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ABSTRACT 

This thesis presents a survey of real-time finite element method based 

deformable fracture and presents new techniques in the field. Techniques for 

simulating fracture, including physically-based and geometrically-based techniques, 

are described. Considerations are given to real-time vs. non-real-time applications as 

well as appearance, believability, precision, and accuracy. The focus in this research 

has been to reduce the computational expense of fracture, the aesthetic appeal of 

low-resolution fracture meshes, and interaction with rigid-bodies. 
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CHAPTER 1 

Introduction 

Fracture simulation is of interest in many fields. Simulations for Condensed 

matter physics and material science require accuracy because of the focus of these 

fields on understanding material properties [AS88, CRHG96, DM95]. Procedural 

fracture has been an area of interest to the computer graphics community for 

over twenty years [TF88]. Fracture simulation is used in offline animation 

[BHTF07,SSF09], and computing power has progressed to the point where real-time 

fracture simulation has been demonstrated in interactive and game environments 

[PEO09, MCK13]. 

This thesis examines the field of fracture simulation with a primary interest 

in real-time simulations. Offline animation is discussed primarily in the context of 

inspiration for real-time simulations. The core of this paper focuses on the use of the 

finite element method as a means to simulate deformation and fracture in real-time 

through linear approximations. 

In the area of real-time fracture simulation, speed and aesthetic appeal is of 

utmost concern. The finite element method is a computationally expensive technique 
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and long-standing fracture techniques add expense and another rate limiting step. 

This thesis presents a new approach to fracture, “Plasticity-Based Fracture,” that is 

computationally inexpensive. This thesis also presents an algorithm, “Aesthetic Joint 

Pruning,” to allow low-resolution fracture to look more appealing, and it presents a 

technique for interacting with rigid-bodies by generating rigid-body proxies at run 

time. 



CHAPTER 2 

Physics and Math Primer 

1. Physics background 

Many modern simulators use physics techniques for creating realism and 

believability. This chapter introduces the physics of deformation and fracture. 

1.1. Hooke’s law. Hooke’s law is a first order approximation for restoring 

forces that depend on distance, in one dimension [Gol50, Fre65, TM08]. Hooke’s law 

describes the force a spring would exert on a weight that is either stretching or 

compressing the spring. As the spring is stretched or compressed, the force increases 

proportionally. The constant of proportionality, k, depends on the stiffness of the 

spring. Hooke’s law has solutions which are oscillations. It can be written as: 

~F = −k~x, (2.1) 

~where F is the force and ~x is the displacement. 

Hooke’s law can be considered as an elastic stress-strain model [LRK10]. Stress 

is a measurement of force per area while strain is the ratio of deformation of the 

initial length. For a spring, the stress is the applied force on the spring, and k~x 
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is the response behavior of the spring causing strain as long as the spring is not 

stretched past its elastic region. It is important to note that the strain response is 

proportional to the applied stress. When generalizing the stress-strain relationship 

to a continuous medium which allows shear, rather than a simple spring system, the 

equation becomes: 

σ = c�, (2.2) 

where σ is the stress tensor of the applied forces and shears, c is the stiffness tensor 

which is analogous to the previous spring constant, k, and � is the resultant strain. 

The off-diagonal elements of σ represent shear stresses. Shear stress is the 

component of the force which is coplanar to the cross section of a body as opposed 

to normal stress which is force component perpendicular the material cross section. 

For example, compressing marshmallow peep in the x direction causes the peep 

to expand in the y and z directions. The ratio of this compression to expansion is 

indicated by Poisson’s Ratio, ν. 

Poisson’s ratio is used to model multi-dimensional interactions. Poisson’s ratio 

is defined as the amount of contraction when strained in a particular direction. For 

example, an object strained in the x-direction would have a ratio, ν given by 

�y
ν = − , (2.3)

�x 

where �y is the contraction strain in the y-direction, �x is the strain in the x-direction. 

For a homogenous material, where νyx = νzw = νyz, Poisson’s ratio applies 

equally in all perpendicular dimensions, �y = �z = −ν�x. In three-dimensions, the 

total strain in a particular dimension, e.g. in the x-direction, is the sum of the strain 
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in all the components, e.g.: 

�x = �x from σx + �x from σy + �x from σz = (σx − νσy − νσz)/E, (2.4) 

where E is Young’s Modulus of the material and with similar equations for the y and 

z directions. 

Young’s Modulus, or elastic modulus, is a measurement of the stiffness of a 

material. It is defined as the ratio of stress along an axis to the strain along that axis. 

1.2. Brittle versus ductile fracture. When it comes to deformation, there 

are two types of behavior: plastic and elastic, [LRK10]. When an elastic object is 

deformed, the deformations are removed when the applied stress is removed. When 

a plastic object is deformed some of the deformation becomes permanent. Materials 

are generally elastic below a material dependent plastic threshold and plastic above 

it. Both behaviors are common. A piece of rubber that is compressed or stretched 

will elastically return to its original shape. Aluminum that is bent will remain bent 

after the bending force is removed. 

Fracture is the process of a body splitting into multiple bodies due to applied 

stress. Elasticity and plasticity create different types of fracture. When a plastic 

body fractures, extensive plastic deformation is visible after the fracture. This can 

be described as “pulling apart” rather than “shattering.” This can be seen when 

twisting a plastic spoon. During the twisting process, the rod will begin to tighten 

around the fracture point and eventually pull apart. 

Elastic materials will fracture in a brittle manner by not deforming before 
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breaking, e.g. dropping a piece of glass or a holiday ornament onto the ground. In 

these cases, the material will shatter rather than pulling apart. 

2. Numerical techniques 

In order to simulate the physics of deformable and fracturable bodies, solving 

differential equations through a continuous medium is required. There are many 

common techniques for solving such systems. 

2.1. Finite difference method. Finite difference methods utilize the 

difference in a function between two discrete evaluation points to approximate 

derivatives and solve differential equations throughout a volume [MM05]. Typically 

the derivatives are turned into differences and the equations are solved algebraically, 

e.g.: 

Δf(x) = f(x + b) − f(x + a), (2.5) 

where f is a function, x is a location in the function, and a and b are the offset values, 

typically a = −b. 

Finite difference methods suffer from the stiff problem [HW04]. A stiff 

equation is numerically unstable and can require extremely small time steps. This is 

problematic for real-time applications as a smaller step size requires higher iteration 

count per graphical frame. In a continuous volume, this difference can evaluate the 

strain in the local volume by evaluating the displacement of two neighboring nodes. 
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2.2. Boundary element method. The boundary element method 

integrates the differential equation over the volume to solve for the function and 

makes use of Green’s theorem to turn a volume integral into an integral over the 

surface that encloses the volume [Ban94]. The advantage of such a method is the 

speed and efficiency of the calculations on the boundary. This integral requires 

fewer evaluations to solve than the volume integral, thus leading to improvements in 

speed. However, a boundary element method needs to perform offline calculations 

in order to define the surface of the object for solving. Boundary element methods 

are inefficient for fracture simulation, due to the prohibitive cost of recalculating the 

surface. 

2.3. Meshless method. Unlike other methods discussed, meshless methods 

do not work on a system of particles with a defined connectivity. Instead, [LL07], each 

particle samples the contiuum via the other particles in a local neighborhood, often 

weighted by distance, or other criteria. It is often used in simulations that allow 

particles to move independent of each other, or that need variable precision, such 

as fluid simulations. The first meshless method developed was Smoothed-Particle 

Hydrodynamic (SPH), which was created for astrophysical applications before being 

generalized for other uses [GM77,Kel06]. 

Meshless methods typically scale poorly and are difficult to implement for a 

deformable body because of the constant recalculation of boundary conditions of the 

deformable. The disadvantages outweigh the advantages for simulating deformables 

using meshless methods. 
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2.4. Finite element method. The finite element method (FEM) has been 

used in the physical engineering fields for various purposes such as structural analysis 

[Red05]. The technique is discussed at length in [Say08]. The method discretizes a 

differential equation over a continuum to a finite number of linear systems evaluated 

at nodes on the boundary of the continuum, so long as certain boundary conditions 

are met. In the case of deformation and fracture the differential equation is Newton’s 

~second law, Σ F = m~a, with Hooke’s law (equation 2.2) indicating forces related to 

any strain in the material. 

Solving a large number of linear systems leads to the linear complementary 

problem (LCP), discussed in Appendix A. One technique for solving LCPs is the 

conjugate gradient method, see Appendix B. 

The FEM is advantageous because its representation of complex geometry via 

discretization is similar to representations commonly used in computer graphics. It 

is efficient for simulating fracture, as well as being robust and stable, i.e. it doesn’t 

suffer from the stiffness problem. This combination makes it efficient for fracture 

simulations. Using the FEM to simulate deformation and fracture is the primary 

focus of this work. 



CHAPTER 3 

Modeling Deformation 

There are many techniques for modeling deformation and fracture. These 

techniques have different advantages, and therefore have different applications. While 

fracture is the primary focus of this work, deformation is important for the simulation 

of ductile fracture. 

1. Spring-based deformables 

Cloth is one of the earliest deformables to simulate in real time. The work 

of [Pro96] made use of a mass-spring network to simulate cloth behavior. This 

implementation makes use of particles connected by three types of springs (see Eqn 

2.1). The first type is the structural spring, which connects adjacent particles, i.e. 

in the center of the cloth, each particle will be attached to each of its four nearest 

neighbors through structural springs. The structural springs resist stretching and 

compression of the cloth and maintain its area. Of the three spring types, this 

typically has the highest stiffness, k. 

The second type of spring used in Provot’s cloth implementation is the shear 
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spring. The shear springs are connected between diagonal nearest neighbors. Similar 

to the structural springs, away from the edges of the cloth, each particle will be 

attached to four diagonal nearest neighbors using shear springs. These help the cloth 

maintain its shape and aspect ratio. If it’s a square piece of cloth, the shear springs 

will help ensure the cloth remains square and not a diamond shape. 

The final type of spring is the bend spring. These springs are connected 

between next-nearest neighbors in the horizontal and vertical directions. Similar to 

the previous two types of springs, central particles will be connected to four second 

nearest neighbors. The bend springs resists bending of the cloth. It helps ensure 

the cloth will not fold in on itself. Of the three springs, this typically has the lowest 

stiffness, k. 

Another implementation of deformable simulation using springs is the pressure 

model soft body, [MO03]. A pressure-model soft-body differs from a cloth simulation 

in that it is a spring-mass deformable model that maintains an interior volume. In a 

pressure-model soft body, each particle is connect to nearest neighbors on the surface 

of the body via springs. In order to prevent such a model from collapsing, Matyka et 

al., simulated a pressure force inside the deformable which pushed against the faces of 

the body. The pressure force is proportional to the inverse volume, 
V 
1 , and is applied 

to each face of the soft-body in the outward normal direction proportional to the area 

of the face. 

Spring-mass models have their limitations. Notably, spring forces are subject 

to the stiff problem (see Ch. 2.1). For real-time applications this is a hindrance as 
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more complex spring based models require smaller time steps. This is also a limitation 

on the types of deformables springs model well. It is difficult to extend spring-mass 

deformables to other types of materials and bodies, such as steel plates or rubber 

balls, because of the stiff problem. To model such materials, the stiffness values 

approach infinity which requires prohibitively small time steps. 

2. Finite element method deformables 

Models using the finite element method (FEM) are the focus of this work. 

As discussed in chapter 2.4, the FEM breaks a large continuous object into smaller 

pieces. For graphical applications, it is typically broken into tetrahedral elements 

via tetrahedralization because of the natural fit with triangle mesh representations 

commonly used for rendering. Tetrahedralization is outside the scope of this work; 

there are many open-source projects for performing tetrahedralization on meshes, 

[dt03]. 

To clarify terminology which will be used to describe the FEM simulation 

technique, the discussion of [ESHD05] is followed throughout this section. A “node” 

is a vertex of the tetrahedron on the FEM mesh and an “element” is a tetrahedral 

volume element in the deformable. The update loop is a fairly straightforward process 

(see Alg. 1). 

The FEM discretizes the equations of motion for each element. Elements 

interact with each other via boundary conditions which are used to assemble the 

global dynamics equation. This leads to a Linear Complementarity Problem [LCP, 
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Algorithm 1 Update loop for FEM objects 

function Update(deltaTime) 
UpdateOrientations() 
CalculateStiffnessMatrix() 
AddPlasticityForce(deltaTime) 
DynamicsAssembly(deltaTime) 
ConjugateGradientSolver() 
IntegrateNodePositions(deltaTime) 

end function 

Appendix A] which may be solved using Conjugate Gradient Solver [Appendix B]. 

Solving the LCP results in a velocity which is used to update the positions of the 

nodes within the deformable. The updated positions and velocities lead to changes 

in the strain which are used to update the deformable on the next time-step. 

2.1. Time integration. The fundamental equation we are trying to solve is 

~Newton’s second law, Σ F = m~a. In the case of an elastic solid, we are considering 

several forces, including damping, internal stress, and any external forces, fext (e.g. 

gravity, collisions, etc). For an elastic solid, our stress term is given by (see Sect. 1), 

Ku = f , (3.1) 

where K is the stiffness matrix, u is a vector of nodal displacements, and f is a vector 

of node forces (see Sect. 2.4). The nodal displacements are given by: 

u = x − xu, (3.2) 

where x is the current position of the node, xu is the position of the node in the 

undeformed object. 
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The nodal displacements can be used to calculate the strain of a body using 

the deformation gradient which is the change in world coordinates of a point with 

respect to the material coordinates. The deformation gradient,Fij is given by: 

∂ui
Fij = , (3.3)

∂xj 

where i and j are indices of the nodes within a given element. 

The linear Cauchy strain matrix, �, is an approximation of Green’s strain 

tensor, and is used to measure the deformation of a body. The Cauchy strain matrix 

is given by, 

1 ∂ui ∂uj
�ij = ( + ). (3.4)

2 ∂xj ∂xi 

The damping term in our equation is a velocity damping term given by, Cẋ

where C is our damping matrix, and ẋ is the time-derivative of our position (i.e. 

velocity). Putting all of these terms into Newton’s second law, we get: 

Mẍ+ Cẋ+ K(x − xu) − fext = 0, (3.5) 

where M is our mass matrix. We want to integrate equation 3.5 using implicit 

discretization which means we evaluate both x and v at time m + 1, and substitute 

m+1−v ẍ = v
Δt , we get 

m+1 − vv
+ Cvm+1 m+1 − xuM + K(x ) − fext = 0, (3.6)

Δt 

and further substituting, xm+1 = xm + vi+1Δt, yields, 

m+1 − vv m m+1Δt − xuM + Cvm+1 + K(x + v ) − fext = 0, (3.7)
Δt 



14 

after algebraic manipulation and substituting, fu = −Kxu, results in, 

2K)v m+1(M +ΔtC +Δt = Mvm − Δt(Kxm + f − fext), (3.8) 

where we finally have an equation of the form Avm+1 = b where, 

A = M +ΔtC +Δt2K, (3.9) 

and 

b = Mv − Δt(fu − fext + Kx). (3.10) 

This linear complementarity problem (App. A) may be solved with a variety of 

methods, such as the conjugate gradient method (App. B). The remainder of section 

2 discusses the assembly of the component in Eq 3.9 and Eq 3.10, as well as methods 

to handle numerical issues that arise in their solution. 

2.2. Stiffness matrix. As described by [ESHD05], the stiffness matrix is the 

concatenation of several other matrices, namely the matrices describing the stress 

and strain of the object. There are two important “versions” of the stiffness matrix: 

the local stiffness matrix and the global stiffness matrix. The local stiffness matrix 

represents the stiffness between nodes within a volume element. The global stiffness 

matrix is the concatenation of all the local stiffness matrices (see Alg 2), where Re is 

the orientation matrix of element e, Ke is the local stiffness matrix of element e, and 

K is the global stiffness matrix. 

The local stiffness matrices are stored as 4x4 matrices in order to reduce 

memory footprint. This is possible because the off-diagonal 4x4 matrices are 

transposes of each other, [ESHD05]. 
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Algorithm 2 Assembling the global stiffness matrix and global force vector 

function CalculateStiffnessMatrix 
for all element e do 

for all node i of e do 
for all node j of e do 

if j ≥ i then 
tmp = Re ∗ Keij ∗Transpose(Re) 
Kij 
0 = Kij 

0 + tmp 
if j > i then 

K 0 = K 0 +Transpose(tmp)ji ji

end if 
end if 

end for 
fi = fi + f e 

m 

end for 
end for 

end function 

In the most physically accurate simulation, both of the global and local stiffness 

matrices would be updated each frame. In order to increase efficiency the local 

stiffness matrices are usually calculated once, at the time of the deformable object’s 

creation. Updating the local stiffness matrix adds little accuracy for the cost. 

2.3. Plasticity forces. Plasticity is the permanent deformation of a 

deformable [ESHD05]. To simulate this, a plastic force is calculated when the object 

deforms. This internal force leads to a permanent deformation of the object. 

Three parameters control plasticity: plastic yield, plastic creep, and plastic 

max. The plastic yield sets the minimum deformation threshold for accumulating 

plastic force. If the total stress exceeds the plastic yield, then some of the excess is 

added to the plastic force. The plastic creep determines what fraction of the excess 

is added to the net plastic force. Lastly, the plastic max is the largest possible net 
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plastic force. 

2.4. Dynamics assembly and lumped mass matrix. The dynamics 

matrix (Eqn 3.9) and the dynamics vector (Eqn 3.10) are assembled in a method 

similar to that discussed earlier for assembling the global stiffness matrix and force 

vector (see Sect 2.2). The pseudocode for calculating the force offsets can be seen in 

Alg. 3, where Ke is the local stiffness matrix of element e and Re is the orientation 

matrix of element e. 

Algorithm 3 Calculating offset force 

function CalculateOffsetForce 
for all element e do 

for all node i of e do 
tmp = 0 
for all node j of e do 

tmp = tmp + Keij ∗ xuj 

end for 
fu0 i = fu0 i − Re ∗ tmp 

end for 
end for 

end function 

The mass matrix, M (see Eqns 3.9 and 3.10), storage method has a huge 

impact on performance. Either the mass is stored per node or per element. Dynamics 

assembly is the only piece of the simulation that is changed by this choice. The choice 

has no simulation accuracy consequences but has a performance effect in terms of both 

storage and CPU calculations. As shown in [ESHD05], pgs 356 to 358, the per node 

mass matrix is a fully filled out matrix with no zeroes. The volume-element-based 

mass matrix is dubbed the “lumped mass matrix” because it is a diagonal matrix. 
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Figure 1. Comparison of stiffness warping. 

(A) Large deformation with no stiffness warping. (B) Stiffness warping turned on. This 
artifact occurs due to linearization of the strain tensor. 

The lumped mass matrix results in faster calculations, less memory use, and 

simpler algorithms. There is also another convenient consequence of this choice. The 

damping matrix is defined by: 

C = αM + βK, (3.11) 

where α is the mass damping parameter and β is the stiffness damping parameter. 

According to [ESHD05], it is common practice to set β = 0 which means the 

damping matrix is proportional to the mass matrix. Because the simulation uses the 

lumped mass matrix, this means the damping matrix is also a diagonal matrix. This 

results in even more computational and storage savings. 

2.5. Stiffness warping. As discussed earlier (see Sect 2.1), the linear 

approximation to the elasticity results in large volume growth of elements when 

objects are subjected to large rotational deformations. This is not accurate or 

believable behavior. Müller et al. describe a method for dealing with this [MG04]. 
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In order to correct this error, the stiffness forces are calculated in the 

undeformed frame of the FEM. This is a three step process: rotate the current position 

back to the rest frame, calculate the stiffness force, then rotate the stiffness force back 

to the world frame. The orientation matrix must be calculated. Two methods are 

described in [ESHD05]: polar decomposition or Gram-Schmidt orthonormalization 

(see App C). An example the effects of stiffness warping can be seen in Fig. 1. 

2.6. Element inversion. Element inversion is when one node of an element 

can be forced onto the other side of the triangle formed by the other three nodes, 

thus inverting the tetrahedron. Element inversion can happen when a strong force 

interacts with the FEM deformable. This leads to incorrect windings (and normals) 

for the element. Without correcting this, the FEM deformable will typically explode. 

Irving et al. presented a method for dealing with this [ITF06]. Before 

calculating the stresses and forces in the FEM deformable, they perform all 

calculations using the deformation gradient. The deformation gradient measures 

the change in the deformation of the body from one point to another. An element 

within the deformation gradient, F (see Eqn 3.3) where x is the current, deformed 

configuration, and u is the undeformed reference configuration. While this method is 

generally more robust than other methods, it is more expensive and slower. 

Teschner et al. described a method which adds a volume preservation term 

into the FEM calculations [THMG04]. This volume preservation term is zero unless 

the element is inverted in which case it adds a force working against the inversion. 

A third method is described by Nesme et al. [NPF05]. When calculating the 
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rotation matrix, they check that the last vertex is on the correct side of the triangle 

formed by the other three vertices in the tetrahedron. If not, they flip the last basis 

axis to make the basis right-handed. The methods presented by Teschner et al. and 

Nesme et al. are both efficient. The method of Nesme et al. fits well with the stiffness 

warping correction presented by Müller et al. [MG04]. 

3. Multi-physics: interacting with rigid bodies 

There are several methods for producing interactions between deformables and 

rigid bodies. Among those methods are one-way coupling, two-way coupling, and 

embedding. Davis performed comparisons between these methods, [Dav13]. 

One-way coupling is typically performed with one primary system and one 

passive system. The primary system can interact with the passive system, but the 

passive system cannot affect the primary system. While not physically-realistic, it 

can be used to great effect for visual purposes. 

For example, a passive cloth simulation coupled to a rigid-body engine as the 

primary system. In such a scenario, the cloth would be pushed around by the rigid 

bodies, but the rigid-bodies would be unaffected by the cloth. In systems with a large 

mass asymmetry, this can produce believable results. 

Two-way coupling is more complicated because the “passive” system can affect 

the “primary” system which means it is no longer passive. One important consequence 

of two-way coupling is that both systems must run at the same speed. For example, 

if cloth simulation system runs at 120 fps and a rigid body simulation runs at 60 
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fps, then the interactions between the two systems must run at 120 fps. Hence the 

computation cost of the rigid-body system is doubled by the two-way coupling. 

Fishman described the embedding method [Fis12]. Similar to one-way 

coupling, embedding has one primary system and other secondary systems. Secondary 

systems that require two-way interaction with the primary system are embedded into 

proxies for the primary system. The primary system does not define interactions with 

secondary systems. 

For example, consider interaction between rigid bodies and FEM deformables. 

In such an interaction, the rigid bodies could be the primary system. When an 

FEM is created, it is embedded into a rigid-body proxy. The rigid-body proxy then 

interacts within the rigid-body system, i.e., the rigid-body system sees the proxy as 

just another rigid body. During the rigid-body solving step, the rigid-body system 

applies resolution to the proxy the same way it would to any other rigid body. After 

this resolution step, the proxy reports the results to the embedded FEM. At this point, 

the FEM update step is run to calculate the resultant behavior of the deformable. 

This is the approach taken by [Fis12], because it is fast and efficient. The opposite 

approach of using rigid bodies as the secondary system and embedding them into an 

FEM was performed by Parker et al. [PEO09]. They only generated proxies for rigid 

bodies upon collision with an FEM deformable. This approach is slower, however it 

was required to implement proxies within a third-party rigid-body engine. 



CHAPTER 4 

Modeling Fracture 

There are a wide range of applications for simulating fracture. The techniques 

typically fall into one of two categories: physically-believable simulations and 

physically-accurate simulations. 

Fracture simulation is an area of interest for the physical science and 

engineering fields, notably condensed matter and material science [AS88, CRHG96, 

DM95]. In the physical sciences there is typically no user interaction nor graphical 

display of the fracture process. The goal is most often to understand properties of 

materials. These simulations are a prime example of simulation for accuracy, with 

little to no concern over the visual appeal of the fracture. The materials are often 

modeled using a lattice network. Each node in the lattice is a point mass connected 

to neighboring nodes via a spring-like force. The node motion is then simulated based 

on the spring forces affecting each node. These simulations are usually run with a 

time-step on the order of 1/c where c is the speed of sound in the material being 

simulated. This step size is far too small for the graphics and animation community 

hence the tendency to shy away from techniques such as this. 
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Medical surgery simulations are often found in a middle ground between 

physical-accuracy and physical-believability. The surgery simulations are typically 

run in an interactive fashion [BG00, BGTG03]. The goal of these simulations is to 

provide a surgery training tool and a planning tool. Biesler et al. addressed the 

issues of collision detection between the surgical tool and tissue, tissue relaxation 

after fracture, and optimization for interactivity. 

One of the earliest fracture simulations for graphical purposes is the seminal 

work of [TF88]. Animation for movies is one of the primary applications of non-real-

time physically-believable fracture simulation. Often the primary goal is convincing 

the viewer of the resultant animation behavior. Irving et al. animate human muscles 

during a key-frame motion of a skeleton in order to create a more plausible and 

believable animation [ITF06]. The results of Bao et al. include fracturing thin shell 

ornaments dropping on the ground [BHTF07]. Su et al. expand on previous work to 

allow faster fracture for an interactive frame-rate simulation [SSF09]. 

Real-time animation is almost entirely focused on speed and believability. 

These simulations are typically brief and bear less scrutiny as non-real-time 

animation, thus they sacrifice accuracy for performance. Parker et al. demonstrate 

fracture techniques in a game, Star Wars: The Force Unleashed [PEO09]. They 

implemented a FEM deformable based fracture technique (see section 2). Müller 

et al. demonstrate a real-time fracture simulation involving meteors destroying a 

coliseum in a convincing fashion, [MCK13] (see section 1). 
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1. Geometrically-based fracture 

One technique for fracture is using geometry to determine fracture planes after 

a collision. This avoids the need for expensive dynamics calculations at run time. This 

technique is usually applied to brittle fracture, as a deformation model would still 

be required for ductile fracture. Geometrically-based techniques rely on applying a 

prescored fracture pattern onto an impact point. This results in objects not fracturing 

under their own internal stresses. 

One issue with prescored fracture patterns is the constraint on artist’s control. 

If the fracture pattern is applied near the edge of the object, then part of the fracture 

pattern will go off the edge of the object. Su et al. address this problem by allowing 

the prescored pattern to be scaled in addition to translated, [SSF09]. In this method 

all of the pattern is guaranteed to be used. 

Another issue with prescored fracture techniques is making them appear 

different enough each time to be visually appealing. Müller et al. address this 

by performing “volumetric approximate convex decompositions” (VACD) on the 

fracturing body, [MCK13]. They set out three rules for meshes: 

• “They are composed of convex pieces.” 

• “The pieces do not overlap.” 

• “Two pieces are physically connected if and only if one piece has at least one 

face that (partially) overlaps a face on the other piece and the two faces lie in 

the same plane with opposite normals.” [MCK13] 
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The meshes they create via VACD fit these requirements, and they refer to said meshes 

as “compounds.” The algorithm proceeds as outlined in Algorithm 4. The fracture 

that develops from this algorithm is more dynamic than other geometrically-based 

algorithms because it depends on both the fracture pattern and the composition of 

the compound. 

Algorithm 4 VACD Fracture 

function FractureVACD 
Align fracture pattern to impact point 
Compute intersection of all cells with all convexes 
Fuse connected pieces into one object 
Form compounds from convex pieces in a cell 
Detect disjoint islands and separate them 

end function 

Geometric-based fracture methods involving Voronoi regions are presented in 

[BHTF07] and [SO14]. These methods are a hybrid between geometrically-based and 

physically-based fracture (see section 2). Using this method a fracture pattern is 

applied at the point of impact and the propagation is initiated based on the energy 

in the Voronoi cells of the entire body being fractured. In other geometrically-based 

fracture, the entire body is often not taken into consideration. 

2. Physically-based fracture using FEM deformables 

There are a number of ways physically-based fracture has been simulated. Here 

we discuss physically-based fracture using FEM deformables. 

O’Brien et al. used a very similar method to simulate brittle fracture in [OH99] 

and ductile fracture in [OBH02]. Their basic deformable model is based on the finite 
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element method in a similar fashion as outlined in section 2. After each time step, 

they resolve internal forces into tensile and compressive components. At each node, 

those forces are used to calculate a tensor describing how internal forces are acting 

to separate that node. Their algorithm proceeds as follows, 

• Resolve internal forces into tensile and compressive forces, discarding 

unbalanced portions 

• Form tensor describing internal forces that are acting to separate that node 

• If forces are large enough, split node and calculate splitting plane 

• All elements attached to node are split along the plane 

The eigenvalue is calculated in order to separate tensile and compressive forces out 

of the stress tensor of an element. The tensile component, σ+, corresponds to the 

positive eigenvalues while the compressive component, σ+ correspond to the negative 

eigenvalues, which are calculated by, 

X3
σ+ = max(0, v i(σ))m(n̂i(σ)) (4.1) 

i=1 

X3
σ+ = min(0, v i(σ))m(n̂i(σ)) (4.2) 

i=1 

where vi(σ) is the ith eigenvalue of the stress tensor, σ, n̂i(σ) is the corresponding 

unit length eigenvector, and m(a) is a symmetric matrix with |a| as an eigenvector, 

defined by, ⎧ ⎪⎨ ⎪⎩ 

aaT /|a| : a = 0 6
m(a) = (4.3) 

0 : a = 0 
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The tensile and compressive forces are concatenated into a separation tensor. If 

the largest positive eigenvalue, v+ of this tensor is greater than the material toughness, 

τ , then the material fails at the node. The corresponding eigenvector of this eigenvalue 

is used as the normal of the splitting plane. Once the splitting plane is calculated, all 

elements associated with the splitting node are examined to determine if they need to 

be remeshed. The remeshing algorithm, as outlined by O’Brien et al. [OH99] proceeds 

as follows, 

• The splitting node is replicated into two nodes, n+ and n− on the positive and 

negative sides of the splitting plane, respectively 

• All elements attached to the original node are examined 

• If an element is not intersected by the splitting plane, then the element is 

assigned to either n+ or n− depending on which side of the splitting plane the 

element lies. 

• If the plane does intersect an element, then that element is split along the 

plane. For each edge intersecting the plane, a new node is created. The 

intersected element will be split into three tetrahedrons because all elements 

must be tetrahedrons. 

One important distinction in [OH99] is the purposeful neglect of plasticity. 

This neglect of plasticity results in brittle fracture. Their later work includes the 

plasticity term which allows for the resultant behavior to include ductile fracture. 

The inclusion of plasticity has only minor affects on the fracture algorithm itself 
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however this change results in ductile fracture because the deformable will result in 

permanent deformation before the fracture. 

Similar to O’Brien et al, Müller et al. perform brittle fracture on FEM 

deformables, [MMDJ01]. Depending on the maximum eigenvalue in the stress tensor 

and the material type of the body being fractured, a radius of fracture, rfrac, is 

calculated. All tetrahedron within rfrac are marked as either positive or negative 

depending on which side of the fracture plane they lie on. The tetrahedrons with 

opposite signs are disconnected. Müller et al. note that the fracture plane can 

be used to split the tetrahedron at the origin of the fracture if that tetrahedron is 

particularly large. They also note that their method is advantageous because crack 

growth is independent of both time step and granularity of the FEM mesh. 

In [IO09], only surface cracks are simulated, rather than full fracture. As a 

follow up to the work discussed in [OH99] and [OBH02], the researchers used the 

finite element method to discretize their deformables. A triangle mesh is used for 

discretization instead of tetrahedrons, as they are only concerned with the surface. 

Additionally, the stress field is initialized with heuristics instead of a full FEM 

simulation. They use a four-part algorithm to generate and display the surface cracks 

as outlined in algorithm 5. 

Surface crack generation algorithm in [IO09] 

function SurfaceCrackGeneration 
Initialize stress field according to heuristics 
For each node compute failure criteria and store in a priority queue 
Crack the surfaced via user input and propagate via the stress field 
Display by moving the nodes or rendering cracks directly 

end function 
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Parker et al. simulated FEM deformables fracture in a real-time game engine, 

[PEO09]. In previous works, the fracture was allowed to split individual tetrahedral 

elements. In the work by Parker et al. this splitting is removed as an optimization. 

Instead, the FEM deformables are only allowed to split along tetrahedral boundaries. 

Additional differences include the idea of embedding the rigid-body system in an 

FEM proxy (see section 3. There were other optimizations they implemented as 

well. Another major optimization is the use of islands in the mesh. The islands are 

formed at runtime based on nodal adjacency and are put to sleep. Sleeping islands 

are not actively updated, unless they are awoken by a collision. Further optimization 

includes not running the fracture algorithm every frame as well as parallelizing certain 

calculations (e.g. stress tensor updates, eigenvalue calculation, etc). 

Parker et al. used rather coarse FEM meshes. In order to enhance the visual 

appeal of the fracture, they separated the graphical and FEM meshes. In order to 

couple the graphical mesh to the FEM mesh, they assign each point, in a graphical 

polygon to a tetrahedron in the deformable mesh. For a given point, a, the barycentric 

coordinates within the tetrahedron are calculated. As the tetrahedron is deformed, 

the position of a is updated based on the barycentric weights. 

3. Other techniques in fracture 

3.1. Fracture on the GPU. The expensive computations of fracture 

simulation are highly parallelizable. This lends itself to doing the calculations on 

the GPU. Real-time simulations are increasingly relying on the GPU, [PEO09], 
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[MCK13]. A modular framework for simulating deformation and fracture on the 

GPU is presented in [MAP12]. Parker et al. [PEO09] use the GPU to calculate values 

such as stress tensors in their fracture algorithm (see sections 2 and 2). 

3.2. Other fracture models. Pauly et al. modeled a deformable using a 

meshless method, [PKA+05]. Their fracture technique is easier for nodes to split 

as they are not connected via a mesh compared to an FEM deformable fracture 

model. One downside is the expensive meshless method simulation instead of an 

FEM simulation for modeling the deformable itself (see section 2.3). 

Glondu et al. simulate brittle fracture using modal analysis, [GMD13]. They 

break down the fracture algorithm into three parts. The first part is fracture initiation. 

For each fracturable body, an offline modal analysis estimates contact properties and 

deformation properties. Modal analysis is a measurement of vibrational modes of a 

material. In a material, certain frequencies are more likely to resonate. Resonance and 

vibrational modes are an enormous topic outside the scope of this work. Such topics 

are covered quite extensively in classical mechanics textbooks, such as [Gol50], [Fre65], 

or [TM08]. These properties are used to determine when and where fracture will be 

initiated on the body. Propagation of the fracture through the body is determined 

from a calculation of the stress state of the material, which is to say, once a crack tip 

is formed, it propagates in the direction of maximal stress. Generation of fracture 

fragments happens as they separate from the body. Glondu et al. stated the intent 

to extend this model to ductile fracture. 

Smith et al. simulated brittle fracture through the use of distance-preserving 
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linear constraints, [SWB00]. A fracturable body is a collection of particles connected 

via distance constraints. When colliding with another object, the distance constraints 

are broken at the point of impact. If the force applied to a particle is strong enough to 

break a constraint, it then weakens constraints around it. These weaken constraints 

are more likely to break, thereby propagating cracks. 

3.3. Post-processing techniques. Another approach to visually appealing 

fracture in real-time is the use of post-processing effects. Busaryev et al. [BDW13] 

used a FEM deformable approach to brittle fracture, similar to [OH99]. In addition, 

there is post-processing adaptive remeshing around the fractured area. After the 

fracture, the newly exposed area is remeshed with a finer mesh to represent a torn 

area. We note that in the work presented by Busaryev et al, they focused on multi-

layered thin plates. In follow-up work presented in [CYFW14], they demonstrate a 

similar technique as applied to a 3D FEM deformable fracture. 



CHAPTER 5 

Fracture Contribution 

The fracture technique of this work uses an elastostatic calculation of stress 

and strain and calculates a separation tensor at each node within a finite element 

method (FEM) deformable similar to that of Parker et al. [PEO09] and O’Brien et 

al. [OH99]. Fracture determination is made by analyzing this separation tensor. This 

work only fractures along element boundaries and does not split elements, as does 

Parker et al. [PEO09]. 

This work has several key differences from previous work. First, the work 

uses a custom algorithm for determining when to perform fracture based purely on 

aesthetics dubbed Aesthetic Joint Pruning (see Sect. 4.1). Second, this work uses 

rigid-body-proxies as a means for fracturable objects to interact with a rigid-body 

physics engine (see Sect. 5). Finally, this work presents a new “Plasticity-based 

fracture” technique for calculating fracture at nodes (see Sect. 6) that is compared 

to the separation tensor based model. 

The fracture algorithm (see Alg. 6) is performed independently on each island 

with each sub-step outlined below. 
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Algorithm 6 Fracture algorithm 

function FractureCalculation 
DecomposeInternalForces 
CheckNodesForFracture 
PerformFracture 

end function 

1. Simulation architecture 

Fracture simulation requires a thoughtful approach to general architecture for 

simulation purposes. For a deformable that cannot fracture, a single deformable 

entity is common practice, e.g., a finite element method (FEM) based deformable 

might have an engine entity called “FEMDeformable.” This entity would contain all 

relevant data for simulating the deformable as well as all the calculations to perform 

the simulation. 

Upon introduction of FEM-based fracture simulation, the simulation 

architecture must be flexible enough to support splitting of a deformable into two 

or more objects in a robust, efficient manner. Hypothetically, all volume elements 

and FEM-nodes could be used in a global CGM solver. However, such an architectural 

choice would eliminate the possibility for parallelization of the fracture simulation. 

This work utilizes a fracture architecture that allows islanding [PEO09]. 

1.1. Data storage. The storage method of the node and element data has 

a significant impact on the performance of an island-based FEM solver. This work 

stores the elements and nodes in manager classes, one manager for volume elements 

and one for nodes. The managers are structured in the same manner, using an array-
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linked-list to track elements for efficient insertion and removal. Each manager has an 

underlying array data structure. Each entity in the array contains indices referring 

to the previous and next entities in the list, i.e. a doubly-linked list. Unused entities 

are stored in a free list. Should an entity be destroyed, its data is cleared and it is 

returned to the free list. 

The node data includes: 

• Matrix container for global stiffness matrices associated with that node 

• Matrix container for global dynamics matrices associated with that node 

• Dynamics vector 

• Physical data: position, velocity, etc 

• A list of which elements are currently using this node 

The matrix containers are an STL map where the key is the index of a node interacting 

with the current node and the value is a 3x3 matrix. 

The element data includes: 

• Orientation matrices 

• Elasticity data: Young’s modulus, Poisson’s ratio, etc 

• Physical data: mass, volume, etc 

• A list of nodes used by this element 
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Because the elements and nodes are managed by a global system, there is no 

need for an FEM-based deformable entity to manage them. In order to render the 

simulation, a global list of exposed faces is tracked. Upon fracturing, newly exposed 

faces are added to this list. The list of faces is used to update a list of vertices, 

normals, and texture coordinates to be drawn. 

1.2. Islanding and solving. Because the elements contain which nodes 

compose this element, and the nodes keep track of which elements are using that node, 

a “connectivity graph” is formed that is used to form islands. At each simulation time 

step, nodes and elements are traversed in an exhaustive breadth-first manner with 

elements representing the “graph nodes” and the FEM-nodes representing the “graph 

edges.” The elements and nodes are set on islands during this traversal. This is very 

similar to a contact graph used to form islands in a rigid-body engine [Cat07]. 

Because individual islands have no connection to one another, they can be 

solved independently. As an additional optimization, the simulation caches islands 

if no fracture event occurred on that island. Island formation is handled by the 

“FEM-solver” subsystem. 

1.3. Rendering. The approach for rendering is a fairly simple one. The 

FEM-solver system maintains a list of “Graphical-Elements” to be rendered. A 

graphical-element is a key-value pair with a key of the FEM Element ID and a value 

which stores the local node indices which make up the face to be rendered. Separately, 

FEM-solver sends data to the GPU for rendering, including vertex position, normal, 
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and texture coordinates. This GPU data is accessible to systems outside of the 

simulation. After each island has been solved, FEM-solver uses the list of graphical-

elements to update the GPU data including the position and normal. 

1.4. Creation of rigid-body proxies at run-time. This work uses rigid-

body proxies (RBP) as the mechanic for interactions between the rigid-body system 

and the FEM system (see Sect. 3). Because of the overhead associated with 

collision detection and updating the proxy data, the number of RBPs should be 

minimized. For this reason, not all FEM elements are given a RBP. Creation of RBPs 

cannot be determined at compile time because fracture events can expose internal 

elements. Instead, only volume elements with exposed faces have a RBP. Using the 

aforementioned graphical-element list, the FEM elements are informed whenever a 

new graphical face is exposed. When an element is informed of its first exposed face, 

the element will create a proxy. This reduces the number of proxies and provides 

some boost to performance. 

2. Decomposing internal forces 

Decomposing the internal forces in an element is the process of breaking the 

stress into tensile and compressive forces at each node in the element. 

Recall that the stiffness matrix, K, is given by: 

K = VeB
T DB, (5.1) 
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Algorithm 7 Decomposing internal forces 

function DecomposeInernalForces 
for all element e do 
Compute stress tensor 
Decompose stress tensor into tensile and compressive components 
for all node i of e do 
Calculate and apply tensile and compressive forces 

end for 
end for 

end function 

where B is gradient of the element’s shape functions, Ve is the element’s volume, and 

D is the elasticity matrix. 

~Since the force on a node is given by f = K~u, the stress tensor is given by 

σ = DB~u. (5.2) 

where both D and B are both static per element and their product could be computed 

at initialization. 

O’Brien et al. present a method to decompose the stress tensor into tensile and 

compressive components [OH99]. Given a vector ~a in R3, a symmetric 3x3 matrix, 

m(~a) with ~a as an eigenvector can be constructed using the outer product, ⎧ ⎪⎪⎪⎨aa~~T /|~a| : ~a =6 ~0 
m(~a) = (5.3)⎪⎪⎪⎩0 : ~a = ~0. 

Let vi(σ) be the ith eigenvalue of σ with a corresponding unit length 

eigenvector n̂i(σ). The tensile, σ+, and compressive, σ−, components of the stress 

tensor can be calculated by 

X3
σ+ = max(0, v i(σ))m(n̂i(σ)) (5.4) 

i=1 
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3X 
σ− = min(0, v i(σ))m(n̂i(σ)). (5.5) 

i=1 

~ ~Using these, the tensile, f+, and compressive, f− forces from an element onto 

each node can be computed using 

f~+ = BT σ+ . (5.6) 

The compressive force can be calculated in a similar fashion using the 

compressive stress tensor. Alternatively, it can be calculated using f~ = f~+ + f~− . 

These forces are stored on each node as they are computed for later use in the fracture 

algorithm. 

3. Checking nodes for fracture 

Each node must be checked for fracture conditions after all elements using a 

particular node have finished calculating their tensile and compressive forces on that 

node. Checking nodes for fracture (see Alg. 8) is fairly straight forward. There are 

two main parts to the algorithm: computing the separation tensor and calculating 

eigenpairs. The separation tensor is formed from the tensile and compressive forces 

acting on a node. The eigenvalues and corresponding eigenvectors (i.e. eigenpairs) 

are used to determine if and how the fracture occurs. 

The simulation calculates the separation tensor similarly to O’Brien et al. 

~ ~[OH99]. Let {f+} and {f−} represent the set of compressive and tensile forces i i 

~on the ith node, respectively. The set of forces on the node are denoted by {fi}. 



38 

Algorithm 8 Checking nodes for fracture 

function CheckNodesForFracture 
for all node n do 
Compute separation tensor 
Compute eigenvalues λ of separation tensor 
if λ > material toughness then 
Fracture occurs at that node 
Fracture plane defined by corresponding eigenvector 

end if 
end for 

end function 

The corresponding sums of the compressive, tensile, and total forces on a node are 

~f

~a

~f

i. Using the m(

tensor can be calculated as, 

~f

X X1 + ) + m( − 

∈{

represented by , and ) notation (see Sect. 2), the separation , +~fi
−~fi

~fm( )). (5.7)(−m( ) −ζ
~f

) + m(

∈{

= 
2

~fi
~fi

i~fi} }i
~f+ 

For calculating the eigenpairs of this tensor, the simulation uses an open-source 

solution, Eigen [GJ+10]. When checking for fracture, the simulation uses only the 

largest, positive eigenvalue to check for fracture. 

4. Perform fracture 

Once a fracture plane has been found, fracture must be performed. The 

simulation uses an approach similar to that of Parker et al. [PEO09]. The general 

algorithm is outlined in Alg. 9. 

There are several subtleties in the fracture algorithm. 

• Instead of performing all fracture events each frame, the simulation only 

performs the largest fracture event in a given time-step. 
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Algorithm 9 Performing fracture 

function PerformFracture 
for all Fracture events do 
Replicate fracture node 
for all Element e on original node do 

if e is on positive side of fracture place then 
Replace original node with replicated node 
Attach e to replicated node 

else 
e retains relation to original node 

end if 
end for 
Recalculate cached data 
Expose new element faces 
Aesthetic Joint Pruning 

end for 
end function 

• For determining which side of the fracture plane an element resides on, a 

distance from plane to element center calculation is used. 

• Fracture calculations are skipped on islands with 3 or less elements for aesthetic 

reasons. Fracture events on such islands produce single-tetrahedral islands. 

• Node mass needs to be recalculated on fracture as node mass is determined by 

the elements that are sharing that node. 

• Sometimes a fracture event creates a node with no elements attached. In these 

cases the replicated node is destroyed, and the fracture event is skipped. 

• In order to expose element faces, the simulation checks each element for a face-

face connection based on pre-fracture node list. 
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Figure 2. Ball joint. 

A ball joint where two tetrahedrons share a node. 

4.1. Aesthetic Joint Pruning. The simulation’s post-fracture visual clean 

up, or Aesthetic Joint Pruning, is an algorithm to determine when additional fractures 

should be performed. This is the first presentation of such an algorithm. 

During a fracture event, hinge and ball joints can form. A ball joint is when 

two elements are connected by a single node (see Fig. 2). A hinge joing occurs when 

two elements are connected by a single edge (see Fig. 3). This is an artifact of 

elements only being connected at shared nodes and is not visually appealing. The 

simulation checks for these joints and breaks them. If an element has three exposed 

faces that share a single fracture node, then it must have a ball joint. This implies 

that if all faces attached to a node are exposed, there is a ball joint at that node (see 

Fig. 2). In this case, the simulation replicates the node and attaches the element 

with the exposed faces to the new copy of the node, eliminating the ball joint. 

Certain cases are not caught by this simple algorithm, such as the case where 

a hinge forms on a double-tetrahedron. A more robust algorithm might look at all 

exposed faces attached to a node and count them in order to determine if a ball 
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Figure 3. Hinge joint. 

A hinge joint where two tetrahedrons share an edge. 

joint has occurred. Alternatively a robust graph traversal using face-face connections 

between elements could also determine if this case exists. These cases are rare and 

the computational overhead of dealing with them was deemed unnecessary. 

For a hinge joint (Fig. 3), there must be two exposed faces on either side of an 

edge between two nodes on an element. In this case, each node on the edge must be 

used by multiple elements. This joint is broken in a similar fashion as the ball joint 

case. The node replication is repeated for both nodes rather than the single node of 

a ball joint. 

5. Rigid-body proxies 

The simulation uses a Lagrangian velocity-constraint-based rigid-body engine 

[Cat05]. Collision detection is handled through Gilbert-Johnson-Keerthi Expanding-

Polytope-Algorithm (GJK-EPA), [GJK88, Ber00]. The work of this section expands 

upon previous work by Fishman and Davis, [Fis12, Dav13] (see Sect. 3). This 
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is the first simulation to use rigid-body proxies to interact with fractureable FEM 

deformables. 

5.1. Proxy data. In order to simulate the interaction between FEM-based 

deformables and rigid bodies, the proxy needs certain data including velocity, mass, 

inertia tensor, and angular velocity. There are several ways which this information 

could be calculated and presented to the rigid-body proxy. The most notable issues 

are surrounding the mass and inertia tensor. 

Given that an FEM deformable is broken into nodes, volume elements 

(tetrahedrons), and islands, there are several things to consider. The proxies and 

colliders are attached to the individual tetrahedrons (with GJK-EPA being run on 

the tetrahedron). One might consider using an entire island with a proxy. Two major 

issues arise from this alternate solution when dealing with fracture: the FEM-based 

deformable can quickly become non-convex so a non-convex collision detection scheme 

would be required and updating of proxies every frame with changes in the deformed 

shape. Secondly, due to the breaking and reforming of islands, the proxies would 

require regular destruction and recreation. 

Determining how the mass and inertia tensor are calculated for each proxy is 

another major concern. From the perspective of the FEM-solver, the tetrahedrons 

are of uniform density, and the mass in the model is distributed at the nodes (see 

Sect. 2). That is to say that the mass of a tetrahedron is not equal to the sum of 

the masses of the nodes comprising that tetrahedron as the nodes are shared across 

multiple tetrahedrons. 
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Three possibilities for calculating mass of the proxy are the mass of the 

tetrahedron, the sum of the masses of the nodes on the tetrahedron, and the mass 

of the whole island. For this simulation, all cases were tested and the best stability 

was found when using the mass of the whole island for each tetrahedron. While 

this is physically unintuitive, stability and visual appeal are more important in a 

real-time environment than physical accuracy. In the cases of using the sum of the 

node masses or the mass of the tetrahedron, the interaction is only strong enough to 

effect the motion of the element instead of the motion of the center of mass of the 

whole island. This leads to strong local effects which require very small time steps 

to stabilize and propagate believably to the rest of the deformable body. It should 

also be noted that whenever an island is fractured, the mass of the proxies must be 

updated to reflect the new islands they reside on. 

The momentum of the proxies are calculated using, 

3X 
Mp ~vp = mi ~vi, (5.8) 

i=0 

where Mp and vp are the proxy mass and velocity, respectively, and mi and vi are the 

ith node mass and velocity, respectively. 

Similar considerations must be made when calculating the inertia tensor of 

the tetrahedron. The simulation uses a simple point-mass model for calculating the 

inertia tensor, [Gol50,Fre65]. For the sake of stability and consistency with the mass 

calculations, the inertia tensor is calculated by evenly distributing the mass of the 

proxy to the nodes. In other words, each node uses one-quarter of the proxy mass 

for inertia tensor calculations. While this overestimates the inertia tensor, it was 
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not found to create stability issues. An alternative approach could approximate the 

tetrahedral inertia tensor [BB04]. The angular momentum of the proxy is calculated 

using, 
3X 

~Ipω~ p = (~pi − Ce) × mi ~vi, (5.9) 
i=0 

~where Ip and ~ωp are the inertia tensor and angular velocity of the proxy, Ce is the 

center of the tetrahedral element, and p~i is the position of the ith node. 

5.2. Proxy-proxy collisions. When considering proxy-proxy collisions its 

important to allow self collisions as a highly fractured deformable can easily collide 

with itself. Not all elements within an island should collide with each other, e.g. two 

neighbor elements that are interacting via the FEM-solver shouldn’t collide as their 

interaction is defined by the FEM-solver. 

The rigid-body engine uses a jump table of function pointers to determine what 

collision detection function to use based on the collider’s shape. As an example, the 

rigid-body engine uses a separate sphere-sphere collision function instead of running 

GJK-EPA on sphere-sphere interactions. In this jump table, the proxy-proxy function 

performs a check on the two proxies to determine if they are collidable or not. The 

determination is made based on shared nodes. If the two elements share any nodes, 

then they cannot collide. 

Alternative solutions could increase the number to one allowable shared node 

or perform a check to see how the two elements are connected (e.g. hinge or ball 

joint). This simulation uses aesthetic joint pruning which would eliminate cases where 

elements might collide if they are connected by 1 or 2 nodes (see Sect. 4.1). 



45 

5.3. Single tetrahedron islands. After fracture events, it is possible for 

a single tetrahedron to be separated into its own island. This can be an issue for 

stability and aesthetic reasons. A single tetrahedron is not a valid FEM-based object 

as the FEM technique works on a continuous volume broken into discrete pieces. 

Depending on the Young’s modulus of a material, a single tetrahedron can appear 

unstable while resting on the ground. If the Young’s modulus is too low, it will 

compress in unappealing ways. If it is too high, it will appear to hop on the ground. 

Even the most ideal values have some minor appears of jittering. 

One attempted solution to this problem is to choose not to run certain parts of 

the FEM solving algorithm on a single tetrahedron (e.g. conjugate gradient method). 

The idea being that this single tetrahedron would behave as if it were a simple rigid 

body. This resulted in worse stability. Other proposed solutions include removing 

a single tetrahedron when detected or changing the rigid-body proxy into a true 

rigid-body if simply removing objects is not desired. 

6. Plasticity-based fracture 

This simulation has the option of running an entirely new fracture technique, 

referred to as plasticity-based fracture. The fracture determination is made based on 

excess plastic force. 

Previously, any plastic force over the maximum allowable is ignored. In this 

technique, that excess force is stored on each node. When checking for fracture, the 
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magnitude of the excess, pexcess, is calculated using, 

X 
~pexcess = |fi,pexcess |, (5.10) 

i 

~where is the excess plastic forces from each element on that node. fi,pexcess 

The fracture plane is calculated using, 

X 
~n̂ = normalize( ), (5.11)fi,pexcess 

i 

where n̂ is the fracture plane normal. 

After performing a fracture event, all elements attached to the fractured node 

have their plasticity reduced by an arbitrary factor. Additionally, the fracture node 

has its excess plastic force cleared. These two measures help reduce chance of 

catastrophic fracture. If these measures are not in place, then the nodes fracture 

repeatedly in successive frames. 

One disadvantage of this technique is its non-physical basis for computing 

n̂. The more traditional fracture calculation discussed previously is more physically 

accurate in this regard. However, this new technique is a computationally inexpensive 

method for calculating fracture in an FEM-based deformable. 

7. Computational expense comparison 

Analysis comparing plasticity-based fracture to separation tensor-based 

fracture was performed with regards to computational expense. 
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7.1. Floating point calculation analysis. A floating point operation 

(FLOPS) estimation was performed between the two algorithms, separation tensor-

based fracture and plasticity-based fracture. The analysis was done on a per node 

and per element basis. 

For separation tensor-based fracture, the following assumptions were made: 

1) an eigenvalue calculation takes about 90 floating point operations. 2) For this 

calculation, each node has 4 tensile and 4 compressive components. 3) Per element, 

it is estimated that the stress tensor computation takes 216 FLOPS. 4) Decomposing 

the stress tensor takes about 315 FLOPS. 

This leads to a total of 531 FLOPS per element per fracture calculation. On 

a per node basis, computing the separation tensor takes about 213 FLOPS and 

decomposing the separation tensor takes about 90 FLOPS for a total of 303 FLOPS 

per node per fracture calculation. 

For plasticity-based fracture, one assumption was made: similar to the second 

assumptions for separation tensor-based fracture, there are about 4 plastic excess 

forces per node. On a per element basis, it is estimated there are roughly 48 FLOPS 

per element per fracture step. On a per node basis, it is estimated to take 51 FLOPS 

per node per fracture step. 

7.2. Profiling comparison. A comparison between the two techniques was 

made using a custom system profiler. The profiling was run on objects with varying 

number of elements and nodes. The results are compared by amount of time spent in 

fracture calculation versus number of elements plus the number of nodes (see Fig. 4). 
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Figure 4. Comparison of fracture calculation time by technique.. 

Lines were added to guide the eye. 
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Figure 5. Sub-step comparison for separation tensor. 

The data columns are stiffness assembly (blue), dynamics assembly (red), conjugate 
gradient solver (orange), and separation tensor-based fracture calculation (green). The 
plasticity-based fracture calculation column (teal) is indistinguishable from the x-axis. 

The data was taken on an island with 250 nodes + elements. 

A log fit to the data was performed to guide the eye. In the chart, the blue, bottom 

line is for plasticity-based fracture and the red, top line is for separation tensor-based 

fracture. There are several parts of the FEM-based deformable that contribute to the 

overall computation expense. A comparison of how the fracture techniques stand up 

against the other contributions can be seen in figure 5. On the chart, the y-axis is 

a measure of time in milliseconds, and along the x-axis is the sub-step contributions 

to the total computation time. With plasticity-based fracture, the computational 

bottle-neck is no longer the fracture calculations, but rather the other parts of the 
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deformable calculation. 



CHAPTER 6 

Conclusions 

Fracture simulation is a broad field. It has increasing applications in real-time 

environments [PEO09, MCK13], and offline animations [BHTF07, SSF09]. Growing 

computational power is increasing the number of viable options for fracture simulation 

in real-time. 

In the area of real-time fracture simulation, speed and aesthetic appeal 

are of utmost concern. Finite-element-method-based deformation and fracture 

is computationally expensive. This thesis presents a new approach to fracture, 

“Plasticity-based fracture,” that is less computationally expensive than other 

techniques. Plasticity-based fracture is efficient enough that the computational bottle 

neck for fracture simulation is no longer the fracture calculations. This thesis also 

presents an algorithm to allow low-resolution fracture to look more appealing through 

joint pruning (“Aesthetic Joint Pruning”), and it presents a technique for interacting 

with rigid-bodies by creating rigid-body proxies at run-time. 

The techniques presented here should help to push the field of real-time, 

dynamic fracture forward by presenting faster algorithms and allowing for the use 
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of lower resolution models especially if combined with mesh coupling [PEO09]. The 

rigid-body proxy system provides a way to add physically-based ductile fracture to 

an existing rigid-body engine. 

Future work in this area includes finding a better technique for calculating 

the fracture plane in plasticity-based fracture, better friction handling for rigid-

body proxies, multi-threading and GPU implementations, and dealing with collision 

detection, including an effective broad phase for highly tesselated, deformable objects. 



APPENDIX A 

LINEAR COMPLEMENTARITY PROBLEM 

The linear complementarity problem (LCP) was originally presented in [CD68]. 

The general formulation, as explained in [Erl13], is given by the equation: 

~~y = A~x + b, (A.1) 

where the vectors are in Rn and A is in Rn×n . The solution is further restricted by: 

• ~x ≥ 0, 

~• (A~x + b) ≥ 0, 

T (A~ ~• ~x x + b) = 0. 

These restrictions must be satisfied in order to have a solution for values of ~y and ~x. 

Note that the restrictions are defined without the use of ~y, and that (the first two 

items in the aforementioned list) the conditions hold on an element-wise case, i.e. if 

~x ≥ 0 then xi ≥ 0 for all i. The LCP shows up in physics simulation when solving a 

~system of bodies interacting by Newton’s second law, F = m~a 

For a detailed example, we turn to the one dimensional case. The conditions 

on the equation y = ax + b, become: 

• x ≥ 0, 

• ax + b ≥ 0, 
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b < 0 b = 0 b > 0 

a < 0 0 1 2 
a = 0 0 ∞ 1 
a > 0 0 1 1 

Table 1: Solution space for 1D LCP for x, y as discussed in [Erl13]. Shows the number of 
possible solutions for x, y in the 1D case for each combination of a and b. 

• x(ax + b) = 0, 

where a, x, b, and y are all members of R. The third condition can be rewritten as 

xy = 0. Due to this condition, the solutions are restricted such that either x = 0 

or y = 0. We can consider our solution space by the table 1. This table contains 

the number of solution sets which are possible for the various combinations of x and 

y. As an example, if we consider the case where b = −1 and a = 1, then the only 

possible solution (as the table says there is only one possible solution) is that x = 1 

and y = 0. Considering the case where b = 1 and a = −1, then there must be two 

solutions as outlined in the table: (0, 1) and (1, 0) (in the notation (x, y)). 

If the matrix A is invertible, then it is possible to solve LCP through matrix 

inversion. However, it is often not the most efficient method for solving the problem. 

Notably, if the matrix is singular (i.e. non-invertible) or if it is a large, sparse matrix, 

then numerical solvers are the best option. There are a number of numerical solvers 

that exist for LCPs including Projected Gauss Seidel (see [Erl13]) and Conjugate 

Gradient Method (see appendix B). 



APPENDIX B 

CONJUGATE GRADIENT METHOD 

A very thorough discussion of the Conjugate Gradient Method (CGM) is 

presented in [She94]. Here we present only a brief outline. CGM was developed 

in order to solve large systems of linear equations of the form: 

~b~xA

where A is a known, symmetric, positive-definite matrix in Rn×n 

(B.1)= , 

, ~b is a known vector 

in Rn, and ~x is a vector in Rn which we are solving for. 

CGM works iteratively and is efficient for solving large, sparse matrices, such 

as the stiffness matrix discussed in section 2.4. This linear system of equations is a 

special case of the LCP, presented in appendix A), with ~y = 0 from equation A.1. 

~x~x

The solution to equation B.1 will minimize the quadratic form, 

1 T Af( T~b−) = + c (B.2)~x ~x
2 

~x, A, and ~bwhere are the same as in equation B.1, and c is a scalar constant. 

~x

~x

The quadratic form can be minimized by setting the gradient of f( ) to 0 and 

solving for The gradient of f( ) is given by ~x. 

1 1 
AT −~b −~b (B.3)) = ~x+ 
2 2 

~x~x~xrf( A = A

where the simplification in the final form is the result of A being a symmetric matrix. 
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In order to solve this system of equations, iteratively choose orthogonal search 

directions d0, d1, ..., dn−1 in the phase space of A. The initial direction is given by, 

~ ~d0 = r~0 = b − Ax~0, where x~0 is the initial guess of ~x, and i + 1 direction is given by, 

~ ~di+1 = ~ri+1 + βi+1di, (B.4) 

where β is given by 
T~ri+1 ~ri+1βi+1 = 

T . (B.5) 
~r ~rii 

The residual, ri, is updated via 

~~ri+1 = ~ri − αiAdi, (B.6) 

where α is given by 
T~r ~ri

αi = i . (B.7)
~ ~dTi Adi 

The indices i range from 0 to n. 

The residual is related to the error term by transforming the error, ~e by A, i.e. 

d~T ~r~i = A~e. The search directions are conjugate with respect to A, i.e. i Adj = 0 for 

i 6 Algorithmically, CGM has four primary steps: = j. 

~• Update ~xi+1 based on search direction, di 

~• Update residual, ~ri+1, based on search direction, di 

• If the residual is small enough, exit 

~• Update search direction, di+1, based on residual, ~ri+1 
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The search direction is updated via the residual because of the aforementioned relation 

between residual and error. Updating the search direction in this manner also provides 

a new search direction which is orthogonal, or conjugate, in A [She94]. 



APPENDIX C 

GRAM-SCHMIDT ORTHONORMALIZATION AND POLAR 

DECOMPOSITION 

Gram-Schmidt orthonormalization and polar decomposition are two techniques 

used to construct rotation matrices for finite element method based deformables (see 

section 2). 

1. Gram-Schmidt orthonormalization 

Gram-Schmidt orthonormalization is a technique for transforming a set of 

linearly independent functions into an orthogonal basis [AW05]. Consider a set of 

k linearly independent vectors, a1, a2, ..., ak. We can define the projection of vector 

a onto vector e using the inner product (for vectors in RN , simply the dot product): 

he, ai 
projea = . (C.1)

he, ei 

We can calculate a set of orthogonal vectors, u1, u2, ..., uk, using: 

u1 = a1, (C.2) 

u2 = a2 − proje1 
a2, (C.3) 

kX 
uk = ak − projej 

ak, (C.4) 
i=j 

where ei = ui . We can now construct an orthonormal matrix from the vectors ei.|ui| 
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2. Polar decomposition 

In polar decomposition, a square, invertible matrix, A, can be uniquely 

decomposed into 

A = UP (C.5) 

where P is the orthonormal basis and U is the transformation matrix between the 

basis and A. The matrix P is calculated by 

P = (A ∗ A)( 
1 
, (C.6)2 )

where A∗ is the conjugate transpose of the matrix, and U is: 

U = AP−1 . (C.7) 

The matrix P is the orthonormal matrix used for rotations. 
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and Leonidas J. Guibas. Meshless animation of fracturing solids. ACM 

Trans. Graph., 24(3):957–964, 2005. 



66 

[Pro96] Xavier Provot. Deformation constraints in a mass-spring model to 

describe rigid cloth behavior. In Graphics Interface, pages 147–154, 1996. 

[Red05] J. N. Reddy. An Introduction to the Finite Element Method. 

Hill, 3rd edition, 2005. 

McGraw-

[Say08] Francisco-Javier 

method, 2008. 

Sayas. A gentle introduction to the finite element 

[She94] Jonathan R Shewchuk. An introduction to the conjugate gradient method 

without the agonizing pain. Technical report, Pittsburgh, PA, USA, 1994. 

[SO14] Sara C. Schvartzman and Miguel A. Otaduy. Fracture animation based 

on high-dimensional voronoi diagrams. In Symposium on Interactive 3D 

Graphics and Games, I3D ’14, San Francisco, CA, USA - March 14 - 16, 

2014, pages 15–22, 2014. 

[SSF09] Jonathan Su, Craig A. Schroeder, and Ronald Fedkiw. Energy stability 

and fracture for frame rate rigid body simulations. In Dieter W. Fellner 

and Stephen N. Spencer, editors, Symposium on Computer Animation, 

pages 155–164. ACM, 2009. 

[SWB00] Jeffrey Smith, Andrew Witkin, and David Baraff. Fast and controllable 

simulation of the shattering of brittle objects. In Graphics Interface, 

pages 27–34. Blackwell Publishing, 2000. 

[TF88] Demetri Terzopoulos and Kurt Fleischer. Modeling inelastic deformation: 



67 

Viscolelasticity, plasticity, fracture. SIGGRAPH Comput. Graph., 

22(4):269–278, June 1988. 

[THMG04] Matthias Teschner, Bruno Heidelberger, Matthias Müller, and Markus H. 

Gross. A versatile and robust model for geometrically complex deformable 

solids. In Computer Graphics International, pages 312–319. IEEE 

Computer Society, 2004. 

[TM08] P.A. Tipler and G. Mosca. Physics for Scientists and Engineers: With 

Modern Physics. W. H. Freeman, 2008. 


	Copyright
	Title Page
	Abstract
	Table of Contents
	LIST OF FIGURES
	List of Algorithms
	CHAPTER 1 Introduction
	CHAPTER 2 Physics and Math Primer
	Physics background
	Hooke's law
	Brittle versus ductile fracture

	Numerical techniques
	Finite difference method
	Boundary element method
	Meshless method
	Finite element method


	CHAPTER 3 Modeling Deformation
	Spring-based deformables
	Finite element method deformables
	Time integration
	Stiffness matrix
	Plasticity forces
	Dynamics assembly and lumped mass matrix
	Stiffness warping
	Element inversion

	Multi-physics: interacting with rigid bodies

	CHAPTER 4 Modeling Fracture
	Geometrically-based fracture
	Physically-based fracture using FEM deformables
	Other techniques in fracture
	Fracture on the GPU
	Other fracture models
	Post-processing techniques


	CHAPTER 5 Fracture Contribution
	Simulation architecture
	Data storage
	Islanding and solving
	Rendering
	Creation of rigid-body proxies at run-time

	Decomposing internal forces
	Checking nodes for fracture
	Perform fracture
	Aesthetic Joint Pruning

	Rigid-body proxies
	Proxy data
	Proxy-proxy collisions
	Single tetrahedron islands

	Plasticity-based fracture
	Computational expense comparison
	Floating point calculation analysis
	Profiling comparison


	CHAPTER 6 Conclusions
	APPENDIX A Linear Complementarity Problem
	APPENDIX B Conjugate Gradient Method
	APPENDIX C Gram-Schmidt Orthonormalization and Polar Decomposition
	Gram-Schmidt orthonormalization
	Polar decomposition

	REFERENCES



