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ABSTRACT 

Fuzzy systems are used in many real-world applications and are known 

for their ability to produce consistently desireable output while in unconstrained 

environements. Takagi-Sugeno fuzzy controllers are often chosen over Mamdani 

fuzzy inference systems when implementing a real-time solution due to their 

reduced computational complexity, but Mamdani systems are advantageous in their 

interpretability. Recent developments in fuzzy systems include the lower-upper (LU) 

parametric representaion, in which fuzzy numbers are defined using rational splines, 

with the membership grades in the domain as opposed to tradional left-right (LR) 

representations where the universe of discourse is in the domain. 

In this thesis, an LU fuzzy inference system is proposed which can greatly 

reduce the computational complexity while still maintaining the exibility and intuitive 

interpretability that Mamdani fuzzy controllers have over Takagi-Sugeno fuzzy 

controllers. This is accomplished by dening non-parametric LU fuzzy numbers based 

on corresponding LR fuzzy numbers and then integrating along the consistenly-

bounded memberhsip grade domain rather than the variably-bounded universe of 

discourse that LR-based Mamdani fuzzy inference systems require. 
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CHAPTER 1 

Introduction 

Fuzzy controllers have the ability to adapt to potentially unconstrained 

scenarios with multiple variables and unclear boundaries. Many real-world 

applications have taken advantage of fuzzy logic and fuzzy controllers. Fuzzy logic 

has been used in washing machines to more efficiently manage mechanical operations 

such as water usage and spin control based on the dirtiness and variety of fabric that 

is being cleaned [6]. Fuzzy controllers can be used in air conditioners by taking user 

temperature settings, actual room temperature, and the dew point temperature as 

inputs and manipulate the compressors, fans, fins, and operation modes as outputs 

[7, 8, 9]. A fuzzy traffic controller based on the arrival and queue of vehicles can 

even control the time delay on traffic lights [10]. This versatility in solving real-time 

problems makes fuzzy logic and fuzzy controllers obvious candidates for addressing 

the complexities that arise in games. 

Fuzzy logic can be used in games to control agents, assess threats, and classify 

characters. For example, in Quake III Arena Bot [3], fuzzy logic is used to express 

utility. How much something wants to do, have, or use something is often classified 
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under utility theory, which is inherent in fuzzy logic. This classification under utility 

theory has resulted in games such as Kohan 2: Kings of War and Axis & Allies, 

Prototype, Iron Man, Red Dead Redemption, and All Heroes Die utilizing fuzzy 

logic without the deliberate application or knowledge of its definitions [2]. Research 

has been done on utilizing fuzzy logic in agent-based game design [11], for artificial 

intelligence in games [5], and even the real-time game design of Pac-Man [4]. 

The primary goal of this thesis is to define and study a new class of fuzzy 

controllers using the lower-upper (LU) representation of a fuzzy number and to 

compare them to those of the more traditional (LR) representations, giving special 

consideration and evaluation of the benefits that arise in their applications toward 

game development. A secondary goal is to investigate the merits and practicality 

of using fuzzy controllers in a real-time environment. The basics of fuzzy sets and 

fuzzy logic are covered, followed by how they are used in fuzzy controllers. Then, 

more specifically, LU representations are discussed. Finally, the use of LU-fuzzy 

control is proposed and evaluated. Due to the versatility that LU-fuzzy controllers 

offer, different areas of real-time applications will be driven using fuzzy controllers 

in order to examine their potential applications. Potential applications include 

the sampling of an environment that includes multiple agents and then modifying 

parameters which affect the system being driven via a single fuzzy controller. Another 

potential application is explored by driving modular behaviors of individual agents 

and singular systems using multiple fuzzy controllers. By comparing the advantages 

and disadvantages that LU-fuzzy controllers provide in scenarios at these different 
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scales, a more functional assessment is hoped to be made over when and where they 

can best be utilized when developing a game of any given scope. 



CHAPTER 2 

Fuzzy Sets and Logic 

Lotfi A. Zadeh defined a fuzzy set as a class with a continuum of membership 

grades [17]. That simply means that if there is a referential universe of discourse, X 

(for example, how old someone is), then each element in X, x (for example, 42 years 

old), can be mapped to a real number in the closed interval from zero to one (for 

example, the real number 0.4). The final mapping is the membership grade for that 

element; a mapping of zero implies no membership, while a mapping of one implies 

full membership. Without the continuum of membership grades between zero and 

one, a fuzzy set behaves exactly like a classical set (see Fig. 1). 

Let F (X) represent the class of all fuzzy subsets of X. A fuzzy set, A, can be defined 

as a simple mapping: 

A : X → [0, 1]. 

This mapping can be used to define any fuzzy set. For example, the fuzzy relationship 

between hours of sleep and sleep depth throughout a given sleep cycle can be 

represented using such a mapping (see Fig. 2). 
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Figure 1. Classical Set vs. Fuzzy Set 

1. Operations 

Classical sets have logical operators such as union (represented using binary 

operator ∨, as in A ∨ B), intersection (represented using the binary operator ∧, as 

in A ∧ B), inclusion (represented using the binary operator ≤, as in A ≤ B, and 

¯complementation (represented using the unary operator ̄ , as in A. Given that fuzzy 

sets are an extension of classical sets, these basic connectives still exist but have 

been more generalized and extended to better address the continuum of membership 

grades. 

1.1. Triangular Norms and Conorms. Triangular Norms and Conorms 

generalize union and intersection, respectively. T-norms (triangular norms) and 

t-conorms (triangular conorms) fulfill identity, commutativity, associativity, and 
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Figure 2. Sleep Cycle as a Non-Trivial Fuzzy Set 

monotonicity properties. This means that the following would hold true for any 

t-norm T , and any t-conorm S: xT 1 = a, xT y = xT y, xT (yT z) = (xT y)Tz, if x ≤ a 

and y ≤ b then xT y ≤ aT b, xS0 = x, xSy = ySx, xS(ySz) = (xSy)Sz, and if x ≤ a 

and y ≤ b then xSy ≤ aSb (where x, y, a, and b are membership grades). T-norms 

and t-conorms act as point-wise operations on fuzzy sets; that is, for all x ∈ X, 

AT B = A(x) T B(x) (where A, B ∈ F (X), and T is any t-norm or t-conorm). 

Common t-norms include the Gödel (minimum), the Goguen (product), and 

the Lukasiewicz t-norms: min(x, y) (also denoted x ∧ y), x · y, and max(x + y − 1, 0) 

(also denoted x ∧L y), respectively (see Fig. 3, Fig. 4, and Fig. 6). Common 

t-conorms include the maximum, bounded sum, and probabilistic sum t-conorms: 

max(x, y) (also denoted x ∨ y), min(x + y, 1), and a + b − a · b, respectively (see Fig. 

3, Fig. 5, and Fig. 6). 
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Figure 3. Fuzzy Sets Before Operations 

Figure 4. Minimum T-Norm and Product T-Norm 
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Figure 5. Maximum T-Conorm and Bounded Sum T-Conorm 

Figure 6. Probabilistic Sum T-Conorm and Lukasiewicz T-Norm 
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1.2. Negation. Complementation is generalized for fuzzy sets using a 

negation function, N . Negation requires that N maps any membership of one to zero, 

maps any membership of zero to one, and is non-increasing. Negation is considered 

strict so long as N is continuous and strictly decreases. Negation is considered strong 

if N is involutive. That is, N(0) = 1, N(1) = 0, and x ≤ y ⇒ N(x) ≥ N(y) for 

negation. If x < y ⇒ N(x) > N(y) and N is continous, N is a strict negation. If for a 

strict negation, N(N(x)) = x, then N is a strong negation. The most common strong 

negation is the standard negation, where N(x) = 1 − x; another example of strong 

1−xnegation is the λ-complement, where λ > −1: Nλ(x) = 
1+λx . The N -complement of 

A ∈ F (X) is created point-wise using N(A) = N(A(x)), for all x ∈ X (see Fig. 7). 

1.3. Fuzzy Implications. An extension of classical implications exists in 

fuzzy logic. A function is considered a fuzzy implication, →, when it fulfills the 

following: if x ≤ y then x → z ≥ y → z, if y ≤ z then x → y ≤ x → z, 1 → 0 = 0, 

and 0 → 0 = 1 → 1 = 1. 

For any given t-norm, T , a residual implication can be defined using x →T 

where T = x ∧ y: x →T y = 

⎧⎪⎨ ⎪⎩ 
y = sup(z|xT z ≤ y). Some common residual implications include Gödel implication, 

1 if x ≤ y 
and Lukasiewicz implication, where 

y if x > y 

T = max(x + y − 1, 0): x →T y = min(1 − x + y, 1) (see Fig. 8 and Fig. 9). 
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2. Fuzzy Numbers 

Fuzzy numbers are normal, fuzzy convex, upper semicontinuous, compactly 

supported fuzzy sets (for examples of sets that are not fuzzy numbers, see Fig. 10 and 

Fig. 11). They can be especially useful in the context of fuzzy control. Fuzzy numbers 

in which membership grades are defined by a left function and a right function are 

referred to as LR Fuzzy Numbers. Singleton fuzzy numbers and Closed Interval fuzzy 

numbers are the simplest types, containing only membership degrees of 0 and 1 (see 

Fig. 13). Trapezoidal fuzzy numbers and Triangular fuzzy numbers (triangular fuzzy 

numbers are just trapezoidal fuzzy numbers where the core consists of only a single 

point) are the simplest types of fuzzy numbers that actually consist of a continuum 

of membership grades (see Fig. 12). More complex fuzzy numbers include Gaussian, 

Exponential, and Sinusoidal functions (see Fig. 14 and Fig. 15). It should be noted 

that in order for these fuzzy numbers to be compactly supported, their differentiability 

must sometimes be sacrificed; for this reason, the requirement of compact support is 

sometimes dropped to produce more appealing results. 
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Figure 7. Standard N-Complement and λ-Complement 

Figure 8. Gödel Implication 
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Figure 9. Lukasiewicz Implication 

Figure 10. Not Normal and Not Fuzzy Complex Fuzzy Sets 
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Figure 11. Not Upper Semicontinuous and Not Compactly Supported 

Figure 12. Trapezoidal and Triangular Fuzzy Numbers 
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Figure 13. Singleton and Closed Interval Fuzzy Numbers 

Figure 14. Gaussian and Exponential Fuzzy Numbers 
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Figure 15. Sinusoidal Fuzzy Numbers 

Figure 16. Example SISO Fuzzy Systems 



CHAPTER 3 

Fuzzy Controllers 

In order to solve problems that lie outside of the domain of fuzzy sets, a single-

input, single-output fuzzy system can be employed. A SISO fuzzy system consists of a 

fuzzifier, a fuzzy inference system using a fuzzy rule base with a fuzzy relation, and a 

defuzzifier[1]. Fuzzy controllers may be considered the most well-known applications 

of the theory of Fuzzy Sets and Systems, being used in many practical applications. 

There are several commercial and non-commercial implementations of fuzzy control 

systems of Mamdani-type or Takagi-Sugeno type [16]. SISO fuzzy systems are called 

fuzzy controllers when used in control problems. Essentially, a fuzzy controller allows 

us to take a non-fuzzy problem, convert it into a fuzzy problem, find a fuzzy solution, 

and then turn that into a non-fuzzy solution. 

1. Fuzzifiers 

A fuzzifier takes crisp (non-fuzzy) input and returns a fuzzy output. The 

simplest fuzzifier is an inclusion map: where the crisp input, x0 ∈ X, is mapped to a 

singleton fuzzy set x0 using the characteristic function: 
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1 ifx = x0 
A0(x) = X{x0}(x) = 

0 ifx 6= x0 

The characteristic function does not need to result in a singleton fuzzy 

set, however; the mapping can result in any valid membership grade. Using a 

characteristic function that results in a singleton fuzzy set can greatly reduce the 

computational complexity of the SISO fuzzy system, so it was chosen for the purposes 

of applications covered here. 

2. Fuzzy Inference Systems 

After being mapped to a fuzzy set, a fuzzy inference system can then be used. 

Fuzzy inference systems consist of a antecedents, consequents, and a fuzzy rule base 

using a fuzzy relation to infer between antecedents and consequents. 

2.1. Fuzzy Rules. The fuzzy rule “If x is A then y is B” is defined as a fuzzy 

relation using the following: 

Mamdani Rule: 

rM (x, y) = A(x) ∧ B(y) 

Larsen Rule: 

rL(x, y) = A(x) · B(y) 

T-Norm Rule (where T is a t-norm): 

rT (x, y) = A(x)T B(y) 

⎧ ⎪⎪⎪⎨ ⎪⎪⎪⎩ 
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Figure 17. Fuzzy Controller using Mamdani Rule Base 

Figure 18. Fuzzy Controller using Larsen Rule Base 
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Figure 19. Fuzzy Controller using T-Norm Rule Base 

Figure 20. Fuzzy Controller using Gödel Rule Base 
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Figure 21. Fuzzy Controller using Gödel Residual Rule Base 

Gödel Rule (where → is Gödel implication): 

rG(x, y) = A(x) → B(y) 

Gödel Residual Rule (where →T is a residual implication with a given t-norm): 

rR(x, y) = A(x) →T B(y) 

2.2. Fuzzy Rule Bases. The fuzzy rule base “If x is Ai then y is Bi,i = 

1, . . . , n” can then be defined as a fuzzy relation using the following: 

Mamdani Rule Base: 

n 

RM (x, y) = 
_

Ai(x) ∧ Bi(y) 
i=1 

Larsen Rule Base: 

n 

RL(x, y) = 
_

Ai(x) · Bi(y) 
i=1 
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Max-T-Norm Rule Base (where T is a t-norm): 

n _
RT (x, y) = Ai(x)T Bi(y) 

i=1 

Gödel Rule Base (where → is Gödel implication): 

n̂  
RG(x, y) = Ai(x) → Bi(y) 

i=1 

Gödel Residual Rule Base (where →T is a residual implication with): 

n̂  
RR(x, y) = Ai(x) →T Bi(y) 

i=1 

2.3. Fuzzy Inference Systems. The fuzzy inference system will interpret 

a fuzzy rule base using a fuzzy relation, R(x, y). There are many types of fuzzy 

inference systems: 

Mamdani Inference: 

_
B0(y) = A0 ◦ R(x, y) = A0(x) ∧ R(x, y) 

x�X 

Larsen Inference: 

_
B0(y) = A0 ◦L R(x, y) = A0(x) · R(x, y) 

x�X 

T-Norm-Based Inference (where T is a t-norm), also known as Generalized 

Modus Ponens Inference: 

_
B0(y) = A0 ◦T R(x, y) = A0(x)T R(x, y) 

x�X 

Gödel Inference (where → is Gödel implication): 

^ 
B0(y) = A0 / R(x, y) = A0(x) → R(x, y) 

x�X 
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Gödel Residual Inference (where →T is a residual implication ): 

^ 
B0(y) = A0 /T R(x, y) = A0(x) →T R(x, y) 

x�X 

When the inclusion map fuzzifier is used, all Fuzzy Inference Systems result in 

the same output (see [1]): 

B0(y) = R(x0, y) 

For example, using the Mamdani Rule Base: 

n _
B0(y) = Ai(x0)∧Bi(y) 

i=1 

Figure 22. Defuzzification Methods 
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3. Defuzzifiers 

The defuzzifier takes the fuzzy set, u, obtained from the fuzzy inference system 

as input and returns a crisp value as output. There are many defuzzifiers, some 

examples include: 

Center of Gravity (where W = supp(u)): 

´
x · u(x)dx 

COG(u) = W ´
W u(x)dx 

Center of Area (if u ∈ F (R)): 

ˆ ˆ ∞a 

COA(u) = a where u(x)dx = u(x)dx 
−∞ a 

Expected Value, if u is a continuous fuzzy number: 

ˆ 11 + −EV (u) = ur + ur dr 
2 0 

Mean of Maxima (where U = x ∈ X|u(x) = maxt∈X u(t)): 

´
xdx 

MeOM(u) = x́∈U 

dx 
x∈U 



CHAPTER 4 

LU Representation 

As described in [20]: fuzzy numbers appear as typical antecedents and 

consequents in the fuzzy inference systems that are at the core of a fuzzy control 

system. Fuzzy numbers are normal, fuzzy convex, upper semicontinuous, compactly 

supported fuzzy sets. The Lower-Upper (LU) representation of a fuzzy number 

is based on the well known Negoita-Ralescu and Goetschel-Voxman representation 

theorems (see [1]), stating essentially that the α-cut form of a fuzzy number u is 

equivalent to the description of a fuzzy set via its membership function; α-cuts ([u]α) 

are calculated using: 

[u]α = 

⎧ ⎪⎪⎪⎨ ⎪⎪⎪⎩ 
x|u(x) ≥ α if α > 0 

. 

cl(x)|u(x) > 0 if α = 0 

− 
α , u

+ 
α ]In particular, α-cuts can be used to uniquely represent a fuzzy number [u]α = [u

, given that α → u− 
α and α → u+ 

α are left-continuous for all α ∈ (0, 1], right-continuous 

− 
α , monotonically decreasing for u+ 

α , andwhen α = 0, monotonically increasing for u

− 
α ≤ u+ 

α when α = 1. For this section, u is assumed to be a fuzzy number with α-u

cuts [u]α = [u− 
α , u

+ 
α ] and α −→ u− 

α , α −→ u+ 
α monotonic, continuous and differentiable 
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with respect to α (see Figure 23). 

Figure 23. Example of α-cuts 

1. LU-Parametric Representation 

− +∈For α [0 1], let δu and δu, αα

respect to α (using right-derivatives for α = 0 and left-derivatives for α = 1). The 

LU-parametric representation of fuzzy numbers proposed in [14, 15] is shown to have 

a great application potential in the area of fuzzy arithmetic and fuzzy calculus. Some 

results shown in the above-cited papers are as follows: 

Consider a family of standardized differentiable and increasing shape functions 

p : [0, 1] −→ [0, 1], depending on two parameters β0, β1 ≥ 0 such that 

− +denote the first derivatives of u and u withα α

1. p(0) = 0, p(1) = 1, 
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2. p0(0) = β0, p
0(1) = β1 and 

3. p(t) is increasing on [0, 1] if and only if β0, β1 ≥ 0. 

Consider the following rational splines as examples of valid shape functions 

(see Figure 24): 

t2 + β0t(1 − t) 
p(t; β0, β1) = 

1 + (β0 + β1 − 2)t(1 − t) 

or 

t3 + β0t(1 − t)2 + β0t
2(1 − t) 

p(t; β0, β1) = . 
1 + (β0 + β1 − 3)t(1 − t) 

− +These rational splines can be adopted to represent the functions uα and uα as 

Figure 24. Rational Splines with Parameters of 0 

piecewise differentiable, on a decomposition of the interval [0, 1] into N subintervals 

0 = α0 < α1 < ... < αi−1 < αi < ... < αN = 1. At the extremal points of each 

subinterval Ii = [αi−1, αi], the values and the first derivatives (slopes) of the two 
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functions are given 

−− + + −− u = u0,i, u = u0,i, u = u1,i, u (αi−1) (αi−1) (αi) 
+ = u + (4.1)(αi) 1,i 

u 0− 
(αi−1) 

−d= 0,i, u = d+0,i, u 0− − 0+ = d+ 
1,i (4.2)= d1,i, u (αi) (αi) 

α−αi−1and by the transformation tα = , α ∈ Ii, each subinterval Ii is mapped into 
αi−αi−1 

[0, 1] to determine each piece independently. Using this, the fuzzy number and its 

shape can be controlled. Let p ± 
i (t) denote the model functions on Ii; for example, 

+ αi−αi−1(t) = p(t; β+ , β+ ) is obtained with β− = d− 
i 0,i 1,i j,i − − j,i −u 

− (t) = p(t; β− 
0,i, β

− 
1,i), p andpi u1,i 0,i 

β+ = − αi−αi−1 d+ 
+ + for j = 0, 1 so that, for α ∈ [αi−1, αi] and i = 1, 2, ..., N :j,i j,i u −u1,i 0,i 

� � 
u − 
α = u − 

0,i + (u − 
1,i − u − 

0,i)p − 
i tα; β− 

0 , β
− 
1 (4.3) � � 

+ + + + + u = u + (u − u )p tα; β+ , β+ . (4.4)α 0 1,i 0,i i 0,i 1,i 

A fuzzy number with differentiable lower and upper functions is obtained by taking 

−− − + + + 

− 

the values and the slopes appropriately, i.e. =: u =: uu = u i , u = u1,i 0,i+11,i 0,i+1 i 

− −d= 0,i+1 =: δu = d+0,i+1 =: δu+ 
iand, for the slopes, d . This requires 4(N + 1) 1,i i , d

+ 
1,i 

parameters, with N ≥ 1, 

− 
i , δu

− 
i , u +, δu+ 

i iu = (αi; u )i=0,1,...,N with (4.5) 

− u0 ≤ u − 
1 ≤ ... ≤ u − 

N 
+ + +≤ u ≤ u ≤ ... ≤ u (4.6)0N−1N 

δu− 
i ≥ 0, δu+ 

i ≤ 0, i = 0, 1, ..., N (4.7) 

and the branches are computed according to (4.3)-(4.4). 

The parameters δu− 
i , δu

+ 
i are used to control the shape of the fuzzy numbers 

under consideration. These can be defined by the user, allowing, together with the 
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+−values ui , u i , for a flexible specification of the shapes of the fuzzy numbers being 

considered as antecedents or consequents for a given fuzzy system. 

An important particular case is obtained for N = 1 and it can be used for 

illustration (see Fig. 25). The fuzzy number can be described by 8 parameters as �− 
0

− 
0

− 
1 , δu

− 
1

+
0

+
0

+
1 , δu

+
1, δu , δu withu = u , u , u , u , 

� � − u = uα 
− 
0

− 
1

− 
0

− − 
1 

+
1 

, β� � 
, β

− 
0− u+ (u )p α; β (4.8) 

(4.9)+ u = uα 
+
0

+
1

+
0

+ +
0− u+ (u )p α; β

− 
0 δu− 

0
− 
1 

− 
1

1 1 1 1+
0 

+
0 , β

+
1 δu+

1 .= − = −and β , β δu , β δu= = − 
1

− 
0 

− 
1

− 
0

+
1

+
0 

+
1

+
0−u −u −u −uu u u u 

− 
0 , δu

− 
0

− 
1

− 
1

+
0

+
0

+
1 , δu

+
1The parameters u , δu , δu determine the shape of the , u , u , u 

− 
0

− 
1

+
0

+
1fuzzy number u. The values u determine the endpoints of the 0 and , u , u , u 

1 level sets, while δu− 
0 , δu

− 
1

+
0 , δu

+
1, δu determine the shape of the constructed fuzzy 

− 
0 = = 0, δu− 

1 = 0, δu+
1 = 0 gives us a fuzzy set 0, δu+

0numbers. For example δu

that has horizontal tangent at the endpoints of the 0 and 1 level sets, while e.g., 

δu− 
0 = δu− 

1 = −1 
−u 

1 
− 
0 

and δu+
0 = δu+

1 = 
u 

will give triangular numbers. − 
1

+
0

+
1−uu 

In this setting, a very general, consistent fuzzy arithmetic was developed in 

e[14]. Using FN to denote the set of all the LU-fuzzy numbers of the form (4.5) 

over the same uniform decomposition with N subintervals. Structuring eFN can be 

accomplished using addition, +, and a scalar multiplication, ·. Let u, v ∈ eFN be two 

LU-fuzzy numbers 

− +− + u = (αi; u , δui , u i , δui )i=0,1,...,Ni 

v = (αi; v − 
i , δv

+− 
i , v i , δv

+ 
i )i=0,1,...,N . 
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Then, there is 

u + v = (αi; u − 
i 

− 
i 

− 
i + δv− 

i ; u + + v +, δu+ + δv+ 
i i i i, δu )+ v 

− 
i 

− 
i , ku

+ 
i , kδu

+ 
i )i=0,1,...,N if k ≥ 0k · u = (αi; ku , kδu

k · u = (αi; ku
+ 
i , kδu

+ 
i , ku

− 
i , kδu

− 
i )i=0,1,...,N if k < 0, 

where i = 0, 1, ..., N . Addition u + v in LU-parametric form is exact at the points 

αi, i = 0, ..., N of the decomposition, up to the first derivative of the shape functions. 

It is an approximation in any other point α ∈ [0, 1] (see [14, 15]). 

2. Non-Parametric LU Representation 

While the parametric representation allows for any shape to be approximated, 

cases where N > 1 can be computationally expensive and potentially give undesirable 

results concerning smoothness (compared to gaussian and exponential LR fuzzy 

numbers). For this reason, it may be more adventageous to use a generalized LU 

representation in which the lower and upper functions are not strictly defined using 

rational splines, but instead use the inverse functions of those defined for LR fuzzy 

numbers (see Fig. 26, Fig. 27, Fig. 28, and Fig. 29). 

In the same way that exponential and gaussian LR fuzzy numbers can give 

smooth results, the same rational splines used for LU parametric representation can 

potentially be used to create LR fuzzy numbers where N = 1 (see Fig. 30). If the 

inverses of these rational splines are used, identically smooth results could then be 

achieved with non-parametric LU representation (see Fig. 31). 



30 

Figure 25. LU Parametric Fuzzy Numbers where N = 1 

Figure 26. Trapezoidal and Triangular LU Fuzzy Numbers 
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Figure 27. Inverse Gaussian and Logarithmic LU Fuzzy Numbers 

Figure 28. Inverse Sinusoidal LU Fuzzy Numbers 
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Figure 29. Singleton and Closed Interval LU Fuzzy Numbers 

Figure 30. LR Fuzzy Numbers Using Rational Splines 
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Figure 31. LU Fuzzy Numbers Using Inverse Rational Splines 



CHAPTER 5 

LU-Fuzzy Control 

Mamdani and Larsen Fuzzy Controllers have been used to manipulate complex 

data and produce solutions in realtime but are known to be more computationally 

expensive than Takagi-Sugeno Fuzzy Controllers. The bounded domain of LU 

Fuzzy Numbers allows for potentially computationally less-expensive operations, 

as numerical integration can be performed over a set number of iterations that 

can be pre-defined. An LU-Fuzzy Controller can maintain the more intuitive 

and interpretable nature of Mamdani Controllers while potentially being less 

computationally expensive. 

1. Definition of LU-Fuzzy Controller 

As described previously, a Single Input Single Output Fuzzy System consists of 

a fuzzifier, fuzzy rule base, fuzzy inference system and defuzzifier. Most systems use 

the most basic fuzzifier: inclusion. Fuzzy systems of Mamdani type are built based 

on the minimum t-norm (denoted as ∧) and the maximum t-conorm (denoted as ∨). 
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If x ∈ X is a crisp input of the SISO fuzzy system with fuzzy rule base 

if x is Ai then y is Bi, i = 1, ..., n 

then the fuzzy output of the system is given by 

n 

B0(y) =
_

Ai(x) ∧ Bi(y). 
i=1 

Supposing that both the antecedents, Ai, and consequents, Bi, are fuzzy numbers, 

given in the LU representation, then having given functions (Ai)
− 
α , (Ai)

+ and (Bi)
− 

α α , 

(Bi)
+ 
α , α ∈ [0, 1]. If B0 is fuzzy convex, then the following can be calculated: 

n 
!± 

B0(y)± 
α =

_
Ai(x) ∧ Bi(y) . 

i=1 α 

Then, for simplicity, if there are at any value x only two fuzzy rules that are active 

at a time, i.e., x ∈ (Aj )0 ∩ (Ak)0, it can be concluded that ⎧⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎩
⎧⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎩ 

Bj (y)− 
α if α ≤ Aj (x)− 

α 

B0(y)− 
α = Bk(y)− if Aj (x)− < α ≤ Ak(x)− 

α α α 

0 if Ak(x)− 
α < α 

Bk(y)+ 
α if α ≤ Ak(x)+ 

α 

B0(y)+ 
α = Bj (y)+ if Ak(x)+ < α ≤ Aj (x)+ . 

α α α 

0 if Aj (x)+ 
α < α 

The output of this fuzzy system is the same as that of a traditional Mamdani 

fuzzy system, just with a new representation. This means that all the output and 

the properties for Mamdani fuzzy systems are kept intact by changing into LU 

representation. 
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In cases where more than two rules are active at a time, a slightly more 

computationally expensive solution can be obtained using the following: 

=B0(y)− 
α 

⎧⎪⎨ ⎪⎩ 
Bj (y)− if ∃i|Ai(x)− ≤ α, Ai(x)+ ≥ αα α α 

, 
0 if @i|Ai(x)− ≤ α, Ai(x)+ ≥ αα α 

where Aj (x)− 
α = MAX(Ai(x)− 

α )∀i|Ai(x)− ≤ α, Ai(x)+ ≥ α, α α ⎧⎪⎨ ⎪⎩ 
Bj (y)+ if ∃i|Ai(x)+ ≥ α, Ai(x)− ≤ αα α α 

=B0(y)+ 
α , 

0 if @i|Ai(x)+ ≥ α, Ai(x)− ≤ αα α 

= MIN(Ai(x)+ 
α )∀i|Ai(x)+ ≥ α, Ai(x)− 

α αwhere Aj (x)+ 
α ≤ α. 

Examples of lower antecedents, Ai(x)− 
α , and upper antecedents, Ai(x)+ 

α , are 

shown in Fig. 32; lower consequents, Bi(x)− 
α α , are , and upper consequents, Bi(x)+ 

shown in Fig. 33. Examples of final LU antecedents and LU consequents are shown 

in Fig. 34, and Fig. 35 shows an example output using the LU Mamdani controller 

(with output identical to the LR Mamdani controller output shown in Fig. 17). 

This still produces a single LU Fuzzy Number and, as a result, departs from 

traditional Mamdani fuzzy systems that would not normally produce a set that is 

fuzzy convex. 

Defuzzification is the final step in a fuzzy system. Based on the fuzzy output 

of a fuzzy controller, a crisp quantity must be produced for the output value of the 

controller. As described previously, there are several defuzzification methods. Based 

on a given application, a convenient defuzzification method can be selected. 

A popular choice for defuzzification is Center of Gravity (COG). The 

traditional center of gravity of u ∈ F(X), weighted by the membership grade is 
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Figure 32. Lower Antecedents, Ai(x)− 
α , and Upper Antecedents, Ai(x)+ 

α 

Figure 33. Lower Consequents, Bi(x)− 
α , and Upper Consequents, Bi(x)+ 

α 
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Figure 34. Example LU Antecedents and LU Consequents 

Figure 35. Example LU Fuzzy Controller; Outputs Identical to Fig. 17 
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calculated using ´
x · u(x)dx 

COG(u) = X ́ , (5.1) 
X u(x)dx 

where X is the universe of discourse for a given problem. This integral can be 

restricted to the support of the fuzzy set, u, but given that the endpoints of the 

support can be anywhere on the universe of discource, this can be computationally 

expensive. 

The Center of Gravity defuzzification can be calculated very efficiently using 

the LU representation. This can be easily obtained using: 

´ 11 + −[(u )2 − (u )2]dr
2 0 r rCOG(u) = . (5.2)´ 1

(u+ − 
0 r − u )drr 

First, observe that the denominator calculates the area of u. The numerator is 

obtained from ˆ 1 + −u + u+ − r r(ur − ur ) dr, 
20 

which gives the above expression. 

The Expected Value defuzzification: 

ˆ 1 + −u + u
EV (u) = r r dr, 

20 

could also be used in the proposed fuzzy system and it would be computationally less 

expensive, but it is not necessarily better than COG. 

2. Comparison between LU and LR timing 

The comparison of the COG expressions in the two approaches allows for the 

computational advantage of the LU approach in Mamdani systems to be immediately 
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observed. The primary advantage in using the LU model is the ability to numerically 

integrate over the inverval [0, 1] rather than the entire universe of discourse. Even 

further, numerically, it is possible to simply integrate over [0, max(Aj , Ak)], taking 

even fewer cycles to calculate. 

A complexity estimation for the COG defuzzification discussed above can be 

shown. Let X = [a, b] be the universe of discourse in a fuzzy control application. The 

COG calculated by (5.1) relies on the calculation of two integrals on the [a, b] interval. 

Suppose that the same quadrature rule is used for the calculation of the integrals, 

e.g., trapezoid rule. It is well known that the error in the trapezoid rule (supposing 

that the integrand is twice differentiable, see [12]) is given by 

M1 (b − a)3 

Error1 ≤ 
2 ,

12 n1 

where M1 = supx∈[a,b]|u00(x)|, u is the membership function of the fuzzy set being 

considered, and n1 represents the number of subintervals used for the quadrature 

rule. Consider the COG calulated by 5.2, then calculate two integrals on the [0, 1] 

interval. The error for both can then be estimated 

M2
Error2 ≤ 

2 ,12n2 

with 

+ − + −M2 = max(supr∈[0,1]|((u )2 − (u )2)0|, supr∈[0,1]|(u − u )0|)r r r r 

and n2
2 the number of subintervals. Suppose that the values of the constants M1,M2 

are comparable while b − a = 10 (the universe of discourse is e.g. X = [0, 10]). In 
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this case, to have the same error estimate, the following can be stated: 

M1 · 1000 n1
2 

= . 
M2 n2

2 

This shows that the time complexity of the two algorithms has the quotient 

·1000approximately M1

M2 
. 

While the time complexity of LU controller may be drastically less than 

the LR controller, Takagi-Sugeno controllers are still more efficient than both. 

However, Takagi-Sugeno controllers are considered to be less intuitive than Mamdani 

controllers, and so there is an immediate advantage in interpretability when using LU 

and LR controllers. 

For direct computational timings, a function approximation application was 

run thousands of times using both LU and LR SISO Mamdani fuzzy controllers with 

COG defuzzifiers (with each producing near-identical output). 

LR LU 

Slowest Time 1.446305s 0.018977s 

Fastest Time 1.354017s 0.008881s 

Average Time 1.362096s 0.013563s 

From this data, it can be observed that the LU fuzzy controller is at least 71 

times faster than the LR fuzzy controller. The slowest LU iterations are over 76 times 

faster than the slowest LR iterations. The average times for LR take over 100 times 

longer than the average LU times. The fastest times are over 152 times faster for 

LU than LR. Finally, in a best-case scenario, the LU fuzzy controller can be over 162 
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times faster than the LR fuzzy controller. The fact that the LU fuzzy controller can 

be two orders of magnitude less expensive makes it far more applicaple to real-time 

applications. 



CHAPTER 6 

Applications 

1. Function Approximation 

The study of approximation capability of fuzzy systems was first proposed by 

B. Kosko. Most literature either uses the Takagi-Sugeno approach or uses the sum 

as the aggregation method for the fuzzy rules. In [19] it was shown that the function 

providing the output of the Larsen type fuzzy system is capable of approximating 

any continuous function and that it is continuously differentiable under very relaxed 

conditions (when antecedents have continuous differentiability except at their core, 

and consequents have continuous differentiability except at the core and the support 

endpoints): 

Theorem 1 Any continuous function f : [a, b] → [α, β] can be approximated by the 

Larsen fuzzy system 

´ β W 
[ n Ai(x) · Bi(y)] · y · dy

α i=1F (f, x) = ´ β W 
[ n Ai(x) · Bi(y)] · dy

α i=1 

with any membership functions for the antecedents and consequents Ai, Bi, i = 1, ..., n 

such that there exist ε > 0, r ∈ N, r < n, such that 
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(i) Ai continuous, Ai(xi) = 1 

(Ai)ε ⊆ [xi−r, xi+r], i = 1, ..., n; 

(ii) Bi integrable, Bi(yi) = 1, 

(Bi)ε ⊆ [min{yi−r, ..., yi+r}, max{yi−r, ..., yi+r}], 

yi = f(xi), i = 1, ..., n. 

Moreover the following error estimate holds true 

kF (f, x) − f(x)k ≤ 2rω (f, δ) + ε2(β − α)2M 

with 

δ = max {xi − xi−1}
i=1,...,n

and !−1 ˆ β n _
M = [ Ai(x) · Bi(y)] · dy . 

α i=1 

It is also observable that Mamdani, Lukasiewicz, and Gödel SISO fuzzy systems 

using identical antecedents and consequents can be used in function approximation. 

1.1. Smoothness. In investigating approximation, smoothness properties 

of Larsen type single input single output (SISO) fuzzy systems begin to become 

appararent. The case of a fuzzy system of Larsen type creating output which is 

continuously differentiable may not be immediately obvious because of the usage 

of the maximum operator, which is known to destroy differentiability. Smoothness 
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Figure 36. Gaussian Antecedents (Ai) Used to Approximate x2 

Figure 37. Gaussian Consequents (Bi) Used to Approximate x2 
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Figure 38. Mamdani Controller Using Gaussian Input to Approximate x2 

Figure 39. Larsen Controller Using Gaussian Input to Approximate x2 
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Figure 40. T-Norm Controller Using Gaussian Input to Approximate x2 

Figure 41. Gödel Controller Using Gaussian Input to Approximate x2 
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Figure 42. Gödel Risidual Controller Used to Approximate x2 

Figure 43. Center Of Gravity Output Using Fig. 38 to Approximate x2 
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Figure 44. Center Of Area Output Using Fig. 38 to Approximate x2 

Figure 45. Expected Value Output Using Fig. 38 to Approximate x2 
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Figure 46. Mean of Maxima Output Using Fig. 38 to Approximate x2 

Figure 47. Center Of Gravity Output Using Fig. 39 to Approximate x2 
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Figure 48. Center Of Area Output Using Fig. 39 to Approximate x2 

Figure 49. Expected Value Output Using Fig. 39 to Approximate x2 
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Figure 50. Mean of Maxima Output Using Fig. 39 to Approximate x2 

Figure 51. Center Of Gravity Output Using Fig. 41 to Approximate x2 
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Figure 52. Center Of Gravity OutputUsing Fig. 42 to Approximate x2 

has been investigated in cases where additive fuzzy systems were used with 

Gaussian membership functions. Sggregation using fuzzy implications have also 

been considered, but smoothness properties were not investigated. The fact that 

a fuzzy system provides a smooth output is very intuitive and has been mentioned 

in other works. In fact, this is widely known as being one of the main advantages of 

fuzzy controllers of Mamdani types and Larsen types. Fuzzy logic systems using the 

maximum as aggregation for the individual rule outputs, product (Goguen) t-norm as 

the conjunctive operator and center of gravity defuzzification were investigated and 

shown to be, under very relaxed conditions, continuously differentiable[19]: 

Theorem 2 Let f : [a, b] → R be a monotone function and let yi = f(xi), i = 
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1, ..., n.. Consider the Larsen type SISO fuzzy system 

´ β W 
[ n Ai(x) · Bi(y)] · y · dy

α i=1F (f, x) = ´ β W 
α [ i

n 
=1 Ai(x) · Bi(y)] · dy 

with any membership functions for the antecedents and consequents Ai, Bi, i = 1, ..., n 

satisfying 

(i) Ai monotone increasing and differentiable on (−∞, xi) and monotone 

decreasing and differentiable on (xi, ∞), with the closure of its support being 

(Ai)0 = [xi−1, xi+1], i = 1, ..., n; 

(ii) Bi strictly increasing and differentiable on [min{yi−1, yi, yi+1}, yi) and 

strictly decreasing and differentiable on (yi, max{yi−1, yiyi+1}], 

(Bi)0 = [min{yi−1, yi, yi+1}, max{yi−1, yi, yi+1}], i = 1, ..., n; 

Then the Larsen type system given above is continuous and continuously 

differentiable function (class C1) on [a, b]. 

Visually, similar smoothness properties can be observed in Mamdani and 

Lukasiewicz type SISO fuzzy systems when using COA and COG as well. 

1.2. Approximation Using LU Representation. Again considering a 

given continuous function f : [a, b] → R. The function is approximated using LU 

fuzzy controllers, using different LU fuzzy numbers used to describe antecedents and 

consequents. The LU representation is then compared with the widely accepted 

membership function representation (LR representation). 
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Let x0 ≤ x1 ≤ ... ≤ xn be a partition of [a, b] such that f(x0) = y0, f(x1) = 

y1, ... f(xn) = yn. The conclusions are ordered triplets (y0 ≤ ... ≤ yn). 

If the antecedents and consequents are LU parametric fuzzy numbers: 

Ak = (αki; u − , δu− + , δu+ )i=0,1,...,N ,ki, u ki ki ki

Bk = (αki; v − , δv− + , δv+ 
ki ki, v ki ki)i=0,1,...,N , 

k = 0, ..., n that satisfy the conditions 

− − + + u = xk−1, u = u = xk, u k0 kN kN k0 = xk+1, 

− − + + v = yk−1, v = v = yk, v k0 kN kN k0 = yk+1, 

assuming x−1 and xn+1 are auxiliary knots with equidistant data. The remaining 

parameter values can be used to increase the adaptivity of the system and potentially 

produce more accurate approximations. In the simple case of N = 1 described in 

(4.8) and (4.9), there are: 

− − + + u = xk−1, u = u = xk, u k0 k1 k1 k0 = xk+1 

− − + + v = yk−1, v = v = yk, v k0 k1 k1 k0 = yk+1. 

with no restriction on the values δu− , δu− , δu+ , δu+ 
k0 k1 k1 k0. 

If non-parametric LU fuzzy numbers are used, smoother results can potentially 

be achieved but the accuracy that the parameters allow for may be sacrificed. 

To start, an LU fuzzy controller that approximates f(x) = x2, using 5 rules, 

with triangular antecedents and consequents is demonstrated as a baseline (triangular 

fuzzy numbers can be achieved using either parametric or non-parametric LU fuzzy 
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numbers). The result of approximation with f(x) = x2 and triangular fuzzy numbers 

are shown in Figure 53. 

Next, considering a non-monotonic function such as 

sin(30x)
f(x) = x + ,

10 

Its approximation obtained using an LU fuzzy controller with triangular antecendent 

is shown in Figure 54. 

Consider parametric LU fuzzy numbers using cubic-quadratic rational splines 

for the antecedents and consequents. For f(x) = x2, these are shown in Figure 55. 

The result is shown in Figure 56. 
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If non-parametric LU fuzzy numbers are used for the antecedents and 

consequents, smoother results can be achieved. For f(x) = x2 , these are shown 

in Figure 57. The produced approximation is shown in Figure 58. 

Finally, in Figure 59 and Figure 60 the same non-monotonic function from 

Figure 54 is approximated. The LU parametric fuzzy numbers were optimized to 

produce a more accurate approximation; the non-parametric LU fuzzy numbers are 

capable of producing a smooth result. 

2. Games 

In determining the applicability of the previously defined LU fuzzy controller, 

an implementation consisting of sampling of an environment that includes multiple 

agents and then modifying parameters which affect the system being driven via a 

single fuzzy controller was created. The implemented LU SISO fuzzy system takes 

the position of whichever non-fuzzy controlled agent is in the lead as input and 

determines how much the fuzzy controlled agent should accelerate as output. If the 

player-controlled agents gain a larger lead, the fuzzy-controlled agent will rapidly 

catch up and will likely win. In this way, a group of players is motivated to play 

strategically and ensures a closer race (see Fig.61). An LR implementation was taken 

and timings were recorded across thousands of iterations: 
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LR LU 

Slowest Time 9869046ns 64050ns 

Fastest Time 4237978ns 9032ns 

Average Time 4873806ns 27728ns 

While the LR times are still beneath the 16ms required to maintain 60hz, the 

much-faster LU times allow for other computations to be performed and more agents 

to be active simultaneously. 

The LU SISO fuzzy controller was also expanded to allow multiple inputs in 

order to drive modular behaviors of individual agents and singular systems using 

multiple fuzzy controllers. Each LU fuzzy controller manipulated the movement rules 

for a single fish, with one controller dictating acceleration towards a goals while 

another determined tangental acceleration used to avoid other fish swimming around 

them (see Fig. 62). 

The rules for turning were simply: 

If GoalIsFarBehind and GoalIsLeft, then TurnLeftVeryFast. 

If ClosestFishIsRight and ClosestFishIsInFront, then TurnLeftFast. 

If GoalIsLeft, then TurnLeft. 

If GoalIsRight, then TurnRight. 

If ClosestFishIsLeft and ClosestFishIsInFront, then TurnRightFast. 

If GoalIsFarBehind and GoalIsRight, then TurnRightVeryFast. 

The rules for speeding up were also straightforward: 

If GoalIsInFront and ClosestFishIsBehind, then SpeedUp. 
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Is MovingForwardFast and ClosestFishIsCenter and ClosestFishIsInFront, then 

SlowDown. 

Timings were taken between LR and LU implementations: 

LR LU 

Slowest Time 4210470ns 92790ns 

Fastest Time 2142392ns 2463ns 

Average Time 2661820ns 26630ns 

The nature of the LR controller consistently taking longer than 2ms makes it 

prohibitive for real-time use; the LU controller’s speed allows for it to be used with 

many more agents in a single 60hz frame. 
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Figure 53. Approximation of x2 (Triangular LU) 

sin(30x)Figure 54. Approximation of f(x) = x + 
10 (Triangular LU) 
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Figure 55. Input For Approximating x2 (LU Parametric) 

sin(30x)Figure 56. Approximation of f(x) = x + 
10 (LU Parametric) 
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Figure 57. Input For Approximating x2 (Non-Parametric LU) 

Figure 58. Approximation of x2 (Non-Parametric LU) 
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sin(30x)Figure 59. Approximation of x + 
10 (LU Parametric) 

sin(30x)Figure 60. Approximation of x + 
10 (Non-Parametric LU) 
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Figure 61. Flowers Race to Grow 

Figure 62. Fish Swim Towards Goals and Avoid One Another 



 

CHAPTER 7 

Conclusions and Future Work 

LU fuzzy controllers allow for intuitive manipulation of data in complex 

environments without the steep computational penalties that traditional LR fuzzy 

controllers entail, allowing for real-time applications to be explored with far less 

impedence. 

Further research could be done to create a hybrid LR-LU fuzzy controller, 

where LR antecedents are used with LU consequents, which could allow for similarly 

low computation costs while also enabling output closer to that of Larsen and 

Lukasiewicz fuzzy systems. 
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