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ABSTRACT 

Game tree abstraction is a hard computational problem due to the exponential 

storage bounds on the size of the tree. Hence, storing a complete game tree is not a 

viable option but for the simplest of two-person games. A more practical approach is 

to store a heuristic-based, trimmed representation of the entire tree that maintains 

as much information from the perfect tree as possible. Information related to the 

navigation of the tree is currently stored as a value for every node in the tree. However, 

this approximation is not guaranteed to be fully accurate in strategically representing 

multiple game states that may be viable and evaluate to the same “score”. An 

alternative is to store a collection of values (waveform) at every state in the game 

tree. 

This thesis investigates the use of waveform clustering as an abstraction 

technique applied to the extensive form of two player, limit, Texas Hold’em Poker. 

The goal of this research activity is to perform an initial evaluation of the validity 

of waveform clustering as a viable technique for problem abstraction. We present a 

detailed analysis of the problem domain, related approaches, our approach and the 

results of our research. 
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CHAPTER 1 

Introduction 

1. Problem Description 

Inside a computer’s representation of a game, the set of game outcomes are 

represented as “nodes” or “game states”, each node stored by the computer has the 

information that describes the game at that moment in time (i.e. what cards have 

been dealt, what actions are possible for a player to take). When a player takes an 

action, or the dealer deals a card, the state of the game changes and the current 

node transitions from the previous state to the now current state. Thus the nodes 

are attached to each other in a “parent to child” relationship, where parent nodes 

transition to child nodes as play progresses. 

Each node in the tree, other than a starting “root” node, has exactly one 

parent and can have any number of children as determined by the rules of the game. 

A node with no children is called a “leaf” node, and represents the end of play. The 

root node represents the beginning of play. The entire structure of these nodes, from 

the root node to all the possible leaf nodes, is referred to as the “game tree” or the 

“Extensive Form” of the game. 
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Games with “hidden” information (i.e. the cards dealt to an opponent) are 

also known as games of “imperfect information”. Each node in the tree for imperfect 

information games is considered as a collection of game states. These collections are 

made up of all the possible ways the hidden information could be distributed at that 

moment (i.e. all the possible cards your opponent could have). These are referred to 

as “Information Sets”. You can consider “perfect information” games with no hidden 

information to still be made of Information Sets, where each Information Set contains 

a single State (i.e. Chess). 

Using the Extensive Form of a game to develop AI playing strategies is one of 

the most popular approaches to solving games. The most significant aspect of games 

like Poker, in terms of algorithmic design, is that the set of every possible way the 

game can turn out is too numerous to store in a computer’s memory. This forces 

computers attempting to play poker to group patterns of game outcomes together to 

bring the number of outcomes in an abstraction of the game down to a manageable 

size. The smallest Extensive Form for Texas Hold’em Poker is the“ Limit” rule variant 

with two player - and even in its smallest possible form, the Extensive Form of Poker 

has complexity O(1018) (very big). 

In Texas Hold’em Poker, most of the complexity comes from possible ways 

of the cards being dealt and many successful algorithms today include a step that 

classifies common game “situations” from dealt cards and builds the Extensive Form 

abstraction on that set of classifications. This paper focuses on that classification. 

Counter Factual Regret Minimization (CFR) is the algorithm that is most 
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commonly used in today’s computer Poker competitions to navigate a game tree. 

CFR is an unsupervised learning algorithm similar to Monte Carlo tree search. Each 

iteration the game tree is navigated from the root to a leaf and an outcome is evaluated 

(i.e. win or loss by how much). Just like in Monte Carlo tree search, there is a back 

propagation step that updates a value at each node in the tree navigated during that 

iteration. 

However, unlike Monte Carlo tree search, the utility values are stored on disk 

rather than kept in working memory. This allows a larger tree to be maintained, 

giving the algorithm more power (tree size correlates to strategic power). Utility 

values from previous iterations then influence the path taken through the tree in 

future iterations, and over many iterations the utility values congeal to represent a 

strategy. 

At run time, the algorithm is very fast compared to algorithms that would 

perform a forward search of the game tree, such as a derivative of Alpha Beta pruning. 

CFR simply looks up the utility values for each child node and makes a decision. For 

Poker this is a great fit as the rules of the game demands fast decisions and the 

maintenance of a large tree is needed to form good strategies. 

2. Goals 

This research seeks to answer the following: 

1. Is clustering game states using a waveform metric of strength aggregated across 

dealing events suited to building an Extensive Form abstraction for Texas 
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Hold’em Poker? 

2. How does “Waveform Clustering” compare to a the most common 

implementation of game state classification used in competition today, all other 

details of agent implementation being identical? 

3. Determine what more would need to be done to potentially use “Waveform 

Clustering” in a competition grade Poker agent. 

3. Problem Justification 

Computers do not naturally make guesses. However, real-world games include 

random events and hidden information that increase the size of the Extensive Form 

representation of the game [24, 21] such that a complete representation to the ideal 

solution cannot be feasibly stored. Hence, the algorithm targeting the game tree 

attempts to solve the game using some smart heuristics. In a fashion similar to 

other games like Chess [17, 25] or Jeopardy [11, 10], the goal of such algorithms is 

to consistently defeat human experts. This has not yet been accomplished for Poker 

[16]. 

At the highest levels of expert human play, there are many difficult elements 

in play that elude computers. The recognition of the Nash Equilibrium for the game, 

rather than being a single solvable answer, is an attempt to hit an ever moving target 

[28]. Furthermore, expert human players will engage in a “meta-game” where they 

will deviate from the current Nash Equilibrium point purposefully (with short term 

loss of utility) in order to encourage or force opponents to misjudge the current Nash 
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Equilibrium point going forward. Computers have trouble adapting in such situations 

as most algorithms are engineered to hone in on the current Nash Equilibrium point 

assuming that all opponents are rationally attempting to do the same. 

To assist in the solution of Poker is to help confront a great frontier of Artificial 

Intelligence in general. 



CHAPTER 2 

Related Work 

1. Solving Games 

Von Neumann and Morgenstern in “The Theory Of Games and Economic 

Behavior” [27], published 1944, established the foundation of game theory for 1, 2, 

and 3 person zero sum games. A zero sum game is one in which the sum of all wins 

and losses in the game across all players is equal to zero (i.e. “If I win you lose”). 

Poker is an example of a zero sum game. 

“The Theory of Games and Economic Behavior” [27] discussed a formal 

framework for describing a game as a set of decision nodes, at which strategies (a 

pattern of decisions across all decision nodes) can be assigned a quantifiable utility. 

It also was a fundamental work regarding the incorporation of random events into 

the formal description of a game, and in the description of formal strategies that 

incorporate random events (i.e. a player making a decision at random, or a card 

being dealt at random). 
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2. Nash Equilibrium Points 

Shortly thereafter in 1950, John Nash presented the theory of “Equilibrium 

Points” in competitive games[26]. The fundamental concept in a “Nash Equilibrium” 

being that each player in the game is using the best strategy they can, given what 

they know about the strategies or all the other players in the game. More simply put, 

when a player reaches “Nash Equilibrium” they are playing the perfect strategy for 

the situation. 

Applying the concept of Nash Equilibrium to machine learning algorithms, it 

has been shown that a complete solution for a game requires that no information is 

lost when the tree representing the game is described. Given such a tree along with 

infinite time and processing power, a strategy at a Nash Equilibrium for the game 

can be determined [1]. However, more often than not, time and processing power are 

not in infinite supply, and the “perfect” tree representation of a game is too large for 

modern computers to have a chance of ever solving. Poker was shown in 1990 to be 

one such game [21]. 

3. Before Counter Factual Regret Minimization 

3.0.1. Early Extensive Form Abstraction (1998 - 2004). Around the turn of 

the 21st century, processing power had increased to the point that the Extensive 

Form complexity of Poker determined 10 years earlier was less intimidating. Analysis 

of methods to abstract complex Extensive Form games was beginning to mature [29]. 

General analysis into the characteristics of Nash Equilibrium points in Poker [30] 
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continued. Exhaustive statistical analysis [2, 3], Bayesian networks [22], statistical 

analysis plus neural networks [5], and other less successful approaches were attempted 

as ways to approximate the Nash Equilibrium of Poker in ways that deviated from 

“perfect solution” techniques that required navigation of the entire Extensive Form of 

the game. Approximating Nash Equilibrium with graph (i.e. tree) representations of 

complex games [20] would eventually lead to the present algorithmic favorite, Counter 

Factual Regret Minimization(CFR). 

3.1. Late Extensive Form Abstraction (2005 - 2007). Later in the first 

decade of the 21st century, techniques for abstracting Extensive Forms of sequential 

games with a formal proof of maintaining the same Nash Equilibrium in the smaller 

Extensive Form abstractions (within a delta corresponding to the magnitude of the 

shrink) were developed that gave confidence to abstraction based techniques in general 

[13]. 

Attempts were then made to use efficiently abstracted Extensive Forms of 

Poker in various ways. Real time Nash Equilibrium approximation was considered 

[14] but was found to have performance issues on Extensive Form abstractions that 

were large enough to produce human competitive strategies. Ultimately incorporation 

of real time equilibrium calculations would depend heavily on off line calculations for 

half or more of the Extensive Form navigation during play. 

Meanwhile, the use of Regret in machine learning extended into the realm 

of Extensive Form strategy formation. In 2006 Regret was applied as a proof of 

concept to several On line Convex Programs, including single card Poker [15]. Also, 
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gradient based solutions in general were also shown to be a solution to memory 

limitations previously encountered at run time by algorithms attempting to find Nash 

Equilibrium in large Extensive Form games [12]. 

4. Counter Factual Regret Minimization 

A revolution in agents navigating abstracted Extensive Forms of games 

occurred with the development of Counter Factual Regret Minimization in 2007. 

This allows for the establishment of utilities at each node in the tree over time while 

an agent is being trained. These utilities then converge on values that if followed 

result in a strategy that bounds the Nash Equilibrium for that abstraction. A formal 

description with proof of Nash Equilibrium convergence for CFR can be found in [32]. 

This algorithm has become the overwhelming favorite starting point for agents 

attempting to play in the benchmark competition for artificially intelligent Poker 

players, the AAAI Computer Poker Competition [31]. 

4.1. Default CFR Implementation. The general CFR algorithm is an 

iterative adaptation of Monte Carlo Tree Search [4]. Starting at the root node of 

the tree at the start of an iteration, the tree is navigated by following a utility value 

that measures the Regret associated with each transition between a parent node and 

its set of children. When a terminal node in the tree is reached, the iteration ends and 

a Regret value is calculated for the iteration as a whole. An average Regret is then 

updated at each node traversed in the iteration. In this way, nodes higher in the tree 

in general accumulate more values into their running average over time than do the 
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terminal nodes of the tree. When applied to Poker, Regret information is maintained 

at nodes representing player actions. After many iterations, each player action node 

in the CFR tree contains a value representing the expected Regret associated with 

taking that action (i.e. transitioning into that node). Nodes in the CFR tree for 

Poker that do not represent player actions can have Regret values assigned to them, 

but in practice that is not useful as players have no control over deal events and 

cannot use the Regret information at those nodes to make any strategic decisions. 

Figure 1. The above shows a simple example of CFR a single iteration. In Poker, this 
would represent the complete play of a single hand. The top image shows navigation 
down through the tree to discover a utility value. In the bottom image this utility 
value is then back propagated and averaged into the nodes that were traversed. Unlike 
Monte Carlo based algorithms, these utility values are stored on disk to be used for 
the next iteration. 
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4.2. Local Maxima Problems. When applying the general CFR 

implementation to Poker, some adaptations are needed to avoid getting trapped in 

local Maximae as the algorithm hill climbs over time to approach a Nash Equilibrium 

point. 

Firstly, during initial training it is important to intelligently break ties between 

transitions that have the same Regret value. When training first starts, for example, 

all Regret values are set to 0. In Poker, the Fold action is immediately a terminal node 

that will evaluate to a non positive Regret value, the magnitude of which depends on 

the amount of betting that took place earlier in the hand. In a previously unexplored 

or briefly explored branch of the tree, if Fold is selected it can result in the entire sub 

tree being labeled with a negative Regret value, never to be explored again. The CFR 

algorithm, therefore, needs to have some built in parameter for how many attempts 

are needed before a Regret value can be trusted and in general should avoid breaking 

ties in Regret values with a Fold action. 

Secondly, as CFR training progresses in large trees, Regret value averages will 

accumulate in the root nodes of the tree, leading them to become very stable as the 

tree converges on the Nash Equilibrium for the game abstraction the tree represents. 

In some problems spaces this is desirable, but not in Poker. At high skill levels, part 

of the strategy in Poker is to move the Nash Equilibrium (through short term utility 

loss) during play. Also, different players will adopt different strategies for various Nash 

Equilibrium points in the course of play, even if they make no attempts to deviously 

shift it. Therefore, a successful CFR implementation when applied to Poker must 
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maintain some level of instability in the Regret values of the high traffic root nodes 

to accommodate Nash Equilibrium shifts. Stable enough to form a coherent strategy, 

but unstable enough to adapt. 

Recently, to address the elements of advanced human play where players 

will strategically take short term hits to their utility to confuse their opponent’s 

understanding of the location of the current Nash Equilibrium for the game, there 

have been investigations into replacing traditional “Perfect Recall” algorithms with 

“Imperfect Recall” algorithms. This can also be described as “strategic forgetting” 

which keeps the utility values at the nodes in the tree used during CFR more 

current and allows for adaptation to attempted exploitation of the Nash Equilibrium’s 

location. [19] 

5. Reducing CFR Training Times 

There is a direct correlation between the size of the Extensive Form abstraction 

used and the strength of the resulting algorithm. However, when applying CFR, 

increased nodes mean increased training time. Training time eventually becomes so 

expensive that it is not practical. 

Conveniently, it has been formally proven [32] that an agent can play a copy 

of itself while establishing these utility values. The amount of time that it takes to 

establish the values for a player depends on the size of the tree, and the technique 

used to record utilities. The more nodes in the tree, the greater the number of hands 

the agent using that tree must play to establish statistically sound utility values at 
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each node in the tree. This can become burdensome when trying to converge upon a 

solution for very large trees. To counteract that specific problem, much attention has 

been given to sampling techniques during the training process to speed up convergence 

in very large game trees [18, 23]. The agents used in testing the hypothesis here do not 

use a large enough game tree to warrant aggressive training optimizations, and can 

converge within several days of training. Competition grade agents can take several 

months or years to train given the size of their tree abstractions relative to modern 

processing power. 

Another large contribution to the reduction of training time was the 

streamlining of the fundamental card analysis algorithm that converts a set of 5, 

6, or 7 cards to a 5 card Poker hand classification. For example, classifying a set 

of cards as “Pair” or “Straight”. A truly impressive contribution in allowing for 

larger node trees to be processed was the development of the “2+2” hand evaluation 

algorithm for determining which 5 card poker hand (i.e Pair, Two-Pair, ect.) is 

represented from a set of 5, 6, or 7 cards [9]. Such an algorithm is foundational 

to any computational analysis of Poker and the size of the tree that can be solved 

depends greatly on how fast hand evaluation can be performed. Consisting of 7 

array lookups, 6 addition operations, and two bit shifts; the “2+2” algorithm is an 

impressive feat of optimization. 
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Figure 2. The above shows the different classifications sets of cards must be sorted 
into. This classification is one of the most fundamental operations in any poker 
related algorithm and has been extremely optimized via the “2+2” hand evaluation 
algorithm [9]. 

6. Building the Tree, Reducing Extensive Form Complexity of Poker 

Since Poker was proven to have a prohibitively large complete tree, attention 

has been given to techniques that approximate the Nash Equilibrium with manageable 

processing requirements. 
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6.1. Suit Isomorphism. An effective technique for reducing the size of the 

complete tree while minimizing information loss is suit isomorphism. Simply put, it 

doesn’t matter what suit a flush (five cards of the same suit) is in, the strategy for 

play with a flush remains the same. A great example of the power of this technique 

is in the enumeration of starting hands. The complete description of the starting 

hands of Texas Hold’em is every possible combination of two cards dealt from the 52 

card deck. This yields 2652 (52 * 51) possible starting hands. However, applying suit 

isomorphism we consider hands that have identical face values as hands that result 

in the same strategy pattern, incorporating suit information only to consider if both 

cards are the same suit or different suits. This yields 169 (13 * 13) possible starting 

hands. 

The concept of suit isomorphism can also be applied to later stages of the 

game with the same pattern in mind. “Which” suit only matters if a flush is possible. 

Once a flush becomes impossible for a given suit, all permutations of suits in that 

classification with the same card values yield identical strengths and map to identical 

strength situations in a CFR Extensive Form abstraction. 

Suit Isomorphism is one of the most effective forms of Extensive Form 

abstraction because the size of the tree is reduced without loss of information or power. 

This is opposed to techniques, such as strength bucketing, which collapse rough 

categories of cards into common “Bucket” nodes in the Extensive Form abstraction, 

that inevitably do result in lost information. 
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Figure 3. The above shows Suit Isomorphism being used to simplify the possible 
starting hands of Texas Hold’em Poker along with an accompanying strategy 
classification for each entry in the chart. Because all chances for a Flush are the 
same at the start of the game it doesn’t matter which suits the starting cards are. 
The only strategically important information at the start of the game is whether the 
two cards dealt are the same suit and the numeric values of the two cards. 

6.2. Clustering Dealt Card ”Situations”. Because of the large number 

of ways cards can be dealt (order matters), mapping cards to playing situation 

classifications is a must if the Extensive Form complexity of Texas Hold’em Poker 

is to be reduced to a manageable point. 

Clustering based on some evaluation of hand strength is widely used by 

competitive agents today [1, 7, 8, 32]. By branching through a node in the CFR 

tree that represents the strength of the player’s hand, strategies are then separately 

formed in the tree for when the player has a strong hand or a weak hand. 

Commonly, in evaluating what “situation” a set of cards maps to, algorithms 

will attempt to measure the strength of the hand that the set of cards represents. 

Typically for this measurement two assumptions are made. First, we assume that no 

one in the hand will fold. Second, we assume that all unknown cards are random. 



17 

With these assumptions we can simulate every possible way the remaining cards can 

be dealt and every possible hand our opponent can have. We can then count the 

number of times, given all the possible outcomes, that we win. Divide win by the 

total number of possible outcomes and we get the strength metric used by most 

competitive algorithms today. 

At the point of a deal event, many algorithms use this metric differently. 

However, most algorithms in competition today will use this metric to assign the 

set of cards in play to a ”Bucket” that all situations within a specified range of 

strength values fall into. For example, there could be a 10 bucket abstraction where 

strengths 0 - 0.1 go in bucket 0; 0.1-0.2 in bucket 1; etc. 

6.3. Alternating Dealt Card and Action Layers of CFR Tree. Most 

Extensive Form abstractions used to apply CFR to Poker wind up with a structure 

that alternates between sections of player action and deal events. The deal events 

are clustered into ”Buckets” that represent the set of “card situation” classifications 

that can result from how the cards are dealt (i.e. Lots of betting and I have a strong 

hand or No betting and I have a weak hand); whereas the Action sections represent 

the actions taken by the players themselves where decisions are made based upon the 

Regret values maintained at each node. 

Most abstractions will maintain the pure Extensive Form of Poker for the 

Action sections of the tree and dial the number of Buckets up and down in the Deal 

sections of the tree to manipulate the size of the overall tree. Each algorithm in 

competition today has its own “special” mapping function from cards to Buckets. 
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If their mapping function results in less lost information from the pure Extensive 

Form of the game compared to an abstraction of similar size but different mapping 

technique then they will have an advantage. See Figure 4 and Figure 5 for visual 

examples of the tree structure common to most CFR implementations in competition 

today. 

Figure 4. The above shows the typical high level structure of a CFR tree for 
Poker. Notice that Deal and Action sections of the tree alternate as betting rounds 
are punctuated by random Deal events that are outside the control of the players. 
Action node sections contain Regret values at each node that governs play, while a 
mapping function decided by the algorithm creator determines how cards are mapped 
to Buckets (aka “situations”) that correspond to a different strategy in the Action 
section of the sub tree that follows. 
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Figure 5. The above shows the structure of an Action section of a CFR tree for Poker. 
Each transition between nodes here has a Regret value that is maintained over time 
by the algorithm that guides playing decisions. 



CHAPTER 3 

Methodology 

1. Introduction 

A typical strength metric used to evaluate hand strength proceeds by (a) 

enumerating all possible outcomes for dealt cards and opponent cards, (b) dividing 

the number of wins by the total number of outcomes, thereby (c) obtaining a scalar 

representation of the game state’s ’value.’ The proposed method evaluates the metric 

at each possible way ALL cards can be dealt in the future of a given hand and then 

maintaining a waveform of those possible outcomes at nodes where NOT ALL cards 

have been dealt yet, rather than collapsing them all into an average. I refer to this 

as “Waveform Clustering”. See Figure 6 for a pseudo code comparison of the typical 

strength evaluation metric and the Waveform Clustering metric I am proposing. 
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Figure 6. The above is a side by side comparison of the typical strength metric 
used as the Control (left) and our suggested approach, the Experimental (right). 
These calculations of the strength metrics are used to classify card sets into strength 
situations or “Buckets” for use in the standard Counter Factual Regret Minimization 
algorithm described in [32] 
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2. Design 

Waveform Clustering allows for disparate situations, recognized commonly by 

expert human players as strategically different, to be accounted for. Figure 7 shows 

an example of the strength waveform metric as it would be calculated throughout a 

hand. 

On the left is a player with a flush draw and on the right is a player with a 

small pair. Notice that if their waveforms were to be averaged into a single value (the 

typical approach [7, 8, 32]) that the value would be similar for both. However, notice 

that the player on the left with the flush draw has value spikes at the extreme ranges 

of strength. This reflects that with somewhat equal likelihood the player will end 

up with either a hand worth nothing or a monster hand that will beat everything. 

Compare that to the player on the right with the small pair. This player has a spike 

of concentrated values in the center of the waveform reflecting that no matter which 

cards are dealt, the player will end up with a hand that will win half the time. The 

difference between these two players isn’t the chance they have to win, they will both 

win approximately half the time against a random opponent. 

The difference between these two players is when they know the strength of 

their hand. Human experts would assert that the player with the draw on the left 

wants to avoid large bets until more cards have been dealt whereas the player on the 

right should favor aggressive play earlier in the hand to force other players without 

known hands to fold early [6]. The right hand player already knows approximately 

how strong they will be at the end of the hand and should seek strategies that 



23 

capitalize on that while others are still relatively uncertain about how their hands 

will turn out. 

Figure 7. The above is an example of the waveform metric calculated throughout a 
hand after the deal events for that hand. Notice the probabilities converge after deal 
events until a single strength bucket remains after the last deal event in the hand. 

Waveform Clustering is applied to a CFR implementation by maintaining an 

average waveform at nodes in the Extensive Form that result from deal events. This 

is similar to how utility information is recorded at nodes that result from player 

actions (that then guide agents to avoid Regret), except that it is a waveform rather 

than a single scalar value. When traversing the tree during play and deciding which 

Bucket to classify a card situation in, the node selected is the node with the closest 

average waveform (recorded over all hands) compared to the waveform produced by 
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evaluating the current set of cards. 

3. Testing Strategy and Parameters 

To measure the efficacy of using the aforementioned Waveform Clustering 

metric to cluster card situations in the Extensive Form abstraction for Texas Hold’em, 

we conducted an experiment comparing the typical implementation with an identical 

implementation that uses the Waveform Clustering technique. 

Two metrics are recorded by the testing framework: the comparative chip 

counts of the players after each hand and a Saturation metric representing how 

familiar the players are with the section of the Extensive Form tree they traversed in 

a given hand. 

More specifically, Saturation is calculated as the number of nodes visited by the 

player that have been visited 50 times or more divided by the total number of nodes 

visited by the player during a the hand. Saturation therefore can tell us two important 

things. First, when Saturation values are consistently 1.0, the player has finished 

training. Second, during play, if the Saturation values take a sudden downturn we 

know the player was forced into a section of their tree that they had not visited before 

because the path through the tree that they usually take has unexpectedly become 

unprofitable and they were forced to adapt. 

We trained each player, Control and Experimental, with equal iterations. 

Memory slices were sampled at 10K, 20K, 50K, 100K, and 250K iterations. A 5 

bucket Extensive Form abstraction was used for the shared CFR implementation. 
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By playing similar training slices from each player against each other we can then 

evaluate comparative strengths throughout training and draw conclusions based on 

the patterns that emerge. With a 5 bucket CFR implementation, the Extensive Form 

the players train on takes approximately 10 days of continuous automated play to 

converge on 1.0 Saturation. 

Comparative play between the Control and Experimental implementations are 

rounds of 10K hands, each round resetting the memory banks of the players to their 

original self trained memory slice. Multiple rounds are played at each training slice 

between the Control and Experimental players until statistically valid data is gathered 

(fewer rounds for consistent blowouts, more rounds for closer results). 

Figure 8. The above is a simple visualization of the experimental methodology used 
to collect data. 

4. Implementation 

We developed a framework capable of playing two players against themselves 

(for training) or against each other (for comparative evaluation). The framework 
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switches the classification algorithm used to map cards to strategies for each algorithm 

under consideration, keeping all other aspects of the CFR implementation used by 

the players the same. Most algorithms in competitive play today share a core 

CFR implementation and their differences lie in choices for their Extensive Form 

abstractions and parameters chosen for the typical CFR algorithm (i.e. how fast 

utility values should converge). Those parametric details will be chosen arbitrarily 

from the set of possible valid choices. As long as they are identical between the 

Control and Experimental agents, we assume they are irrelevant to this research. 

Figure 10 shows the class diagram for the framework. A Form class displays 

the user interface (UI) and serves as the “dealer” governing the dealing of cards and 

direction of play. It maintains two Player objects that have Hands and TreeNavigation 

utilities. The TreeNavigation utilities, in turn, utilize a GameTreeDirectoryStructure 

class that handles disk IO for that player as needed, and a ActionBlock class 

that has a HandStrength class derivative as a “parent” node in the overall tree. 

The HandStrength classes are where the implementations between the two player 

types, Control and Experimental, differ. ActionNode objects are sub-trees within 

an ActionBlock and manage the utility values for each action the player can take, 

dynamically read and written on disk via the GameTreeDirectoryStructure utility 

class. 
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Figure 9. The above is a screenshot of the testing framework as it plays the Control 
and Experimental CFR implementations against each other. All recorded metrics as 
well as hand classifications are shown here, as well as output to disk after each hand. 
The framework allows for a set number of iterations to be played automatically. 
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Figure 10. The above shows the significant classes in the testing framework. 



CHAPTER 4 

Results 

To collect results, both the Experimental and Control players were trained 

using self play for 250,000 hands. After each hand, utility values were updated in 

.xml files organized in a directory structure on disk that corresponds to the extensive 

form abstraction. See figure 11 for an example of the directory structure on disk and 

figure 12 for an example of a .xml file containing utility values for a specific Bucket 

in the tree. 

Chip Count and Saturation for the players are output after each hand to a line 

in a .csv file that can then be converted into the graphs found later in this chapter. 

During the 250K iterations of training, a copy of the directory structure 

representing the memory of the players was set aside after 5 K, 10K, 20K, 50K, 

100K, and 250K iterations. These copies of these memory banks were then used as 

input to the trials where the Experimental and Control players would play against 

each other. Each iteration of the competitive trials was restarted with a fresh copy 

of the memory banks for each player at that training level. The figures at the end of 

this chapter show the average Saturation and Chip Count metrics produced during 
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the self training of the Control and Experimental players as well as for the multiple 

trials of Control vs Experimental at each training slice. 

Figure 11. The above is an example of the file structure on disk used to store the 
memory of agents. Each directory in the directory structure represents a “Bucket” or 
“Card Situation” that corresponds to a strategy. The utility values for each strategy 
available in each Bucket are recorded in an ActionNode.xml file in each directory. 
Transitions to other Buckets deeper in the tree are represented by the sub directories 
in each directory. Transitions are determined by the number of raises that occurred 
during a round of betting and the card(s) dealt after betting in the current round is 
concluded. 
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Figure 12. The above is an example of a .xml representation of the utility values that 
correspond to each possible action that can be taken in a given strategic situation 
(classified by previous actions and cards dealt). In this situation, the agent has 
determined over many iterations through this section of the tree that placing blinds 
at the start of play has a negative utility on average (its a bet forced by the rules of 
play regardless of the hand held by the player) and that in this strategic situation 
Raising is profitable. Negative Regret is bad, positive Regret is good. 
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Figure 13. The above shows the variance in chip counts of the Control (No Clustering) 
and Experimental (Waveform Clustering) players as they trained via self play over 
250K iterations. This shows the expected variance in the chip count metric that 
can occur during play with identical players and is a useful reference for determining 
the number of rounds the players need to play at various training slices when being 
compared to each other in order for statistically valid data to be collected. 
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Figure 14. The above shows the variance in Saturation of the Control (No Clustering) 
and Experimental (Waveform Clustering)l players as they trained via self play over 
250K iterations. This shows the expected variance in the Saturation metric that 
can occur during play with identical players and is a useful reference for determining 
the number of rounds the players need to play at various training slices when being 
compared to each other in order for statistically valid data to be collected. 
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Figure 15. The above shows the Saturation of the Control (No Clustering) and 
Experimental (Waveform Clustering) players averaged over all rounds played with 
5K iterations of training as a starting point for the memory banks of the players. 
The Control player consistently has higher Saturation values, suggesting that it has 
converged on a strategy faster during training than the Experimental player. 
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Figure 16. The above shows the chip count of the Control (No Clustering) and 
Experimental (Waveform Clustering) players averaged over all rounds played with 
5K iterations of training as a starting point for the memory banks of the players. The 
Control player consistently wins at this training slice with a margin of approximately 
15,000 chips. 
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Figure 17. The above shows the Saturation of the Control (No Clustering) and 
Experimental (Waveform Clustering) players averaged over all rounds played with 
10K iterations of training as a starting point for the memory banks of the players. 
The Control player consistently has higher Saturation values, suggesting that it has 
converged on a strategy faster during training than the Experimental player. 
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Figure 18. The above shows the chip count of the Control (No Clustering) and 
Experimental (Waveform Clustering) players averaged over all rounds played with 
10K iterations of training as a starting point for the memory banks of the players. The 
Control player consistently wins at this training slice with a margin of approximately 
13,000 chips. 

Figure 19. The above shows the Saturation of the Control (No Clustering) and 
Experimental (Waveform Clustering) players averaged over all rounds played with 
20K iterations of training as a starting point for the memory banks of the players. 
The Control player consistently has higher Saturation values, suggesting that it has 
converged on a strategy faster during training than the Experimental player. 
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Figure 20. The above shows the chip count of the Control (No Clustering) and 
Experimental (Waveform Clustering) players averaged over all rounds played with 
20K iterations of training as a starting point for the memory banks of the players. The 
Control player consistently wins at this training slice with a margin of approximately 
4,000 chips. 
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Figure 21. The above shows the Saturation of the Control (No Clustering) and 
Experimental (Waveform Clustering) players averaged over all rounds played with 
50K iterations of training as a starting point for the memory banks of the players. 
The Control player consistently has higher Saturation values, suggesting that it has 
converged on a strategy faster during training than the Experimental player. 
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Figure 22. The above shows the chip count of the Control (No Clustering) and 
Experimental (Waveform Clustering) players averaged over all rounds played with 
50K iterations of training as a starting point for the memory banks of the players. The 
Control player consistently wins at this training slice with a margin of approximately 
500 chips. 

Figure 23. The above shows the Saturation of the Control (No Clustering) and 
Experimental (Waveform Clustering) players averaged over all rounds played with 
100K iterations of training as a starting point for the memory banks of the players. 
The Control player consistently has higher Saturation values, suggesting that it has 
converged on a strategy faster during training than the Experimental player. 
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Figure 24. The above shows the chip count of the Control (No Clustering) 
and Experimental (Waveform Clustering) players averaged over all rounds played 
with 100K iterations of training as a starting point for the memory banks of the 
players. The Control player consistently wins at this training slice with a margin of 
approximately 400 chips. 
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Figure 25. The above shows the Saturation of the Control (No Clustering) and 
Experimental (Waveform Clustering) players averaged over all rounds played with 
250K iterations of training as a starting point for the memory banks of the players. 
The Control player and Experimental player have approximately the same Saturation 
through the first 4000 hands, but consistently over many rounds the Control player 
experiences a sharp drop in Saturation at this point and takes several thousand hands 
to recover. This means that the Control player consistently is forced into a relatively 
unfamiliar portion of its game tree while the Experimental player does not experience 
such a drop in confidence. 
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Figure 26. The above shows the chip count of the Control (No Clustering) and 
Experimental (Waveform Clustering)l players averaged over all rounds played with 
250K iterations of training as a starting point for the memory banks of the players. 
The Experimental player consistently wins with a margin of approximately 1200 chips. 
Note the correlation between the profitability of the Experimental player and the 
sharp drop in the Control player’s Saturation at around 5000 hands. 
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1. Conclusions 

From the results we can see two trends. First, the Control player has faster 

initial training, as we can see by consistently higher Saturation values compared to 

the Experimental player at the early training slices. Second, we see a diminishing 

advantage for the Control player as the Experimental player closes the Saturation 

gap. This culminates in an eventual advantage for the Experimental player at higher 

training values. The drop in Saturation that we consistently see reported by the 

Control player at the 250K training slice and its correlation to profitable play for 

the Experimental player suggests that the Experimental player utilizes its tree better 

than the Control player once trained to maximum Saturation. 

Figure 27. The above shows the trend of chip counts across the various training slices. 
We see a clear diminishing advantage for the Control player as training progresses, 
culminating in an advantage for the Experimental player. 



CHAPTER 5 

Future Work 

Future work is called for to further validate these initial results. 

• The CFR implementation shared by the players should be adjusted to set the 

bar for Saturation (which guides simulated annealing of the utility values) higher 

and lower. 

• The number of buckets used in the implementation should be extended to 

10, 100, and 1000 bucket implementation, resulting in exponentially larger 

Extensive Forms for the CFR implementation to train over and potentially 

revealing a different outcome in the context of a very large training space. 

• We would suggest expanding the formats of Poker used for play (i.e. more 

players, tournament playing formats, pot-limit or no-limit playing formats). 

• To organize the results in a paper that can be submitted for publication to a 

suitable venue. 
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