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ABSTRACT 

Online multiplayer games have the need to group players together to facilitate 

competitive play and/or to minimize latency to improve the network experience. 

Grouping players automatically is referred to as “Matchmaking”, and this thesis outlines 

how such as system can be developed for an online multiplayer game.  A history of 

matchmaking, high level architecture, and detailed explanations for how all the 

components fit together are presented.  The thesis closes with an analysis of the outcomes 

of different matchmaking skill algorithms, and outlines different avenues for future work 

for advancing the matchmaking space. 
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CHAPTER 1: NTRODUCTION 

The 1990’s will forever be remembered as the decade when the world started 

connecting to the internet.  In the early years of the decade the internet was still a hot 

commodity, with a penetration of 0.3% of the population (ITU, 2016).  Even though 

internet access was rare, the games industry saw the incredible opportunity to connect 

players in different physical locations to share an entertainment experience.  Doom (id 

Software, 1993), a popular first-person shooter released in the early part of the decade, 

enabled network gameplay by allowing different players to connect via an intranet.  The 

process was tedious, the player needed to have a good understanding of their intranet 

setup, capabilities of the network, and port usage (id Software, 1995).  Doom players 

were eager to grow the multiplayer experience from the intranet to the internet, and 

developed programs to send game data across the internet, enabling effective internet 

play (Coleman, 1995) 

It was clear that sharing gaming experiences with other players through the 

internet was becoming a critical component to the future of gaming.  id Software released 

another first person shooter in 1996 called Quake (id Software, 1996), which simplified 

internet online gameplay by using the concept of Server Browsers.  The idea behind 

Server Browsers was to allow players to find game sessions to join via a global directory 

of available games.  Players could register their session to a Server Browser to allow 

other players to find them.  This paradigm became the de facto standard for the 90s, and 

several online games offered online gameplay via Server Browsers. 

In early 2004, Bungie studios released a first-person shooter called Halo 2 

(Bungie, 2004).  Halo 2 evolved online gaming by introducing the concepts of 
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Matchmaking and skill-ranking to this genre.  The idea behind Matchmaking was to 

automate the process of finding sessions to play with, providing a steady flow of games 

with different opponents with minimal manual intervention.  Bungie worked closely with 

Microsoft defining the feature set needed for Matchmaking, and the final system was 

exposed by Xbox Live for other titles to use.  Matchmaking then became the new 

standard for online gaming for player vs player matches. 

Bungie released other titles in the Halo franchise using Xbox Live’s 

Matchmaking services.  In 2014 Bungie released Destiny (Bungie, 2014), a multi-

platform first person shooter which expanded Matchmaking from player vs player 

matches, to include Matchmaking in different areas for player vs enemy activities.  

Destiny was released using Demonware’s Matchmaking middleware services, a cross 

platform suite of services used for many Activision titles (Demonware, 2016). 

In 2015, after the release of the major expansion to Destiny called Destiny: The 

Taken King (Bungie, 2015), Bungie started pursuing building its own cross-platform 

Matchmaking services.  This project thesis is the documentation of the design and 

implementation of Destiny’s Matchmaking system, with emphasis on explaining the 

different challenges of such undertaking. 
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CHAPTER 2: MATCHMAKING ARCHITECTURE 

Developing a Matchmaking system requires a top to bottom analysis to fully 

understand the responsibilities of each individual component.  We need to establish our 

goals for the system first, and then decompose the system into different components that 

give us the flexibility to achieve those goals. 

A Matchmaking system at the high level has the following goals: 

1. Create automatic groupings of players for match/game participation. 

2. Allow clients to share their properties and desires so optimal groupings can be 

formed. 

3. Maintain enough global data about matches being formed and client properties to 

facilitate automatic group formation. 

To achieve our goals, we are going to define different components and assign 

responsibilities to them (See Figure 1): 

Client: This is the application or game that will participate in the Matchmaking 

process.  The client is responsible for capturing the relevant properties of the match 

and the player and communicating those to a global system.  The client is also 
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responsible for maintaining a local state machine to understand its progress in the 

Matchmaking process. 

Service Processor: This is the component responsible for processing requests 

from the client.  The requests include storing properties for all the clients participating 

in Matchmaking, evaluating matches, and returning pools of candidates for clients to 

consider joining. 

Data Store: This is a component used by the server to store the state of the 

Matchmaking system.  This ensures flexibility for using diverse types of storage 

technologies when applicable. Separating this component also has an impact on 

scalability and fault tolerance, allowing the Data Store to live on a different Server, or 

on the Cloud, or in local storage if necessary. 

Communication Protocol: This is a shared component between the client and 

the server, and it represents the contract for communication of properties and state 

changes of the Matchmaking system. 

Note that most of the Matchmaking logic and the relevant state is performed by 

the client in this architecture. 
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CHAPTER 3: MATCHMAKING CLIENT ROLE 

Now that we understand the Matchmaking system at the high level we will 

examine the different components and their behavior.  We will start with the client and its 

relationship to the Service Processor. The Service Processor doesn’t run a lot of logic, 

and the main responsibility it has is to evaluate matches on the clients’ behalf and to keep 

a view of all the clients in the ecosystem.  The client has two roles: searching and 

advertising. Searching refers to the idea of looking for matches that meet the client’s 

criteria.  Advertising refers to the idea of letting the system know that a match is 

available and that the client is waiting for other clients to join their match. The client has 

an internal state machine that dictates when it is time to search for matches, when to 

advertise the existing match, when to evaluate matches, and when to join another client.  

The following diagrams portray the logic that runs on the client in more detail: 

The client’s state machine goes through the following states: 

Evaluate Properties: In this state the client decides to search for matches or advertise 

its current match.  This state is subtle, but it is critical for the Matchmaking ecosystem.  If 

all the clients were to choose to search at the same time nobody would be able to find 
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matches.  If all the clients were to choose to advertise then there would be no clients 

searching for matches and no groupings would be formed.  To tackle this challenge the 

system uses a probabilistic table to decide if the client needs to search or advertise.  As 

clients go through the Matchmaking system the matches grow in size and they use a 

probability on a lookup table to determine which branch of the Matchmaking system they 

need to take.  Here is one of the initial tables used in Destiny: 

Based on this table the system biases towards advertisement as matches become 

larger in size.  This table assumes 6 vs 6 games, and it was hand tuned for the game in 

question, but a good rule of thumb for the advertisement probability of symmetric games 

with less than a couple of dozen players is to use (party size) / (max game size / 2) 

Search Matches: In this state the client looks at the properties for all the players in the 

session and asks the Service Processor for matches that meet specified criteria.  The 

properties in question are game specific, and can contain data such as party size, game 

type desired, skill for each player, average skill for the party, latency desired, etc. The 

Service Processor takes criteria and looks for matches in the Data Store that would be a 
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good fit for the client. A sample API level description of a request the client sends to the 

Server Processor for searching: 

Note that all the information for the session lives in the SessionCompositionData 

structure.  The ServiceConfigurationHash is used to define which rule set to use and will 

be explained further in the Service Processor section, and the last field called 

“MatchmakingSearchConfigOverrides” is used for debugging and it allows the 

developers to change the behavior of the Service Processor for rapid iteration. 

The SessionCompositionData structure is the one that expresses the properties of 

the client.  In more detail: 

Note that the data on this structure is game specific.  On this example there is 

connectivity information (NAT type), game size information (PartySize, BigPartyCount, 
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LocalityInfo), and other miscellaneous fields.  It is shown here for illustrative purposes as 

the contents of the structure will be different for different type of games. 

Evaluate Matches: This is the most complex state of the state machine and it is 

responsible for getting a list of matches from the Service Processor and determining 

which are the best candidates to join.  This state is split into subparts: 

1. Sort list of results received from the Service Processor 

2. Perform a quick connectivity test against each candidate in order 

3. Sort the list again based on quick connectivity results 

4. Perform a more involved connectivity test 

5. Sort list again based on involved connectivity test results 

To better explain the sorting process, it is important to understand the way 

matching criteria are expressed.  For the Matchmaking system explained here there are 

two types of criteria: hard filter, and soft filter.  Hard filters refer to properties that need 

to be exact during the matching process.  Hard filters can be expressed as a binary 

expression or a range.  Good examples here are game types (i.e. GameMode = “2vs2”) or 

exact ranges (i.e. Skill between “100 and 300”) 

Soft filters refer to criteria that can have a weight applied to it.  There are many 

criteria that could be evaluated via soft filters, and a good example is the skill rating.  Via 

hard filters we can express a required range, and via soft filters we can give matches with 

skill close to ours a higher score. 

When dealing with multiple soft filters we simply add the weights: 
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Where a is the score for the property and w is the weight for the individual property.  It is 

possible to have multiple soft filters, however adding more increases the complexity of 

the evaluation and it makes it difficult to understand the impact at the intuitive level.  

Below is a detailed example for the evaluation of two soft filters.  The first is skill and the 

second is latency with weights 40% and 60%, respectively.  The soft filter is evaluated 

against the client properties.  The evaluation process computes the soft filter score for 

each candidate, and this is what dominates the sorting process. 

After computing a score for each entry, it is possible to sort candidates in terms of 

desirability.  Before moving on to the next stage of the evaluation process it is worth 

pointing that an important challenge with soft filters:  balance.  When using soft filters in 

production it is critical for engineering and design to be aligned on what the individual 

weights mean and the tradeoffs that are implied by changing the weights.  We built a 

spreadsheet to help visualize the impact of the changes.  The following tables show a 

general ideal of how to portray the tradeoffs made during soft filter balancing: 
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Latency Evaluation 

Now that we understand the sorting process and the challenges of soft filters we 

will focus on latency evaluation.  Skill algorithms carry a lot of complexity and are 

addressed in Chapter 5. 

When evaluating latency, the algorithm presented uses a 3-phase process: 

• Phase 1: Use the client’s IP address and map it to a physical location via 

Cartesian coordinates; this is referred to as “Locality” since it tries to capture 

the geographical location of the candidate, leveraging the fact that 

geographical closeness between two IP addresses tend to have a high 

correlation with lower latency.  When the list of candidates is initially 

received there is no latency information and “Locality” is used for the initial 

sort. 

To find the geographical location for a client we use a commercial database 

called “ip2location” that provides longitude/latitude information for millions 
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of IP addresses.  Below is an example of the type of results provided by the 

conversion: 

To simplify the evaluation of geographic distance we convert 

latitude/longitude into Cartesian coordinates using a base of 4,000 which is 

the radius of Earth in miles.  The code to do so can be found below: 

The table below shows the conversion and accuracy for two geographical 

points derived from the IP address. One is in Seattle and the other one in Los 

Angeles.  Once the latitude/longitude is converted to Cartesian coordinates the 

distance is computed which results in a close approximation to the actual 

geographical distance: 
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Locality evaluation of candidates via Cartesian coordinates is not perfect but it 

is a good starting point for the latency evaluation process.  Note that there are 

some cases in which lower geographical distance is not correlated to lower 

latency, some examples are islands and locations separated by difficult 

geographical features that have made it difficult to build reliable internet 

infrastructure.  In practice the later phases of the latency evaluation cull those 

candidates by measuring on the wire latency. 

• Phase 2: Send a few packets with dummy payloads to the candidate list in 

sorted order to do a quick check on latency results, expecting candidates to 

reflect those packets back to use in a timely manner.  Re-sort the candidates 

using the new latency information.  From this point on Cartesian coordinates 

are ignored.  If packets are not returned, then remove the candidate from the 

list. Note that clients that have connectivity issues due to cross-provider 

infrastructure challenges, router configuration problems, or network 

incompatibilities (i.e. moderate or restricted NATs) end up being removed 
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from the candidate list at this stage.  The table below depicts how the 

searching client performs the latency checks and sorts the candidates. 

• Phase 3:  After a configurable percentage of candidates have returned valid 

latency results from phase 2 we go back through the sorted list and do a more 

involved latency test.  This new test sends packets to the candidates with 

specific game information to allow early rejection if the candidate and the 

game are no longer compatible. The results are re-sorted based on the new 

latency test results or removed from the candidate list if the candidate and 

searcher fail the compatibility test. 

Once the Searcher has gone through all the 3 phases described above it goes 

through the sorted candidate lists and tries to join them in order.  Once a successful join 

occurs the Searcher exits the evaluation process. In the event that joins are not successful 

or that there are no extra clients to evaluate the client expands the search parameters and 

starts the searching process all over again. 
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Expand Properties: This stage is responsible for expanding the search parameters for 

the client looking for candidates.  The actual expansion is configurable, and it allows 

game developers to express how the matchmaking process should consider more 

candidates in the case that previous searches returned few/no acceptable results. This 

stage can be configured to ensure that eventually the matchmaking system converges by 

being more permissive over time. Expressiveness is important for this stage, and the 

following expansion illustrates this point: 

• For the first 10 seconds find sessions with <100ms latency and within 100 

points of my current skill 

• After that for the next 30 seconds find sessions with <200ms latency and 

within 300 points of my current skill 

• Afterwards find sessions with <500ms latency, and don’t worry about skill 

delta 

The goal is to allow different game modes to have different expansion rules.  To 

achieve this goal, we use the idea of a ruleset.  A ruleset is a set of expansion rules 

expressed through an xml file that lives on the server and is downloaded by the client 

during specific times depending on the game design (i.e. between matches), below is an 

example xml file for skill and latency expansions: 
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Having the ruleset files live on the server side allows game developers to change 

rules and deal with production changes without re-deploying the game or needing to 

create an updated version of the game to distribute to players. 

Advertise Match: The client state machine has another branch for clients that want to 

advertise the game and wait for other clients to join them.  This stage is simple, and at the 

core all it is doing is updating the parameters advertised and waiting for clients to join the 

match.  Once the match has all the necessary players the state machine moves forward, 

and matchmaking no longer occurs. Advertisement publishes ranges for allowed criteria, 

and over time that criteria can be relaxed via the same mechanisms explained in the 

“Expand Properties” stage. Note that for a match a single client advertises on behalf of 

the group. 

This section has gone over the logic that runs on the client and the various stages 

executed by the client’s state machine.  The next section will focus on the logic that runs 

on the server side. 
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CHAPTER 4: MATCHMAKING SERVER ROLE 

The responsibilities of the matchmaking server are very different than the 

responsibilities of the client.  In the previous section we presented all the logic the client 

executes for the matchmaking process to be successful.  The clients are stateful and move 

the state machine forward for matchmaking, keeping most of the complexity on the 

client. The server maintains less state about the process and instead is responsible for 

providing a central repository for all clients to interface with and to query and update 

data.  Figure 3 shows the server architecture and the corresponding responsibilities: 

For the server to be able to perform its responsibilities it provides a set of APIs for 

clients to be able to communicate with it.  There are several technologies available to do 

this, ranging from custom protocols to more standardized solutions such as REST APIs 

and websockets.  For the data being transferred via the APIs there are also several options 

such as JSON, XML, and other more compact solutions such as Google’s protocol 

buffers. Given that web technologies keep evolving over time this paper will not focus 
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on any specific technology, and instead will present the choices used for implementation 

and the rationale behind the choices. 

For Destiny the client needed to have a persistent TCP connection to the backend 

for progression and account calls.  Matchmaking leverages the existing connection to 

implement the API calls made to the server.  This reduced the need to create new 

connections to the server and unified the communication protocol for several systems.  

For the data protocol Destiny uses Google’s protocol buffer (protobuff) because it 

provides a compact payload and has libraries for different languages.  In Destiny’s case 

the client is written in C++ and the server in C#, and the availability of protobuffer 

libraries for both languages made it very convenient to adopt Google’s data technology. 

The following code snippets provide an idea of a structure defined in C# that 

would be transferred between client and server via protobuff (The C++ representation is 

similar): 

The protobuff representation can be found below: 
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Note that protobuff descriptions describe the representation of the data on the 

wire, which makes it language agnostic. 

Data Store 

Once an API and data protocol are established we explore the other components 

of the matchmaking server, such as the Data Store. When a client advertises its data, it 

sends the properties to the server, and the server stores and queries it based on client 

calls.  This data is highly structured.  Each advertisement has a finite set of properties 

with well-defined data types.  This means that we have flexibility in choosing a storage 

solution. 

Traditional data technologies such as SQL Server, Oracle, MySQL, are natural 

choices for storing matchmaking data given the structured nature of advertisement data. 

There are some tradeoffs for using SQL based solutions.  Advantages include the fact that 

most of the offerings are mature, reliable, and well understood.  They also have some 
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disadvantages such as being expensive and relatively heavyweight and complex.  Note 

that matchmaking data is transient and doesn’t need some of the reliability features 

offered by structured datastores.  Early versions of Destiny’s matchmaking used SQL to 

store advertisement data and this was effective in production. 

In the last few years new data solutions have emerged under the label of 

“NoSQL”. Many supporting structured and unstructured data.  The core idea behind the 

innovative solutions is to treat data storage as a service and provide different levels of 

guarantee depending on the needs of the application.  Technologies such as Redis and 

Dynamo have grown in popularity in the web space and offer advantages such as reduced 

cost and improved scalability.  These technologies also have drawbacks such as being 

new/unproven and being more complex to code against due to supporting unstructured 

data.  Destiny moved from SQL to NoSQL after the first year of production, simplifying 

the matchmaking datastore complexity considerably. 

For the various stages of the server side we have the following: 

1. Update Advertisement: During this call the server takes the information 

provided and puts it in the Data Store.  If the data is not present, then a new entry 

is created for the client making the call.  This ensures that the system is fault 

tolerant.  If the Data Store goes down it is effectively rebuilt over a short period of 

time. 

2. Search for Candidates: During this call the server searches the Data Store for 

candidates that match the criteria requested by the client.  The server has limits in 

terms of how many results to return, and how many entries to evaluate.  The 
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limits exist as toggles to reduce computation time as searches with multiple 

criteria can be expensive. 

For scalability standard solutions can be explored, such as putting multiple 

matchmaking servers behind a load balancer and splitting the matchmaking data per 

region. 
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CHAPTER 5: MATCHMAKING SKILL 

Now that we have explored both the client and server architecture we will explore 

one of the most critical aspects of a matchmaking system:  skill.  When considering 

building a matchmaking system for competitive play the most impactful aspect to 

consider is how player skill is represented and whether the system is matchmaking 

players as expected. 

Representing skill is one of the most important aspects of any matchmaking 

system.  First person shooters need to balance the need to have good connection quality 

with the need to provide a fair and balanced experience for players.  There are multiple 

ways to represent player skill, and the ideal is to find matches with low latency, as 

defined by the game’s requirements, while having each team have an identical chance of 

winning. 

It is intuitive to use values such as win count, wins over losses, kill death ratio, 

etc.  Unfortunately those values don’t tend to represent player skill well, because they 

don’t take into account the quality of the opponents.  It is very different to defeat a brand 

new player than defeating one of the top veteran players in the game.  More sophisticated 

skill models exist to better represent skill, here are a few: 

- ELO: ELO was developed by Arpad Elo (Arpard Elo, 1960), a Hugarian-

American physics professor, for calculating the relative skill levels of players 

in head to head games such as chess.  This skill system has been widely used 

in videogames, professional sports, and by multiple chess organizations to 

track player skill. 
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- Glicko: Glicko was developed by Mark Glickman (Glickman, 1995) as an 

improvement over ELO.  The main difference between ELO and Glicko is 

that Glicko takes into account the idea of “rating deviation” which tries to 

capture the confidence level of the skill rating.  The rating deviation can also 

take into account skill degradation over time for competition inactivity. 

- Glicko2: Glicko 2 was also developed by Mark Glickman (Glickman, 2013).  

Glico 2 offers improvements over Glicko by introducing the concept of 

“rating volatility” which is used to measure the degree of expected 

fluctuation in a player’s skill rating.  By capturing this idea it is possible to 

represent how stable or dialed in player skill actually is. 

- TrueSkill: This system was developed and patented by Microsoft (Microsoft, 

2007), and is a Bayesian skill rating system which models uncertainty about 

player skills.  TrueSkill was integrated into Xbox Live and it has been used by 

several iterations of games in the Halo franchise (Bungie, 2007). 

Below you will find the details of both ELO and Glicko, comparison of the 

simulations, and actual game results. 

ELO is well documented, and a full breakdown of how it works can be found at 

(Arpard Elo, 1960).  It is based on the idea that each player in each game is a normally 

distributed random variable, and that player performance can be estimated statistically 

based on wins, draws, and losses.  Performance isn’t measured absolutely, and changes in 

rating are dependent on the ratings of the opponent.  ELO is modeled after the following 

variables and equations: 
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And the equation for updating ratings based on actual scores is the following: 

�!� = �� + � �� − �� 
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There are a couple of values in the equations that need some clarification.  The 

first one is the denominator set at 400 in the original equation, and the other one is K 

used for the rating update equation.  The 400 is used to magnify the expected score based 

on the original rating delta, meaning that every 400 rating difference makes the expected 

score 10X bigger.  We will run through some examples to clarify this.  The K factor used 

on the rating update equation, and it represents the maximum possible adjustment at the 

end of a game.  For Chess the recommend value is between 16 and 32, and depending on 

the design goals you can use different values of K to define how fast skill can grow. 

Glicko’s full breakdown can be found at (Glickman, 1995).  The foundation is 

also based on the idea that each player in each game is a normally distributed random 
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variable, but that on top of the skill rating we also capture the idea of a ratings deviation 

(RD) which measures the uncertainty in a rating, and it also incorporates the idea of such 

deviation to be affected by time intervals between competitions.  Glicko can model 

scenarios in which two players have the same skill rating but one hasn’t competed in 

several months causing a mismatch in rating deviations and predicting different 

outcomes.  Glicko is modeled after the following variables and equations: 

�� = ������ ��������� 

� = ������ �� ������ ������� ����� ���� ����������� 

� = �������� �ℎ�� ������� �ℎ� �������� �� ����������� ���� ���� 

� = ������ 

� = ������ �� ��������� �� �ℎ� ����ℎ 

The algorithm to update Glicko skill is the following: 

- If the player is unrated then assign default values (For Chess this is 1500 skill 

rating and 350 RD), or 

- If the player is already rated then update the rating deviation (RD) 

�� = min ( ��!!"# + �!�, 350) 

- Carry out the following calculation for each player: 

!
�

�′ = � + �(��!)(�! − � � �, �! ,��! )1 
!!!��! + �

1
! 
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Expanding further: 

ln10 
� = = 0.0057565400 

1
� �� = 

1 + 
3�! ��! 

�! 

1
� � �, �! , ��! = 

! !"! !!!! 
!""1 + 10!

!!! 

�! = �! � ��! 
!
�(�|�, �! ,��!)(1− � �|�, �! ,��! ) 

!!! 

There are a couple of things that are worth noting about Glicko: 

1. Changes in rating are not balanced, meaning that Glicko is not a zero sum 

equation.  Rating changes are dictated by the RD of all players involved. 

2. A more intuitive way to characterize RD is by reporting a confidence interval.  

The original Glicko paper offers the idea of using the interval (r – 2*RD to r + 

2*RD) and reporting a 95% confidence over that interval.  This allows using 

language such as “There is a 95% confidence that the player rating is between 200 

and 400 skill points” for a player that has a rating of 300 and a RD of 50. 

Now that we have a fundamental understanding of both systems we will talk through 

some examples to see how the system behaves. 
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Example 1 

Two opponents at the same skill level (1500), A beats B 

ELO 

Player Initial Rating Final Rating Delta 

A 1500 1508 +8 

B 1500 1492 -8 

Glicko (Using wide RD of 350) 

Player Initial Rating Initial RD Final Rating Final RD Rating Delta RD Delta 

A 1500 350 1662 290 +162 -60 

B 1500 350 1337 290 -163 -60 

Glicko (Using RD of 200) 

Player Initial Rating Initial RD Final Rating Final RD Rating Delta RD Delta 

A 1500 200 1578 180 +78 -20 

B 1500 200 1421 180 -79 -20 

Glicko (Using narrow RD of 50) 

Player Initial Rating Initial RD Final Rating Final RD Rating Delta RD Delta 

A 1500 50 1506 49.5 6 -0.5 

B 1500 50 1493 49.5 -7 -0.5 
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Glicko (Using different RDs, 350, and 50) 

Player Initial Rating Initial RD Final Rating Final RD Rating Delta RD Delta 

A 1500 350 1675 248 175 -102 

B 1500 50 1495 49.79 -5 -0.21 

As you can see in the ELO case the rating delta is 8, but the Glicko delta varies 

between 6 and 160 depending on the rating deviation. 
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Example 2 

Two opponents at widely different skill levels. A beats B.  A has a skill rating of 

1500 and B has a skill rating of 500. 

ELO 

Player Initial Rating Final Rating Delta 

A 1500 1500.05 +0.05 

B 500 499.95 -0.05 

Glicko (Using wide RD of 350) 

Player Initial Rating Initial RD Final Rating Final RD Rating Delta RD Delta 

A 1500 350 1509.5 343 +9.5 -7 

B 500 350 490.5 343 -9.5 -7 

Glicko (Using RD of 200) 

Player Initial Rating Initial RD Final Rating Final RD Rating Delta RD Delta 

A 1501 200 1501.5 199.3 +1.5 -0.7 

B 500 200 498.5 199.3 -1.5 -0.7 

Glicko (Using narrow RD of 50) 

Player Initial Rating Initial RD Final Rating Final RD Rating Delta RD Delta 

A 1500 50 1500.048 49.99 0.048 -0.01 

B 500 50 499.952 49.99 -0.048 -0.01 
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Glicko (Using different RDs, 350, and 50) 

Player Initial Rating Initial RD Final Rating Final RD Rating Delta RD Delta 

A 1500 350 1502.3 347.68 2.3 -2.32 

B 500 50 499.79 49.98 -0.21 -0.2 

This case is very interesting because we are trying to understand how the systems 

behave when the outcome of the match is expected and there is a big difference between 

player ratings.  For ELO the rating change is very small, but for Glicko that change is 

dictated by the rating deviation.  With a fairly open rating deviation we can expect the 

rating to move by ~10 points, but if it is narrow then Glicko ends up behaving like ELO. 
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Example 3 

Two opponents at widely different skill levels. B beats A.  It is an upset.  A has a 

skill rating of 1500 and B has a skill rating of 500. 

ELO 

Player Initial Rating Final Rating Delta 

A 1500 1484 -16 

B 500 516 +16 

Glicko (Using wide RD of 350) 

Player Initial Rating Initial RD Final Rating Final RD Rating Delta RD Delta 

A 1500 350 1054.5 343.7 -445.5 -6.3 

B 500 350 945.5 343.7 +445.5 -6.3 

Glicko (Using RD of 200) 

Player Initial Rating Initial RD Final Rating Final RD Rating Delta RD Delta 

A 1500 200 1308.5 199.3 -191.5 -0.7 

B 500 200 691.5 199.3 +191.5 -0.7 

Glicko (Using narrow RD of 50) 

Player Initial Rating Initial RD Final Rating Final RD Rating Delta RD Delta 

A 1500 50 1485.8 49.99 -14.2 -0.01 

B 500 50 514.2 49.99 +14.2 -0.01 
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Glicko (Using different RDs, 350, and 50) 

Player Initial Rating Initial RD Final Rating Final RD Rating Delta RD Delta 

A 1500 350 815 347.68 -685 -2.32 

B 500 50 509 49.98 +9 -0.2 

Modeling an upset provides information on how well both ELO and Glicko adjust 

to unexpected changes.  For ELO a significant upset creates a rating delta that is dictated 

by the choice of K.  For Glicko the change in rating varies depending on the rating 

deviation.  In the case of an upset when the RD is open we see wide swings on the rating, 

but once the RD shrinks then Glicko lowers the potential rating changes because there is 

a high level of confidence that the players are already at the right level. 
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ELO vs Glicko Simulation results 

Another way to compare the algorithms is by running simulations and comparing 

the convergence rate and the final distribution.  For this purpose I built a simulator that 

had a current rating and a real absolute rating for each player.  The idea was for the 

simulator to build matches with random players but at the end to report the outcome of 

each match based on the absolute real rating.  The absolute ratings were assigned using a 

normal distribution curve. 

The simulations ran 8000 iterations, with a population of 1000 players.  Each iteration 

would pick up to 12 players at random and create a match with an outcome.  At the end 

of the simulation I analyzed 3 pieces of data: 

1. The rating distribution 

2. The delta between the final rating and the absolute rating 

3. The historical results for some of the players to analyze convergence 

Let’s start with ELO’s final distribution (Figure 4): 
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As you can see ELO does a fair job generating a final skill distribution that 

resembles a normal distribution.  This means that at the end of the simulation players 

ended up roughly close to the expected absolute rating level.  The next question we 

want to answer is finding how close they were.  For that we use the rating delta graph 

(Figure 5): 

At the end of the ELO simulation we found that 80% of the players were within 100 

rating points for their absolute real rating. On a -1000 to 1000 scale what we get is that 

most players are within 5% of their absolute rating at the end of the simulation. 

Another piece of data that is useful to visualize ELO is convergence.  I used a few 

pieces of historical data for random players and I plotted their progress against the ideal 

final graph.  Results can be found below: 
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What this graph tells us is that ELO converges, and eventually gets close to the 

final expected rating, but the rate of convergence is slow.  In most simulations 

convergence could take dozens of games, and different values of K would change the 

convergence rate.  Higher values of K could allow faster convergence but can also result 

in oscillation about the expected outcome.  Remember that K in the ELO equation 

indicates what the maximum point trade allowed is during the calculation.  The graph 

above uses a K value of 16, which is the default used for Chess. 

Now let’s look at the equivalent graphs for Glicko.  Let’s start with the skill 

distribution graph elow: 
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Much like ELO, the final distribution resembles a normal distribution.  So at this 

point we believe we have a good starting point for capturing player skill.  Let’s move on 

to analyzing the final rating delta at the end of the simulation.  The graph below shows 

the results: 
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For Glicko we can find that over 80% of players are within 50 rating points from 

their absolute real rating.  On a -1000 to 1000 scale what this means is that the final 

rating is within 2.5% of the real rating.  That is a considerable improvement over ELO. 

The final piece we want to analyze is convergence for Glicko.  Below is the graph 

showing convergence for a few players: 

Convergence for Glicko is fairly good.  During the simulation most players 

converged within 10 matches.  Compare this to ELO in which players could take dozens 

of matches to get some convergence.  This is a considerable improvement that Glicko has 

over ELO. 
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Another way to visualize convergence is to plot simulated result vs expected 

result.  We moved this into percentiles to normalize the results.  I ran simulations for 

1000 players through multiple simulation loops and the results can be found below for 

10, 24, 100, and 200 matches per player. 

10 matches per player, ELO vs Glicko 

ELO 

GLICKO 
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At the end of the 10 matches ELO still has a pretty wide spread, but we can see 

Glicko having a tighter convergence band. 

24 matches per player, ELO vs Glicko 

ELO 

GLICKO 

Glicko’s convergence is superior at 24 matches. 
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100 matches per player, ELO vs Glicko 

ELO 

GLICKO 

Glicko starts to show high convergence at 100 matches. 
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200 matches per player, ELO vs Glicko 

ELO 

GLICKO 

47 



 
 

 

  

  

 

  

 

  

The results at 200 matches are very interesting.  It shows that using completely 

random match selection for ELO creates several outliers that have not converged.  This 

could be due the random nature of the simulation, and a more targeted match selection 

process would yield better results for ELO.  Glicko holds up well, even under the 

constraints of the simulator.  In reality, when implementing matchmaking for a 

multiplayer game random matches aren’t used.  Instead players are matched with other 

players with similar skill.  That would improve convergence for both ELO and Glicko. 
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CHAPTER 6: FUTURE WORK 

Matchmaking is an area that is critical for games and will continue to evolve as 

games become more connected and more social.  There are many ways to keep advancing 

Matchmaking systems, with the following critical areas that could drive innovations in 

multiplayer gaming: 

1. Server-Side Matchmaking: The system presented in this work keeps most of the 

logic of the Matchmaking system running on the client.  This was an artifact of the 

expertise we built at Bungie while working on the early versions of the system.  A 

simple evolution would be to move all the Matchmaking logic to the server side.  The 

state machine necessary to understand the roles of clients and find the optimal global 

groupings can be moved to the server with tangible benefits such as: maintaining 

statistics about search times for all players and remembering previous groupings to 

avoid repeating them.  Once the data and logic lives on the Server there are many 

extensions that can be explored to improve the Matchmaking system. 

2. Rankings and Skill systems that are satisfaction aware: One of the biggest 

challenges for multiplayer games is understanding when players are satisfied with 

their matches.  Skill systems do a fantastic job trying to capture player ability, but 

players have different expectations during their game sessions. Sometimes they want 

to play highly competitive matches, and other times they just want to have an 

enjoyable time.  This has caused a lot of friction in multiplayer games and players 

complain about the idea of having “sweaty” or high-stakes matches all the time.  

Research into building ranking and skill systems that focus on player satisfaction 

while maintaining a healthy ecosystem could tackle this problem.  Systems can detect 
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when players are frustrated or losing too many matches in a row and adjust the 

criteria for the matches accordingly.  Feedback loops can also be created to have 

players provide scores for their matches and use that information to improve matches 

in the future. 

3. Machine Learning: With the latest advancements in machine learning it is worth 

looking at Matchmaking from a different angle.  Matchmaking systems provide 

substantial amounts of data about player matches, quality, and actual outcomes vs 

desired outcomes.  At the simplest level Machine Learning can be used to identify 

properties that are important for Matchmaking by comparing actual outcomes and 

desired outcomes, and then using that data to extract new properties that need to be 

evaluated in the Matchmaking algorithm, fine tuning the match evaluation criteria.  

More advanced Machine Learning techniques can be leveraged to better understand 

the contextual nature (competitive vs casual) of the experience and define new 

evaluation criteria. 
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