
eliminated or reduced through goal fltering. Balancing the goal fltering is important 
to get the maximum effciency out of an agent, as strict goal fltering can have the effect 
of making a large number of mergeable plans run individually. Less strict strategies, 
though, have been relatively effective in reducing useless wait, although these less strict 
methods cannot guarantee that useless wait will never occur. 

7.2 Avoiding resource conficts 

The opposite problem from taking advantage of positive goal interactions is avoiding 
conficts between goals or actions. The appearance of rationality in an agent can be 
severely hampered by the agent attempting to pursue goals that confict in any way, so 
agents and planners must take care to identify any potential confict and prevent it from 
becoming an issue. Some conficts are easily identifed, such as when goals have clearly 
conficting world states, or when one action undoes a precondition or effect of another 
action. Thangarajah et al present some issues surrounding conficts of resources [26]. 

Resources, like effects above, can be classifed as being necessary, meaning that 
the resource is required for every possible way of accomplishing a particular goal, or 
possible, for resources that may be used in some plans for a goal but not every possible 
plan. Resources may also be consumable and lost forever once used, or they could 
be reusable and available for use again after a particular action or agent is fnished 
with it. An agent that considers resource conficts in planning to avoid irrationally 
pursuing multiple plans using resources must be able to reason about these different 
types of resources. For example, if an agent has 10 units of energy and two goals, each 
requiring 5 and 8 units of energy respectively, it is certainly irrational for the agent to 
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pursue both goals, as one or the other will certainly fail. On the other hand, an agent 
with two goals requiring a single reusable resource may be able to accomplish both 
goals with some scheduling. 

Again, a system is proposed involving complete foreknowledge of all possible plans 
for all possible goals, allowing an agent to quickly determine every possible path avail-
able to it in order to accomplish its goals. In order to allow agents to reason about 
resources, a list of every possible resource is defned. Then resource requirements 
on actions and plans can be formalized into a list of resource types with the amounts 
needed. For each action defned, a list of all required resources is also defned such 
that every resource type is listed once in the defnition, with an amount of zero for re-
sources not required. Then for entire subgoals, an agent can compute the total amount 
of each resource that is necessarily required or possibly required. Unlike potential and 
necessary effects, any necessarily required resource is by defnition possibly required 
as well. In this way, the set of all necessarily required resources for a plan forms the 
lower bound of resources required, while the set of possibly required resources gives 
an upper bound on resource amounts. 

From these defnitions, agents can again combine necessary and possible resource 
amounts for individual actions or entire subplans to determine resource requirements 
when those actions or subplans are combined. Furthermore, the agents can examine the 
different resource requirements for when the actions or subplans are to be performed 
in sequence or in parallel. With this information, an agent can determine that a given 
plan will certainly fail if its necessary resource requirements are above the available 
resource amounts, or that a given plan can always succeed, no matter what order the 
actions are performed in, if its combined possible resource requirements are less than 
the available amounts. In cases between these two, it is not clear if the agent will 
be able to accomplish all desired sub-goals. There are two sub-cases here for agents 
being able to determine more information about the goals. Goals are said to be schedu-

lable if the planner can guarantee that there will be suffcient resources available to 
accomplish the goals provided that the plans are executed in the proper order. Goals 
are schedule-dependent if the planner can determine that if resources are not properly 
used, then some part of the plan will fail due to lack of resource availability. Goals can 
be schedulable and schedule-dependent simultaneously. 

7.2.1 Applicability to games 

On an individual basis, examining the interactions of actions between several plans 
allows an agent to plan more effectively for several prioritized goals simultaneously. 
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Especially for games where an agent has a wide variety of goals and many ways to 
accomplish them, careful examination of the varying plans could quite easily lead to a 
more intelligent opponent for a player. Within a group, agents examining interacting 
actions would more easily be able to coordinate actions and produce more realistic 
group behavior. 

7.3 Operator merging 

Another approach to plan merging takes the merging operations down to a lower level, 
concerning itself with the merging of operators (actions) rather than entire plans. Foulser 
et al [8] present a series of plan merging algorithms concerning themselves with group-
ing actions together based on their effects and their relations. In general, two or more 
actions can be grouped together if there exist no other actions outside of the group that 
would have to occur in between the execution of actions within the group. An example 
of this would be a chain of three actions, each establishing preconditions of the next 
action in the chain. In this case, the frst and third actions could not be grouped individ-
ually, since the second action must occur between the execution of the frst and third 
actions. However, the three actions may be grouped as a whole. 

Grouped actions can then have their net preconditions and useful effects defned. 
Here, net preconditions is simply the logical set of preconditions of actions within the 
group that is not achieved by actions within the group, and useful effects are those 
effects of the actions in the group that establish preconditions for either other actions 
in the plan, or establish part of the goal directly. 

Grouped actions between plans can fnally be examined for replacement by a single 
action with the same set of useful effects. Ideally, the cost of this replacement action 
should be less than that of all the grouped actions. 

7.3.1 Applicability to games 

As this algorithmic approach does not require a large number of plans, it is more read-
ily applicable to time-sensitive situations that often occur in real-time games. An agent 
could generate a plan for its most important goal, then generate a plan for its second 
most important goal, and examine just the two plans for useful operator merging sit-
uations. Since actions that have different useful effects cannot be merged, an agent 
with contradictory goals will end up with two completely separate plans that must be 
executed independently. 

The algorithms presented have running times dependent on both the length of the 
plans presented and the number of different actions contained within the plan. In fast-

27 

http:real-timegames.An


paced games such as frst-person shooters, plans should be relatively short as agents 
tend to not have much time to perform complicated actions and maneuvers, keeping 
the execution time of these algorithms down to a reasonable amount. 

8 Hierarchical Task Network planning 

Hierarchical Task Network planning was developed shortly after STRIPS-style plan-
ners, although much more analytical work has been done on STRIPS-style partial 
order planners. More recently, though, HTN planning has been garnering more atten-
tion in academic literature and research. Erol et al present an overview and analytical 
semantics for HTN planners in [7] and [6]. 

8.1 Overview of HTN planning 

HTN planners share some similar ideas with partial-order planners. Each represent 
world states with a collection of atomic statements, and actions change the world state 
through associated effects. The most important difference is how HTN planners repre-
sent their desired world state changes. In partial-order planning, the planner examines 
a goal state, then comes up with a series of actions designed to change the world in such 
a way that the desired goal is met. Instead of goals, HTN planners use tasks and task 

networks to bring about specifc changes in the world. Tasks are divided into three main 
categories. Goal tasks are specifc properties in the world that the planner attempts to 
make true by the end of the plan. These can generally be represented as a conjunction 
of literal statements, just as partial-order planning goals are. An example of a goal task 
would be a state representative of "owning a house." Primitive tasks are atomic tasks 
that can be accomplished by an agent with a single action. Any task that corresponds to 
a partial-order planning action can be considered a primitive task. Some examples of 
primitive tasks are tasks such as buying lumber or nailing two boards together. Finally, 
compound tasks, or non-primitive tasks, are higher-level tasks that cannot be repre-
sented atomically. Compound tasks can be thought of as any desired change that can 
be constructed out of goal tasks and/or primitive tasks, or anything that can be accom-
plished in a variety of different ways. "Building a house" is a compound task, since 
constructing a house is made up of many smaller tasks. 

In HTN planning, tasks are strung together in structures known as task networks. 
Task networks are ways of organizing tasks together to form a unit with some as-
sociated effects. These task networks are analogous to actions or even subplans in 
partial-order planners. During the planning stage, compound tasks are replaced with 
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Figure 4: Basic HTN planning algorithm. From [7]. 

task networks based on applicability. Each task network that accomplishes a given 
compound task is denoted as such in a method, indicating that the compound task can 
be replaced in the plan by the given task network. Note that task networks themselves 
are not restricted on the type of tasks they can contain, allowing task networks them-
selves to have multiple compound tasks if necessary. Additionally, task networks can 
be associated with any number of methods, and in turn can be accomplished by any 
number of different task networks themselves. Owning a house, for example, can be 
accomplished by building one, buying one, or winning a contest. 

The basic HTN planning algorithm is shown in Figure 4. Steps 3–5 are the ex-
pansions steps, in which the planner replaces higher-level compound tasks with task 
networks. However, the plan is not guaranteed to be free of conficts at the end of 
step 5. Step 6, then, is an opportunity for the planner to deal with any kind of con-
fict present in the plan. Traditional conficts, such as deleted preconditions, are dealt 
with here, but any kind of confict could be included. Critics are a way of identifying 
potentially crippling interactions in a plan early, in order to limit expensive plan back-
tracking. [24] provides an overview of the various ways critics have been used in HTN 
planning. 

Critics contribute to one of the major benefts of HTN planning, especially when 
being applied to agents that act in real-time. If a plan fails, generally it will mean 
that a particular action or task has failed to be completed successfully. In partial-order 
planners, there is no formal mechanism for planning from a partially complete plan. 
HTN planners, however, have the option of just replacing the failed task network with 
another based on alternative methods [27]. If no other methods remain, the planner can 
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replan in a more traditional way. 
It should be made clear that while the output plan from HTN planners is made 

up of the same kind of atomic actions that partial-order planners produce, there are 
substantial differences in the kinds of problems that HTN planners can solve. While 
both partial-order planners and HTN planners could derive a plan to bring an agent to a 
different city, HTN planners have the ability to create a plan for a round-trip vacation. 
Traditional partial-order planners would have diffculty even expressing this as a goal, 
since the desired end state is the same as the starting state! Indeed, it is provably 
true that HTN planning is more expressive than traditional planning, which does not 
include any kind of decomposition. 

8.2 Applicability to games 

The ability to quickly replan specifc parts of an otherwise valid plan is important 
for agents in a quickly-changing environment. In a game environment, it would save 
valuable computation time for an agent to just discard a part of a plan, rather than have 
to plan again from scratch. Agents with similar or the same task network within their 
plans may be able to use the matching task network to more easily coordinate their 
actions, producing better squad-based behaviors. 

9 Applications of planning in games 

The core of any artifcial agent is a decision-making process. Whether the agent is 
a research robot doing scientifc testing or a computer chess opponent, the only real 
output an agent has are the things that it does as determined by its own internal deci-
sions. Therefore, the only qualitative differences between two artifcial agents are the 
decisions that it makes. 

In many real-time simulations, agents use either fnite state machines or rules-based 
systems to make decisions as to what actions they take. Finite state machines keep track 
of an internal state that determines an agent’s actions. Based on some internal mecha-
nism or an external force or observation, the rules of the state machine determine what 
state an agent changes to, thus changing the behavior and actions of the agent. Rules-
based systems match external stimuli to a series of rules the agent has for determining 
behaviors. The best-matching rule for a given situation determines the action an agent 
will take. 

While fnite state machines and rules-bases systems are widespread, they are not the 
only way of controlling an agent’s decisions. In fact, as worlds and desired behaviors 
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become more complex, so do the complexity of state machines and the number of 
required rules. An agent’s decision-making processes need not be one of these two 
systems, though; so long as we can represent the world state and an agent’s goals and 
actions, we could use a planning system instead. 

Jeff Orkin presents several key elements to a real-time planning system for use in 
games in [18] and [17]. The frst is that a goal planning system composed of small, 
atomic actions without an explicit coupling to the goals they might accomplish allow 
a natural division of work between engineers and designers. Designers can focus on 
what actions an agent is able to perform, and let engineers worry about the details 
of how and when the agents perform actions. While it is certainly possible to design 
rules-based systems of fnite state machines that are data-driven, such systems are still 
heavily technical and require an understanding of the workings of FSM’s and rule-
based systems. This is not an ideal system, as designers are not always able to concern 
themselves with the inner workings of particular algorithms. 

Another advantage of goal-based planning are that complex behaviors occur natu-
rally due to the nature of partial-order planners. An agent that comes across an obstacle 
to completing its plan can simply replan to fnd another solution to its problem. Finite 
state machines or rules based systems could handle the same situation with the same 
results, but they would need to have explicit rules for every conceivable kind of ob-
stacle, whether it be a grenade or simply a blocked door. With goal planning systems, 
these behaviors come out of planning naturally, with no need to write specifc rules. 

The major challenge for implementing a goal planning system for games is imple-
menting a symbolic representation of the world. Agents need to be designed in such a 
way that they have an internal world state, representing their interpretation of the world 
space [19]. These can be represented as facts, each containing a value and how conf-
dent the agent is in their correctness. Goals, then, can be represented as a target world 
state based on some combination of target values. Actions store their effects upon the 
world, and can be stored in a hash table on those values in order to be quickly found by 
the planner. Additionally, actions can specify context preconditions, or preconditions 
that the planner should not try to make true through other actions. For example, if the 
"GetToCover" action requires a valid and available cover position to be near, there is 
nothing an agent can directly do to create a cover node if one does not exist. A context 
precondition can inform the planner that this particular action is not currently available, 
based on the current world state of the agent. 

Rather than use an existing partial-order planning algorithm, it is possible to cre-
ate plans using a traditional search algorithm, A*. A* was chosen for a variety of 
reasons [20]. First, most games already have a highly-optimized, generic A* search 
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implemented, so reusing an existing algorithm saves time and effort in both develop-
ment and testing. A* searches are also easy to divide across several frames, which is 
a necessary requirement for games; AI planning must not adversely affect the game’s 
framerate. 

10 Proposal for research 

Based on the research presented, the most directly applicable area for improvement for 
planners in games seems to be the addition of analysis into interacting actions for both 
individual agents pursuing multiple goals and multiple agents working in a group. I 
would like to produce a planning system based on Jeff Orkin’s A* planner and imple-
ment several improvements, including scheduling and ways for an agent to generate 
plans to pursue multiple goals simultaneously with respect for interacting actions be-
tween merged plans. 

Once this functionality is in place, the planner could be extended to account for 
higher-level goals on a squad level for a multitude of agents working together. This 
sort of higher-level planning would allow greater cohesion between cooperative agents 
working towards a common squad goal. The interactions of this higher-level "squad" 
planner and each agent’s individual planner would be have to be specifed, allowing 
the agent to obey orders but override orders for more pressing individual needs. The 
specifc behaviors resulting from this planner should be quantifed and differentiated 
from the results of a squad of agents acting only with individual planners. 

Besides scheduling, defning compound actions could be a useful addition for the 
designer. Should a designer desire that a specifc chain of actions should occur, such 
behavior should be allowable within the language of the planner. 

The output of this research would be a fully functional A* planner suitable for use 
in real-time gaming applications. The additional features above and beyond those al-
ready used in games would be examined and analyzed to show specifc advantages or 
disadvantages over the simpler planner, with respect to running time, language com-
plexity for specifying goals and actions, perceived intelligence of the behaviors of the 
agent, diffculty of creating complex and realistic behaviors of agents, and workfow 
considerations for both engineers and designers in using such a system. 
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11 Research products 

As proposed, a full planning system suitable for use in games was produced. The 
planning system is functional and was used to control the AI opponents in a graduate-
team fight combat game, Paper Cuts, produced for DigiPen’s GAM550 and GAM551 
classes. 

11.1 Planning system 

The planning system is described in detail in the following sections. Particular compo-
nents of the system are described in their own section for convenience. 

11.1.1 Search algorithm 

After careful consideration of the various algorithms, it was decided that the A* search 
algorithm was best suited for use in the searching part of the planner. Following the 
reasoning of the discussion above, there were several reasons for choosing A* over a 
more particular planning algorithm. First, it should be noted that A* is perfectly suited 
for planning, as planning ultimately comes down to a guided search with heuristics. 
Second, games are unique in having a requirement that any planning done must not 
affect the framerate of the game. Ideally, the plan processing should be split up over 
several frames of the game if the algorithm requires any signifcant amount of time 
to create the plan. A* is easily split up over several frames of running time. Third, 
A* is a well-examined algorithm with many proposed speed improvements and widely 
accepted strategies for writing a generic algorithm that can nonetheless be tuned for 
improvements in specifc cases. 

The A* search algorithm implemented takes into consideration the advice offered 
in a variety of articles, in particular the strategies for making the algorithm generic 
and fast given in [10] and [11]. Without using templated classes suggested in [10], 
the A* algorithm uses hierarchically defned Goal and Storage classes for representing 
whatever states are necessary to search and store. In this way, different Goal classes 
can be defned to specify target states, and different Storage classes can be defned for 
particular needs in storing and retrieving search nodes off of the open and closed lists 
used in the A* algorithm. 

A Node class is defned to handle the specifc needs of keeping track of a node’s 
cost, its parent and children nodes, and whether a search space is already on the open 
or closed list. Storage classes are, at simplest, a organized collection of Nodes. These 
storage classes can be customized for the particular needs of a specifc type of Node. 
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For the purposes of the planning system, a Storage class was implemented to store 
nodes on the Open list in a priority queue structure, such that the cheapest possible node 
was stored for quick retrieval. Other storage classes are suggested in [11], but were not 
implemented for this planner. If the A* algorithm was to be used for pathfnding as 
well as planning, alternative storage classes might be prudent to develop and use, but 
this was not necessary in the course of development for either the planning system or 
Paper Cuts. Likewise to the Node and Storage classes, different Goal classes can be 
defned for particular needs from the A* algorithm. Again, neither the planner nor the 
game needed these additional class defnitions, but having a generic Goal class that can 
determine which child states are valid for the goal and when the goal is reached was a 
useful design for creating a variety of different goal states for agents in the game. 

11.1.2 Goal classes 

Goal classes are defned to have a name, a priority, and list of target world states. In 
this way, Goals themselves can determine whether or not they have been accomplished 
and when it is time for them to run. The mechanism for determining what goal to run 
is described below, as is the defnition of target states. For now, it is enough for the 
description of the design to note that these desired target states allow the Goal to be 
able to determine if the current state of the world is such that the goal is accomplished. 
Additionally, Goals can determine if taking a particular action would bring the world 
state closer or further away from accomplishing the goal. Towards this end, the Goal 
class has functions taking a single action and returning values indicating if this action 
would help accomplish any part of the goal. A Goal can perform similar functions 
on an entire plan, with a function defned to quickly tell if the goal is complete or 
not after the plan is completed, and if not, what properties of the world remain to be 
accomplished after running the plan. 

Outside of functionality for searching, goals have a function to produce a single 
goal from two disparate goal types, and a list of goals that this particular goal is exclu-
sive with. These aspects of goals are discussed in greater detail below in the section on 
goal merging. 

11.1.3 Action classes 

Actions are descriptive of how the world simulation changes in response to agents 
completing the action, but in the context of the planning search, it is more instructive 
to think of them as the nodes over which A* searches. In this sense, Action classes are 
simple classes containing world state preconditions for running and world state effects 
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after the action is complete. As described in [17], Action classes also have context 

preconditions, which are any kind of preconditions that need to be true for the action 
to be successfully completed, but require more intensive computation to determine or 
do not ft neatly into the particular world state defnition. 

Besides the list of preconditions and effects used for search, an Action class can 
defne a precedence list of actions it should run before. This is used to schedule actions 
and is described in more detail below. 

Most importantly, Actions defne logic for an agent to use when performing the 
action. For example, a FireMissile action would defne logic for an agent to obtain 
missile lock-on and perform the fring action. Actions return a value to indicate when 
they are complete or have failed. In this way, an agent knows to move on to the next 
action or report the plan as failed. 

Originally, Actions were implemented following the Singleton design pattern, as 
an individual Action class describes a specifc and unchanging outcome and action. 
However, as improvements to the planning system were made, this was changed so 
that each agent would own an instance of each particular action it could undertake, 
and that copies of these action instantiations could be made as necessary. This became 
necessary as particular versions of plan merging were implemented in the system. 

11.1.4 Plan class 

The Plan class is merely a list of Actions to be performed. This is the ultimate output 
of our planning system, and the structure used by the agent when actually executing 
actions. Plans were very simple, containing only this list of actions and a pointer to 
the current action in the plan being performed. This kept the agent from having to 
know how far along in the plan it was, while still providing a convenient means of 
determining when a plan was complete. 

11.2 World representation 

Actions need to have a way of representing the effects they have on the world and any 
requirements of the world state that must be met before the action can be run. Likewise, 
agents need a way of representing the world state as they detect things in the world, 
learn new facts, and forget old ones. This current state is the starting point for the 
search when agents are determining their plan. 

The main structure through which agents keep track of things in the world is World-
State, which is merely a list of WorldProperties. WorldProperties, in turn, are simple 
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key/value structures representing things about the world that can be changed via some 
action. For example, the keys used in Paper Cuts were 

• kTargetIsDead, 

• kTargetInMissileRange, 

• kTargetInGunRange, 

• kAtLocation, 

• kPatrolling, 

• kHasItem, 

• kReturnedItem, 

• kBelowMinimumAltitude, 

• kProvideCover, 

• kDie 

Each WorldProperty has an associated value, which can be a boolean, integer, or 
foating-point value. Additionally, WorldProperties have space to keep track of an 
object id, used to refer to an important reference object. For example, a WorldProperty 
with the kProvideCover would keep an object id of the game object that this agent 
is supposed to be providing cover for. In this way, agents are able to keep track of the 
current state of the world as dependent upon their actions, and thus be able to provide 
the planning system with their current state and the actions they can use to change that 
state. 

Agents need a different way to detect and keep track of things in the world outside 
of their direct infuence, however. Enemy agents need a way of tracking the player 
and representing that location. The precise methods of agent sensing are outside the 
scope of this system description, but the storage of these facts can infuence the values 
in WorldProperties. Agents store facts that they become aware of in WorkingMemo-
ryFacts, which are modeled after those described in [19]. WorkingMemoryFacts have 
a templated type for whatever value needs to be stored and a foat value indicating the 
confdence in that value. For example, when an agent detects the player on radar, it 
stores the vector of the player’s position in a WorkingMemoryFact with a confdence 
value of 1.0f. As time passes without the agent seeing or otherwise detecting the player, 
this confdence value decays down to 0. 
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11.3 Agent defnition 

Agents are the computer-controlled characters in the world, also known as non-player 
characters or NPC’s. All agents have a memory system, a sensory system, and goals 
and actions as discussed above. Other information may be stored on the agent depend-
ing on the needs of the simulation, such as an agent’s location or inventory, but these 
details are at most used to check particular preconditions or context preconditions of 
actions during planning and are otherwise unimportant to the discussion here. 

In the system created, agents are loaded into the game with a particular "type," 
with the type defning an agent’s goals and actitons. The agents to be loaded and their 
type are defned in a Lua scripting language fle, which is loaded when the game starts 
running. Which goals and actions are given to a particular type of agent is defned 
within C++ code. Once the game is running, though, agents are unaware of their type 
and the processing of all agents is handled in the same way. The behavior of different 
agents then comes from the differences in their allowable goals and actions and the 
relative weighting or importance they give to particular goals at particular times. 

11.4 The Planning Algorithm as used in an Agent 

In the traditional Sense-Think-Act cycle for artifcial agents, our planning algorithm 
only takes care of the Think part of the cycle. Thus, frst an agent must complete a 
sensory update of the world. If this sensory update indicates that the agent should 
replan, or if the agent doesn’t have a plan to begin with, the agent potentially needs to 
come up with a new plan. The frst step in determining if a new plan is needed is to 
reevaluate which goal is most important to the agent at the current time. 

In the system created, all agents own copies of the goals that they can pursue. The 
relevance of the goal is stored as a foating-point number on the goal itself. Events 
in the world, such as noticing an enemy or taking damage, change the importance of 
particular goals as necessary. Once the most important goal is determined, the agent 
attempts to make a plan for that goal. However, it’s possible that the agent is unable 
to create a plan to accomplish that goal, in which case the goal needs to be marked as 
impossible to achieve. This marking persists until the world changes in such a way as 
to make it possible to accomplish that goal, at which point it can be reevaluated during 
a regular update. One fnal caveat exists: if the agent’s most important goal is the same 
as the goal for which its current plan was made, the agent shouldn’t replan for the same 
goal and should instead just continue executing its current plan. Figure 5 shows the 
code used to determine the best goal and create a plan for it. 

This system as described is a fully implemented planning system, suitable for use 
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Figure 5: An agent’s logic to determine the most important goal for planning purposes. 

in agent planning in a game situation. As written, the system handles creating and 
executing plans for whichever goal is most important to an agent, reevaluating for 
failed plans or plans that are no longer relevant to the current situation, and the creation 
of agents with varying actions and goals. The system is similar to that described in [21] 
and others, and is a suitable place to start making improvements upon the algorithm. 

12 Improving the planner 

Several improvements were made to the existing planning system. They vary in tech-
nique and required effort, but all allow greater fexibility for designers or improved 
behaviors in agents. 

12.1 Scheduling 

One of the unique aspects of partial-order planning systems is how (or in many cases, 
if) they create a totally-ordered plan from a complete partially-ordered plan. Since a 
single partial-order plan has many totally-ordered instantiations, the resultant totally-
ordered plan could vary widely between planners. Several partially-ordered plans use 
scheduling to determine the order of actions or groups of actions in the ultimate total-
order plan. Scheduling is usually denoted as a precedence ordering between actions, as 
in "Action A should occur before Action B." While this language immediately brings to 
mind the ordering enforced by a planner for establishing preconditions between actions, 
scheduling here means a less strict way of ensuring action ordering. For example, a 
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scheduling rule could be used to make sure that a "ReloadWeapon" action occurs before 
a "FireWeapon" action. Without scheduling, the only way to make such an ordering 
occur would be to put a precondition on the "FireWeapon" action that is established 
as a result of "ReloadWeapon." However, this could lead to extra processing as the 
"ReloadWeapon" must always be run as part of the plan to attack an opponent. With 
scheduling, the correct ordering will occur whenever the two actions are part of the 
same plan without forcing the "ReloadWeapon" action to be in the plan unnecessarily. 

Scheduling is a rather simple addition to the planning system. Each action spec-
ifes a list of precedence relations, indicating the actions that it should occur before 
or after, as needed. For the purposes of demonstrating the feature, this project only 
implemented precedence for actions occurring before some other action. Once these 
relations are identifed, ordering can be done after a plan is fnished or during the cre-
ation of the plan itself. Since A* produced totally ordered plans to begin with, putting 
actions into the correct order at plan creation could avoid more expensive searches per-
formed after all actions are in the plan. Care must be taken that reordering the actions 
does not undo any orderings required by the plan itself. This can be ignored, though, if 
the precedence relations put into place by an action avoid indicating any actions whose 
preconditions or effects have the same category as preconditions or effects on the orig-
inal action. For example, an action whose effects include a change to the kHasItem 

WorldProperty should avoid stipulating a scheduling precedence relation with any ac-
tion whose preconditions or effects include a kHasItem value. Figure 6 shows the 
algorithm used to insert actions into the correct precedence relation order during plan 
creation. 

12.2 Goal merging 

One of the central ideas put forth in [25] was combining the effects of several plans 
over several goals into lists denoting the particular effects of each possible plan, then 
merging the results. While this idea holds great promise for increasing the effciency 
and believability of behaviors in artifcial agents, one of its major restrictions is its 
need for several goals, or at minimum, several plans for a single goal. Certainly some 
games could beneft from the inclusion of such an algorithm, but for the games cur-
rently using planning algorithms, the requirement of several plans places too high of 
a computational price to make using the algorithm worthwhile. A similar result at a 
lower cost can be obtained through goal merging. 

Goal merging is an algorithm developed to take two compatible goals and produce a 
single plan accomplishing both of them. As discussed in the research summary earlier, 
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Figure 6: Algorithm to place actions into the correct order based on scheduling prece-
dence relations. 

goals can interact in a positive or negative fashion, or they could not interact at all. 
The algorithm merely takes two goals that positively interact or fail to impact each 
other, and returns a goal with mutually compatible target world states, such that a plan 
accomplishing the merged goal will accomplish each of the original goals. 

The savings in the resultant plan depend entirely on the state of the goals that are 
merged. If the goals do not interact, the resultant plan cannot be any shorter than two 
independently generated plans for each separate goal. In the case of positively inter-
acting goals, the resultant plan would be shorter than executing plans for each goal 
separately. This does not seem to have an immediate impact, though, as whatever mu-
tually desired result will be accomplished by the execution of the frst plan, shortening 
the plan for the second goal! However, in practice, actions can have multiple effects, 
and it is not always the case that a result accomplished during the execution of the frst 
plan will still hold by the time the second plan is executed. Further, there is no wasted 
time processing a new plan after the completion of the frst plan. 

Negatively interacting goals can be detected by having mutually incompatible tar-
get states. For the purposes of this system, incompatible target states were defned 
as any target state with the same key type (kHasItem, for example), but a different 
value. Note that this could be overly restrictive in the case of foating-point valued 
target states, but it was an acceptable tradeoff for this system. It was further useful 
to allow a designer to specify certain goals as never being compatible; for example, a 
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Figure 7: Algorithm to merge two goals into a single goal. 

"Retreat" goal might never be allowed to combine with an "Attack" goal. Having an 
early-out check in the algorithm could potentially save a lot of time in processing goals 
that would have ended up being incompatible in any case. 

Figure 7 shows a listing of the algorithm used to merge two goals into a single 
target goal. In the case of incompatibility, a fag is set indicating that the goals failed to 
merge. As noted in the code comments, it would be possible to improve on the speed of 
this algorithm by keeping the goal’s target states and values in keyed hashmaps, rather 
than searching lists for compatible or incompatible items. However, in the tests run for 
the system, most goals had so few target states that this was deemed an unnecessary 
optimization. 

One drawback of this approach is the large amount of time searching on goals that 
are non-interacting. This would be reduced but not eliminated by implementing the 
hashtable optimization above. Another shortcoming of this method is that no plan is 
generated until after goal merging is complete. This means that an agent wishing to 
use goal merging would need to wait until all processing is complete on goal merging 
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before even starting to plan for attainment of the goal. With small goals and plans, this 
may not be an issue, but careful consideration should be taken before deciding to use 
this method. 

12.3 Plan merging 

Plan merging refers to the process of taking several independently generated plans and 
creating a single plan out of them, usually with the intention of reducing the overall 
cost of the plan. Often, a reduced-cost plan has the beneft of also producing more 
rational-looking behavior. To demonstrate the power of plan merging, an example will 
be examined before getting into the details of the algorithm. 

Suppose an agent has the task of collecting items from around the world and return-
ing those items to a home base. If the agent can only carry one item at a time, then it is 
apparent that it has no better choice than to go to an item, collect it, and return to base. 
However, if the agent can carry multiple items, it is also evident that many situations 
exist where the agent could reduce its total distance traveled by collecting several items 
at once. There are several ways we could accomplish this behavior utilizing a planning 
system. Suppose that the goal of collecting items and returning them to base was the 
"ReturnItems" goal. One could write a "GatherItems" action that accomplishes that 
goal. An agent executing the "GatherItems" action would look for the nearest items, 
gather as many as it could, and return them to base. While this is an acceptable so-
lution, it is clear that our "GatherItems" action would be quite complicated. It would 
need to include code to pathfnd and travel between items, pick up items, pathfnd and 
travel back to base, and drop off the items once arrived. The increased functionality 
contained within one action works to defeat the purpose of having a fexible planning 
system. It is much easier to write smaller, reusable, atomic actions, such as GoTo for 
pathfnding, GetItem to gather the item from the world, and ReturnItem to drop off the 
item at base. These multiple actions allow the planner to do the complicated work of 
stringing together the actions into the right order, and further allow reuse of actions 
among many types of NPC’s. Yet none of these actions can communicate to the agent 
that it should try to gather multiple items at a time. Instead, the agent can accomplish 
the desired behavior through plan merging. 

The general idea is to take two plans with some overlapping actions, and combine 
the plans to produce a single plan with a lower cost than independently executing each 
of the original plans. In the given example, the agent could plan to gather each item 
independently, producing two plans that were unrelated but very similar, each with its 
own separate instance of a "GetItem" action. A possible result from a merge of those 
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two plans would combine as many possible actions together, producing a single plan 
with fewer actions. When the agent executes this plan, it collects both items before 
making the return trip to base. 

12.3.1 Implementing a plan merging algorithm 

Academically, the interest in plan merging centers mostly on plan optimization. [8] 
points out two major components to optimizing a plan: fnding actions that can be 
merged, and then computing the optimal way to merge the actions if there exists more 
than one way to put the operators together. It is easiest to deal with these problems 
separately, so that is the approach taken here. 

The frst challenge in fnding mergeable actions is discovering precisely what kinds 
of actions can be merged. Put simply, any number of actions can be merged together 
if there is another action that can replace the merged actions with 1) the same useful 
effects, and 2) the replaced action costs less than the sum of the merged actions it is 
replacing. Effects are defned as "useful" if they directly establish a precondition of 
another action in the plan, or a precondition of the goal itself. For example, suppose 
an agent has a plan to destroy a target and has the FireWeapon and ReloadWeapon 
actions at its disposal. The ReloadWeapon action has several effects: frst, it makes the 
weapon be loaded, and second, it reduces the agent’s ammunition store. The frst effect 
is a useful effect, as it accomplishes a precondition of another action in the plan. The 
second effect isn’t useful, as it has no ultimate bearing on the execution of the plan. 
While the effect may matter to the agent and may need to be considered in the creation 
of the plan, it can safely be ignored for plan merging. 

Searching plans for mergeable actions would be incredibly expensive without knowl-
edge of the actions themselves, so it is most effcient to specifcally look for actions that 
are known to be mergeable. In an implemented system, this means either looking for 
a specifc action that can be merged with itself, or looking for a known combination 
of actions that could be merged. In the earlier resource-gathering example, it is known 
that our agent is likely to have multiple plans, each with an instance of the "Retur-
nItems" action. This is an excellent candidate action to look for, since merging two 
ReturnItems actions together is known to be possible. In this specifc case, the algo-
rithm might even start its search at the end of the plan, since the ReturnItems action is 
likely to be the last action in each of the plans that are being merged. GoTo(Base) can 
similarly be merged with itself, as it obviously accomplishes the same effect. 

The second challenge is creating an optimal plan once a possible merge has been 
discovered. [8] deals with the diffculties of creating an optimal plan, noting that creat-
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ing an optimal plan quickly becomes computationally expensive, and is thus probably 
overkill to pursue in games. For the resource gathering NPC, its behavior is already 
much improved simply by allowing the agent to collect multiple resources at once. 
Rather than spend time worrying about the optimality of the plan, an algorithm could 
just place the rest of the two plans together. If more intelligent-looking behavior is 
desired or required of the system beyond a simple plan merge, an algorithm could 
employ critics, special-purpose checks used to help order any actions remaining after 
the merge. In our resource gathering example, it is known that there are two pairs of 
GoTo(Item) and Get Item actions that need to be placed before the merged ReturnItems 
action, so a critic could be written and employed to make sure the agent goes to the 
closest item frst. Critics are general rules written to enforce a desired behavior in plan 
merges. The specifc design and implementation of critics depend highly on the system 
for which they are needed. 

At its simplest, then, a plan merging algorithm accepts two plans generated through 
the general-purpose A* planning system. An agent sends its two most important goals 
to the planner, for example, and then sends those two independently generated plans to 
the plan merger. For every action in the frst plan, the algorithm checks to see if it can be 
merged with an action in the second. If a merge can be performed, those two actions are 
put together into a single plan, being careful to put preceding actions from both plans 
before the merged action, and likewise putting any actions occurring after the merged 
action afterwards. If more precise control over the order of the non-merged actions 
is needed, critics can be employed to determine the best ordering and rearrange the 
actions as necessary. For a wider range of possible merges, a complete plan merging 
algorithm should examine the net effects of every possible group of actions in each 
plan, looking for situations where a sequence of actions could be replaced by a single 
cheaper action. Such an algorithm produces the most impressive improvements to 
mergeable plans, but is also expensive to run. An example of an algorithm checking 
for merges on a particular known action is shown in Figure 8. 

12.3.2 Beyond single-agent merges 

While merging two plans for a single agent certainly offers opportunities for improved 
behavior, plan merging also offers remarkable benefts in the areas of squad-based 
planning. For instance, an agent utilizing plan merging could merge an individual goal 
(picking up a weapon or health power-up) with a squad-issued goal (providing cover 
fre). Utilizing plan merging in these situations allows an agent to maintain its own 
goals and personality in the face of squad-issued orders and even allows for situations 
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Figure 8: A plan merging algorithm with a known action to merge on. 

where the agent can accomplish many goals at once. 
A plan merging algorithm for such an application has no discernible differences 

from the one described for an agent pursuing two self-generated goals. However, as the 
variety of possible goals and actions increase, a generalized version of the algorithm 
that checks for compatible combinations of useful effects between actions becomes 
more important for the overall success of the merging operation. 

12.3.3 Strategies for improving action searching 

Searching two or more plans for actions with similar effects is expensive, especially 
if the merger considers replacing groups of actions with different net effects. If the 
game that the merging operator is developed for is fast-paced, typical of many FPS’s, 
an agent’s primary and secondary goals could change more quickly than it could even 
devise a plan for its secondary goal. Clearly, plan merging is of no use unless we can 
quickly perform the merge. 

One possible strategy to reduce the time needed to search through actions is to only 
look for mergeable actions when specifc actions are present in the plan, something that 
can be determined in the middle of the plan-making process. For extremely long plans, 
hooks direct to possibly-mergeable actions could be included in the plan structure itself, 
directing the algorithm not only into the correct places immediately, but also informing 
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it if a merge is worth looking for at all. In specifc kinds of agents, it might even be 
worth only looking for a specifc action to merge in each plan. In cases where the 
agent’s primary goal does not contain any mergeable actions, the planning process for 
the secondary goal can be entirely avoided. 

Similarly, we might only attempt a merge when the goals being planned for are 
compatible. Conversely, it makes sense to not even bother to attempt a merge if the 
two intended goals are incompatible. Indeed, even making a plan for a secondary goal 
is wasted time if our goals are incompatible. This determination is probably best made 
by the programmer, much as was described above in the section on goal merging. It 
may be obvious to us that an Attack and a Retreat goal will never produce mergeable 
plans, but a generically written algorithm would search through every action of each 
plan before reporting that no mergeable actions exist. This extra work can be avoided 
with a little extra initial effort on the part of designers and programmers. 

13 Conclusions and future work 

Plan merging is a clear method of improving the perceived intelligence of agents in in-
teractive simulations. Based on the variety of methods available to perform merging, a 
suitable plan merging algorithm balancing a variety of mergeable actions with runtime 
complexity can be chosen for nearly any situation imaginable. Plan merging is a more 
fexible merging alternative to goal merging, although the latter can be performed more 
cheaply in the general case. In either situation, planners can be improved at not much 
cost in order to improve planning results. 

Different plan merging algorithms may be better suited to different situations. The 
algorithms described in [25] and [26] are not well suited to fast-acting agents, but may 
prove useful for agents acting over longer periods of time, such as in strategy games. 
These situations remain to be formally examined. 

Several improvements are readily suggested for the system as described. It would 
be benefcial to determine a more general solution to determine when goals are in-
compatible with each other, especially with similar goal effects on real-valued world 
properties. Further, all of the actions and goals are defned within C++ classes. While 
this was acceptable for the purposes of this research, in a professional game develop-
ment environment there would be a greater emphasis on developing a reusable script 
or tool for both designers and programmers to more readily tweak and create actions. 
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