
c
 2015, DigiPen Institute Of Technology and DigiPen (USA) Corporation.
All Rights Reserved.

The material presented within this document does not necessarily reflect the opinion of the
Committee, the Graduate Study Program, or DigiPen Institute of Technology.

REAL-TIME, PLASTICITY-BASED FRACTURE USING THE FINITE

ELEMENT METHOD AND RIGID BODY PROXIES

BY

Garrett O’Malley

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

awarded by DigiPen Institute of Technology
Redmond, Washington
United States of America

May
2015

Thesis Advisor: Erik Mohrmann

DIGIPEN INSTITUTE OF TECHNOLOGY

GRADUATE STUDIES PROGRAM

DEFENSE OF THESIS

THE UNDERSIGNED VERIFY THAT THE FINAL ORAL DEFENSE OF THE

MASTER OF SCIENCE THESIS TITLED

Real-time, plasticity-based fracture using the finite element method and rigid body

proxies

BY

Garrett O’Malley

HAS BEEN SUCCESSFULLY COMPLETED ON May 19th, 2015.

MAJOR FIELD OF STUDY: COMPUTER SCIENCE.

APPROVED:

Dmitri Volper date Xin Li date

Graduate Program Director Dean of Faculty

Dmitri Volper date Claude Comair date

Department Chair, Computer Science President

DIGIPEN INSTITUTE OF TECHNOLOGY

GRADUATE STUDIES PROGRAM

THESIS APPROVAL

DATE: May 19th, 2015

BASED ON THE CANDIDATE’S SUCCESSFUL ORAL DEFENSE, IT IS

RECOMMENDED THAT THE THESIS PREPARED BY

Garrett O’Malley

ENTITLED

Real-time, plasticity-based fracture using the finite element method and rigid body

proxies

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE

AT DIGIPEN INSTITUTE OF TECHNOLOGY.

Erik Mohrmann date Xin Li date

Thesis Committee Chair Thesis Committee Member

Jason Hanson date Gary Herron date

Thesis Committee Member Thesis Committee Member

ABSTRACT

This thesis presents a survey of real-time finite element method based

deformable fracture and presents new techniques in the field. Techniques for

simulating fracture, including physically-based and geometrically-based techniques,

are described. Considerations are given to real-time vs. non-real-time applications as

well as appearance, believability, precision, and accuracy. The focus in this research

has been to reduce the computational expense of fracture, the aesthetic appeal of

low-resolution fracture meshes, and interaction with rigid-bodies.

v

ACKNOWLEDGMENTS

For Louisa and her endless patience, support, and encouragement.

For Dr. Erik Mohrmann and his countless explanations to help me build a

better simulation.

vi

TABLE OF CONTENTS

Page

LIST OF FIGURES . x

CHAPTER 1 Introduction . 1

CHAPTER 2 Physics and Math Primer . 3

1. Physics background . 3

1.1. Hooke’s law . 3

1.2. Brittle versus ductile fracture 5

2. Numerical techniques . 6

2.1. Finite difference method . 6

2.2. Boundary element method . 7

2.3. Meshless method . 7

2.4. Finite element method . 8

CHAPTER 3 Modeling Deformation . 9

1. Spring-based deformables . 9

2. Finite element method deformables 11

2.1. Time integration . 12

2.2. Stiffness matrix . 14

2.3. Plasticity forces . 15

2.4. Dynamics assembly and lumped mass matrix 16

2.5. Stiffness warping . 17

vii

Page

2.6. Element inversion . 18

3. Multi-physics: interacting with rigid bodies 19

CHAPTER 4 Modeling Fracture . 21

1. Geometrically-based fracture . 23

2. Physically-based fracture using FEM deformables 24

3. Other techniques in fracture . 28

3.1. Fracture on the GPU . 28

3.2. Other fracture models . 29

3.3. Post-processing techniques . 30

CHAPTER 5 Fracture Contribution . 31

1. Simulation architecture . 32

1.1. Data storage . 32

1.2. Islanding and solving . 34

1.3. Rendering . 34

1.4. Creation of rigid-body proxies at run-time 35

2. Decomposing internal forces . 35

3. Checking nodes for fracture . 37

4. Perform fracture . 38

4.1. Aesthetic Joint Pruning . 40

5. Rigid-body proxies . 41

viii

Page

5.1. Proxy data . 42

5.2. Proxy-proxy collisions . 44

5.3. Single tetrahedron islands . 45

6. Plasticity-based fracture . 45

7. Computational expense comparison 46

7.1. Floating point calculation analysis 47

7.2. Profiling comparison . 47

CHAPTER 6 Conclusions . 51

APPENDIX A LINEAR COMPLEMENTARITY PROBLEM 53

APPENDIX B CONJUGATE GRADIENT METHOD 55

APPENDIX C GRAM-SCHMIDT ORTHONORMALIZATION AND POLAR

DECOMPOSITION . 58

1. Gram-Schmidt orthonormalization . 58

2. Polar decomposition . 59

REFERENCES . 60

Bibliography . 67

ix

1

2

3

4

5

LIST OF FIGURES

Figure Page

Comparison of stiffness warping . 17

Ball joint . 40

Hinge joint . 41

Comparison of fracture calculation time by technique. 48

Sub-step comparison for separation tensor 49

x

1

2

3

4

5

6

7

8

9

List of Algorithms

Update loop for FEM objects . 12

Assembling the global stiffness matrix and global force vector 15

Calculating offset force . 16

VACD Fracture . 24

Surface crack generation algorithm 27

Fracture algorithm . 32

Decomposing internal forces . 36

Checking nodes for fracture . 38

Performing fracture . 39

CHAPTER 1

Introduction

Fracture simulation is of interest in many fields. Simulations for Condensed

matter physics and material science require accuracy because of the focus of these

fields on understanding material properties [AS88, CRHG96, DM95]. Procedural

fracture has been an area of interest to the computer graphics community for

over twenty years [TF88]. Fracture simulation is used in offline animation

[BHTF07,SSF09], and computing power has progressed to the point where real-time

fracture simulation has been demonstrated in interactive and game environments

[PEO09, MCK13].

This thesis examines the field of fracture simulation with a primary interest

in real-time simulations. Offline animation is discussed primarily in the context of

inspiration for real-time simulations. The core of this paper focuses on the use of the

finite element method as a means to simulate deformation and fracture in real-time

through linear approximations.

In the area of real-time fracture simulation, speed and aesthetic appeal is of

utmost concern. The finite element method is a computationally expensive technique

2

and long-standing fracture techniques add expense and another rate limiting step.

This thesis presents a new approach to fracture, “Plasticity-Based Fracture,” that is

computationally inexpensive. This thesis also presents an algorithm, “Aesthetic Joint

Pruning,” to allow low-resolution fracture to look more appealing, and it presents a

technique for interacting with rigid-bodies by generating rigid-body proxies at run

time.

CHAPTER 2

Physics and Math Primer

1. Physics background

Many modern simulators use physics techniques for creating realism and

believability. This chapter introduces the physics of deformation and fracture.

1.1. Hooke’s law. Hooke’s law is a first order approximation for restoring

forces that depend on distance, in one dimension [Gol50, Fre65, TM08]. Hooke’s law

describes the force a spring would exert on a weight that is either stretching or

compressing the spring. As the spring is stretched or compressed, the force increases

proportionally. The constant of proportionality, k, depends on the stiffness of the

spring. Hooke’s law has solutions which are oscillations. It can be written as:

~F = −k~x, (2.1)

~where F is the force and ~x is the displacement.

Hooke’s law can be considered as an elastic stress-strain model [LRK10]. Stress

is a measurement of force per area while strain is the ratio of deformation of the

initial length. For a spring, the stress is the applied force on the spring, and k~x

4

is the response behavior of the spring causing strain as long as the spring is not

stretched past its elastic region. It is important to note that the strain response is

proportional to the applied stress. When generalizing the stress-strain relationship

to a continuous medium which allows shear, rather than a simple spring system, the

equation becomes:

σ = c�, (2.2)

where σ is the stress tensor of the applied forces and shears, c is the stiffness tensor

which is analogous to the previous spring constant, k, and � is the resultant strain.

The off-diagonal elements of σ represent shear stresses. Shear stress is the

component of the force which is coplanar to the cross section of a body as opposed

to normal stress which is force component perpendicular the material cross section.

For example, compressing marshmallow peep in the x direction causes the peep

to expand in the y and z directions. The ratio of this compression to expansion is

indicated by Poisson’s Ratio, ν.

Poisson’s ratio is used to model multi-dimensional interactions. Poisson’s ratio

is defined as the amount of contraction when strained in a particular direction. For

example, an object strained in the x-direction would have a ratio, ν given by

�y
ν = − , (2.3)

�x

where �y is the contraction strain in the y-direction, �x is the strain in the x-direction.

For a homogenous material, where νyx = νzw = νyz, Poisson’s ratio applies

equally in all perpendicular dimensions, �y = �z = −ν�x. In three-dimensions, the

total strain in a particular dimension, e.g. in the x-direction, is the sum of the strain

5

in all the components, e.g.:

�x = �x from σx + �x from σy + �x from σz = (σx − νσy − νσz)/E, (2.4)

where E is Young’s Modulus of the material and with similar equations for the y and

z directions.

Young’s Modulus, or elastic modulus, is a measurement of the stiffness of a

material. It is defined as the ratio of stress along an axis to the strain along that axis.

1.2. Brittle versus ductile fracture. When it comes to deformation, there

are two types of behavior: plastic and elastic, [LRK10]. When an elastic object is

deformed, the deformations are removed when the applied stress is removed. When

a plastic object is deformed some of the deformation becomes permanent. Materials

are generally elastic below a material dependent plastic threshold and plastic above

it. Both behaviors are common. A piece of rubber that is compressed or stretched

will elastically return to its original shape. Aluminum that is bent will remain bent

after the bending force is removed.

Fracture is the process of a body splitting into multiple bodies due to applied

stress. Elasticity and plasticity create different types of fracture. When a plastic

body fractures, extensive plastic deformation is visible after the fracture. This can

be described as “pulling apart” rather than “shattering.” This can be seen when

twisting a plastic spoon. During the twisting process, the rod will begin to tighten

around the fracture point and eventually pull apart.

Elastic materials will fracture in a brittle manner by not deforming before

6

breaking, e.g. dropping a piece of glass or a holiday ornament onto the ground. In

these cases, the material will shatter rather than pulling apart.

2. Numerical techniques

In order to simulate the physics of deformable and fracturable bodies, solving

differential equations through a continuous medium is required. There are many

common techniques for solving such systems.

2.1. Finite difference method. Finite difference methods utilize the

difference in a function between two discrete evaluation points to approximate

derivatives and solve differential equations throughout a volume [MM05]. Typically

the derivatives are turned into differences and the equations are solved algebraically,

e.g.:

Δf(x) = f(x + b) − f(x + a), (2.5)

where f is a function, x is a location in the function, and a and b are the offset values,

typically a = −b.

Finite difference methods suffer from the stiff problem [HW04]. A stiff

equation is numerically unstable and can require extremely small time steps. This is

problematic for real-time applications as a smaller step size requires higher iteration

count per graphical frame. In a continuous volume, this difference can evaluate the

strain in the local volume by evaluating the displacement of two neighboring nodes.

7

2.2. Boundary element method. The boundary element method

integrates the differential equation over the volume to solve for the function and

makes use of Green’s theorem to turn a volume integral into an integral over the

surface that encloses the volume [Ban94]. The advantage of such a method is the

speed and efficiency of the calculations on the boundary. This integral requires

fewer evaluations to solve than the volume integral, thus leading to improvements in

speed. However, a boundary element method needs to perform offline calculations

in order to define the surface of the object for solving. Boundary element methods

are inefficient for fracture simulation, due to the prohibitive cost of recalculating the

surface.

2.3. Meshless method. Unlike other methods discussed, meshless methods

do not work on a system of particles with a defined connectivity. Instead, [LL07], each

particle samples the contiuum via the other particles in a local neighborhood, often

weighted by distance, or other criteria. It is often used in simulations that allow

particles to move independent of each other, or that need variable precision, such

as fluid simulations. The first meshless method developed was Smoothed-Particle

Hydrodynamic (SPH), which was created for astrophysical applications before being

generalized for other uses [GM77,Kel06].

Meshless methods typically scale poorly and are difficult to implement for a

deformable body because of the constant recalculation of boundary conditions of the

deformable. The disadvantages outweigh the advantages for simulating deformables

using meshless methods.

8

2.4. Finite element method. The finite element method (FEM) has been

used in the physical engineering fields for various purposes such as structural analysis

[Red05]. The technique is discussed at length in [Say08]. The method discretizes a

differential equation over a continuum to a finite number of linear systems evaluated

at nodes on the boundary of the continuum, so long as certain boundary conditions

are met. In the case of deformation and fracture the differential equation is Newton’s

~second law, Σ F = m~a, with Hooke’s law (equation 2.2) indicating forces related to

any strain in the material.

Solving a large number of linear systems leads to the linear complementary

problem (LCP), discussed in Appendix A. One technique for solving LCPs is the

conjugate gradient method, see Appendix B.

The FEM is advantageous because its representation of complex geometry via

discretization is similar to representations commonly used in computer graphics. It

is efficient for simulating fracture, as well as being robust and stable, i.e. it doesn’t

suffer from the stiffness problem. This combination makes it efficient for fracture

simulations. Using the FEM to simulate deformation and fracture is the primary

focus of this work.

CHAPTER 3

Modeling Deformation

There are many techniques for modeling deformation and fracture. These

techniques have different advantages, and therefore have different applications. While

fracture is the primary focus of this work, deformation is important for the simulation

of ductile fracture.

1. Spring-based deformables

Cloth is one of the earliest deformables to simulate in real time. The work

of [Pro96] made use of a mass-spring network to simulate cloth behavior. This

implementation makes use of particles connected by three types of springs (see Eqn

2.1). The first type is the structural spring, which connects adjacent particles, i.e.

in the center of the cloth, each particle will be attached to each of its four nearest

neighbors through structural springs. The structural springs resist stretching and

compression of the cloth and maintain its area. Of the three spring types, this

typically has the highest stiffness, k.

The second type of spring used in Provot’s cloth implementation is the shear

10

spring. The shear springs are connected between diagonal nearest neighbors. Similar

to the structural springs, away from the edges of the cloth, each particle will be

attached to four diagonal nearest neighbors using shear springs. These help the cloth

maintain its shape and aspect ratio. If it’s a square piece of cloth, the shear springs

will help ensure the cloth remains square and not a diamond shape.

The final type of spring is the bend spring. These springs are connected

between next-nearest neighbors in the horizontal and vertical directions. Similar to

the previous two types of springs, central particles will be connected to four second

nearest neighbors. The bend springs resists bending of the cloth. It helps ensure

the cloth will not fold in on itself. Of the three springs, this typically has the lowest

stiffness, k.

Another implementation of deformable simulation using springs is the pressure

model soft body, [MO03]. A pressure-model soft-body differs from a cloth simulation

in that it is a spring-mass deformable model that maintains an interior volume. In a

pressure-model soft body, each particle is connect to nearest neighbors on the surface

of the body via springs. In order to prevent such a model from collapsing, Matyka et

al., simulated a pressure force inside the deformable which pushed against the faces of

the body. The pressure force is proportional to the inverse volume,
V
1 , and is applied

to each face of the soft-body in the outward normal direction proportional to the area

of the face.

Spring-mass models have their limitations. Notably, spring forces are subject

to the stiff problem (see Ch. 2.1). For real-time applications this is a hindrance as

11

more complex spring based models require smaller time steps. This is also a limitation

on the types of deformables springs model well. It is difficult to extend spring-mass

deformables to other types of materials and bodies, such as steel plates or rubber

balls, because of the stiff problem. To model such materials, the stiffness values

approach infinity which requires prohibitively small time steps.

2. Finite element method deformables

Models using the finite element method (FEM) are the focus of this work.

As discussed in chapter 2.4, the FEM breaks a large continuous object into smaller

pieces. For graphical applications, it is typically broken into tetrahedral elements

via tetrahedralization because of the natural fit with triangle mesh representations

commonly used for rendering. Tetrahedralization is outside the scope of this work;

there are many open-source projects for performing tetrahedralization on meshes,

[dt03].

To clarify terminology which will be used to describe the FEM simulation

technique, the discussion of [ESHD05] is followed throughout this section. A “node”

is a vertex of the tetrahedron on the FEM mesh and an “element” is a tetrahedral

volume element in the deformable. The update loop is a fairly straightforward process

(see Alg. 1).

The FEM discretizes the equations of motion for each element. Elements

interact with each other via boundary conditions which are used to assemble the

global dynamics equation. This leads to a Linear Complementarity Problem [LCP,

12

Algorithm 1 Update loop for FEM objects

function Update(deltaTime)
UpdateOrientations()
CalculateStiffnessMatrix()
AddPlasticityForce(deltaTime)
DynamicsAssembly(deltaTime)
ConjugateGradientSolver()
IntegrateNodePositions(deltaTime)

end function

Appendix A] which may be solved using Conjugate Gradient Solver [Appendix B].

Solving the LCP results in a velocity which is used to update the positions of the

nodes within the deformable. The updated positions and velocities lead to changes

in the strain which are used to update the deformable on the next time-step.

2.1. Time integration. The fundamental equation we are trying to solve is

~Newton’s second law, Σ F = m~a. In the case of an elastic solid, we are considering

several forces, including damping, internal stress, and any external forces, fext (e.g.

gravity, collisions, etc). For an elastic solid, our stress term is given by (see Sect. 1),

Ku = f , (3.1)

where K is the stiffness matrix, u is a vector of nodal displacements, and f is a vector

of node forces (see Sect. 2.4). The nodal displacements are given by:

u = x − xu, (3.2)

where x is the current position of the node, xu is the position of the node in the

undeformed object.

13

The nodal displacements can be used to calculate the strain of a body using

the deformation gradient which is the change in world coordinates of a point with

respect to the material coordinates. The deformation gradient,Fij is given by:

∂ui
Fij = , (3.3)

∂xj

where i and j are indices of the nodes within a given element.

The linear Cauchy strain matrix, �, is an approximation of Green’s strain

tensor, and is used to measure the deformation of a body. The Cauchy strain matrix

is given by,

1 ∂ui ∂uj
�ij = (+). (3.4)

2 ∂xj ∂xi

The damping term in our equation is a velocity damping term given by, Cẋ

where C is our damping matrix, and ẋ is the time-derivative of our position (i.e.

velocity). Putting all of these terms into Newton’s second law, we get:

Mẍ+ Cẋ+ K(x − xu) − fext = 0, (3.5)

where M is our mass matrix. We want to integrate equation 3.5 using implicit

discretization which means we evaluate both x and v at time m + 1, and substitute

m+1−v ẍ = v
Δt , we get

m+1 − vv
+ Cvm+1 m+1 − xuM + K(x) − fext = 0, (3.6)

Δt

and further substituting, xm+1 = xm + vi+1Δt, yields,

m+1 − vv m m+1Δt − xuM + Cvm+1 + K(x + v) − fext = 0, (3.7)
Δt

14

after algebraic manipulation and substituting, fu = −Kxu, results in,

2K)v m+1(M +ΔtC +Δt = Mvm − Δt(Kxm + f − fext), (3.8)

where we finally have an equation of the form Avm+1 = b where,

A = M +ΔtC +Δt2K, (3.9)

and

b = Mv − Δt(fu − fext + Kx). (3.10)

This linear complementarity problem (App. A) may be solved with a variety of

methods, such as the conjugate gradient method (App. B). The remainder of section

2 discusses the assembly of the component in Eq 3.9 and Eq 3.10, as well as methods

to handle numerical issues that arise in their solution.

2.2. Stiffness matrix. As described by [ESHD05], the stiffness matrix is the

concatenation of several other matrices, namely the matrices describing the stress

and strain of the object. There are two important “versions” of the stiffness matrix:

the local stiffness matrix and the global stiffness matrix. The local stiffness matrix

represents the stiffness between nodes within a volume element. The global stiffness

matrix is the concatenation of all the local stiffness matrices (see Alg 2), where Re is

the orientation matrix of element e, Ke is the local stiffness matrix of element e, and

K is the global stiffness matrix.

The local stiffness matrices are stored as 4x4 matrices in order to reduce

memory footprint. This is possible because the off-diagonal 4x4 matrices are

transposes of each other, [ESHD05].

15

Algorithm 2 Assembling the global stiffness matrix and global force vector

function CalculateStiffnessMatrix
for all element e do

for all node i of e do
for all node j of e do

if j ≥ i then
tmp = Re ∗ Keij ∗Transpose(Re)
Kij
0 = Kij

0 + tmp
if j > i then

K 0 = K 0 +Transpose(tmp)ji ji

end if
end if

end for
fi = fi + f e

m

end for
end for

end function

In the most physically accurate simulation, both of the global and local stiffness

matrices would be updated each frame. In order to increase efficiency the local

stiffness matrices are usually calculated once, at the time of the deformable object’s

creation. Updating the local stiffness matrix adds little accuracy for the cost.

2.3. Plasticity forces. Plasticity is the permanent deformation of a

deformable [ESHD05]. To simulate this, a plastic force is calculated when the object

deforms. This internal force leads to a permanent deformation of the object.

Three parameters control plasticity: plastic yield, plastic creep, and plastic

max. The plastic yield sets the minimum deformation threshold for accumulating

plastic force. If the total stress exceeds the plastic yield, then some of the excess is

added to the plastic force. The plastic creep determines what fraction of the excess

is added to the net plastic force. Lastly, the plastic max is the largest possible net

16

plastic force.

2.4. Dynamics assembly and lumped mass matrix. The dynamics

matrix (Eqn 3.9) and the dynamics vector (Eqn 3.10) are assembled in a method

similar to that discussed earlier for assembling the global stiffness matrix and force

vector (see Sect 2.2). The pseudocode for calculating the force offsets can be seen in

Alg. 3, where Ke is the local stiffness matrix of element e and Re is the orientation

matrix of element e.

Algorithm 3 Calculating offset force

function CalculateOffsetForce
for all element e do

for all node i of e do
tmp = 0
for all node j of e do

tmp = tmp + Keij ∗ xuj

end for
fu0 i = fu0 i − Re ∗ tmp

end for
end for

end function

The mass matrix, M (see Eqns 3.9 and 3.10), storage method has a huge

impact on performance. Either the mass is stored per node or per element. Dynamics

assembly is the only piece of the simulation that is changed by this choice. The choice

has no simulation accuracy consequences but has a performance effect in terms of both

storage and CPU calculations. As shown in [ESHD05], pgs 356 to 358, the per node

mass matrix is a fully filled out matrix with no zeroes. The volume-element-based

mass matrix is dubbed the “lumped mass matrix” because it is a diagonal matrix.

17

Figure 1. Comparison of stiffness warping.

(A) Large deformation with no stiffness warping. (B) Stiffness warping turned on. This
artifact occurs due to linearization of the strain tensor.

The lumped mass matrix results in faster calculations, less memory use, and

simpler algorithms. There is also another convenient consequence of this choice. The

damping matrix is defined by:

C = αM + βK, (3.11)

where α is the mass damping parameter and β is the stiffness damping parameter.

According to [ESHD05], it is common practice to set β = 0 which means the

damping matrix is proportional to the mass matrix. Because the simulation uses the

lumped mass matrix, this means the damping matrix is also a diagonal matrix. This

results in even more computational and storage savings.

2.5. Stiffness warping. As discussed earlier (see Sect 2.1), the linear

approximation to the elasticity results in large volume growth of elements when

objects are subjected to large rotational deformations. This is not accurate or

believable behavior. Müller et al. describe a method for dealing with this [MG04].

18

In order to correct this error, the stiffness forces are calculated in the

undeformed frame of the FEM. This is a three step process: rotate the current position

back to the rest frame, calculate the stiffness force, then rotate the stiffness force back

to the world frame. The orientation matrix must be calculated. Two methods are

described in [ESHD05]: polar decomposition or Gram-Schmidt orthonormalization

(see App C). An example the effects of stiffness warping can be seen in Fig. 1.

2.6. Element inversion. Element inversion is when one node of an element

can be forced onto the other side of the triangle formed by the other three nodes,

thus inverting the tetrahedron. Element inversion can happen when a strong force

interacts with the FEM deformable. This leads to incorrect windings (and normals)

for the element. Without correcting this, the FEM deformable will typically explode.

Irving et al. presented a method for dealing with this [ITF06]. Before

calculating the stresses and forces in the FEM deformable, they perform all

calculations using the deformation gradient. The deformation gradient measures

the change in the deformation of the body from one point to another. An element

within the deformation gradient, F (see Eqn 3.3) where x is the current, deformed

configuration, and u is the undeformed reference configuration. While this method is

generally more robust than other methods, it is more expensive and slower.

Teschner et al. described a method which adds a volume preservation term

into the FEM calculations [THMG04]. This volume preservation term is zero unless

the element is inverted in which case it adds a force working against the inversion.

A third method is described by Nesme et al. [NPF05]. When calculating the

19

rotation matrix, they check that the last vertex is on the correct side of the triangle

formed by the other three vertices in the tetrahedron. If not, they flip the last basis

axis to make the basis right-handed. The methods presented by Teschner et al. and

Nesme et al. are both efficient. The method of Nesme et al. fits well with the stiffness

warping correction presented by Müller et al. [MG04].

3. Multi-physics: interacting with rigid bodies

There are several methods for producing interactions between deformables and

rigid bodies. Among those methods are one-way coupling, two-way coupling, and

embedding. Davis performed comparisons between these methods, [Dav13].

One-way coupling is typically performed with one primary system and one

passive system. The primary system can interact with the passive system, but the

passive system cannot affect the primary system. While not physically-realistic, it

can be used to great effect for visual purposes.

For example, a passive cloth simulation coupled to a rigid-body engine as the

primary system. In such a scenario, the cloth would be pushed around by the rigid

bodies, but the rigid-bodies would be unaffected by the cloth. In systems with a large

mass asymmetry, this can produce believable results.

Two-way coupling is more complicated because the “passive” system can affect

the “primary” system which means it is no longer passive. One important consequence

of two-way coupling is that both systems must run at the same speed. For example,

if cloth simulation system runs at 120 fps and a rigid body simulation runs at 60

20

fps, then the interactions between the two systems must run at 120 fps. Hence the

computation cost of the rigid-body system is doubled by the two-way coupling.

Fishman described the embedding method [Fis12]. Similar to one-way

coupling, embedding has one primary system and other secondary systems. Secondary

systems that require two-way interaction with the primary system are embedded into

proxies for the primary system. The primary system does not define interactions with

secondary systems.

For example, consider interaction between rigid bodies and FEM deformables.

In such an interaction, the rigid bodies could be the primary system. When an

FEM is created, it is embedded into a rigid-body proxy. The rigid-body proxy then

interacts within the rigid-body system, i.e., the rigid-body system sees the proxy as

just another rigid body. During the rigid-body solving step, the rigid-body system

applies resolution to the proxy the same way it would to any other rigid body. After

this resolution step, the proxy reports the results to the embedded FEM. At this point,

the FEM update step is run to calculate the resultant behavior of the deformable.

This is the approach taken by [Fis12], because it is fast and efficient. The opposite

approach of using rigid bodies as the secondary system and embedding them into an

FEM was performed by Parker et al. [PEO09]. They only generated proxies for rigid

bodies upon collision with an FEM deformable. This approach is slower, however it

was required to implement proxies within a third-party rigid-body engine.

CHAPTER 4

Modeling Fracture

There are a wide range of applications for simulating fracture. The techniques

typically fall into one of two categories: physically-believable simulations and

physically-accurate simulations.

Fracture simulation is an area of interest for the physical science and

engineering fields, notably condensed matter and material science [AS88, CRHG96,

DM95]. In the physical sciences there is typically no user interaction nor graphical

display of the fracture process. The goal is most often to understand properties of

materials. These simulations are a prime example of simulation for accuracy, with

little to no concern over the visual appeal of the fracture. The materials are often

modeled using a lattice network. Each node in the lattice is a point mass connected

to neighboring nodes via a spring-like force. The node motion is then simulated based

on the spring forces affecting each node. These simulations are usually run with a

time-step on the order of 1/c where c is the speed of sound in the material being

simulated. This step size is far too small for the graphics and animation community

hence the tendency to shy away from techniques such as this.

22

Medical surgery simulations are often found in a middle ground between

physical-accuracy and physical-believability. The surgery simulations are typically

run in an interactive fashion [BG00, BGTG03]. The goal of these simulations is to

provide a surgery training tool and a planning tool. Biesler et al. addressed the

issues of collision detection between the surgical tool and tissue, tissue relaxation

after fracture, and optimization for interactivity.

One of the earliest fracture simulations for graphical purposes is the seminal

work of [TF88]. Animation for movies is one of the primary applications of non-real-

time physically-believable fracture simulation. Often the primary goal is convincing

the viewer of the resultant animation behavior. Irving et al. animate human muscles

during a key-frame motion of a skeleton in order to create a more plausible and

believable animation [ITF06]. The results of Bao et al. include fracturing thin shell

ornaments dropping on the ground [BHTF07]. Su et al. expand on previous work to

allow faster fracture for an interactive frame-rate simulation [SSF09].

Real-time animation is almost entirely focused on speed and believability.

These simulations are typically brief and bear less scrutiny as non-real-time

animation, thus they sacrifice accuracy for performance. Parker et al. demonstrate

fracture techniques in a game, Star Wars: The Force Unleashed [PEO09]. They

implemented a FEM deformable based fracture technique (see section 2). Müller

et al. demonstrate a real-time fracture simulation involving meteors destroying a

coliseum in a convincing fashion, [MCK13] (see section 1).

23

1. Geometrically-based fracture

One technique for fracture is using geometry to determine fracture planes after

a collision. This avoids the need for expensive dynamics calculations at run time. This

technique is usually applied to brittle fracture, as a deformation model would still

be required for ductile fracture. Geometrically-based techniques rely on applying a

prescored fracture pattern onto an impact point. This results in objects not fracturing

under their own internal stresses.

One issue with prescored fracture patterns is the constraint on artist’s control.

If the fracture pattern is applied near the edge of the object, then part of the fracture

pattern will go off the edge of the object. Su et al. address this problem by allowing

the prescored pattern to be scaled in addition to translated, [SSF09]. In this method

all of the pattern is guaranteed to be used.

Another issue with prescored fracture techniques is making them appear

different enough each time to be visually appealing. Müller et al. address this

by performing “volumetric approximate convex decompositions” (VACD) on the

fracturing body, [MCK13]. They set out three rules for meshes:

• “They are composed of convex pieces.”

• “The pieces do not overlap.”

• “Two pieces are physically connected if and only if one piece has at least one

face that (partially) overlaps a face on the other piece and the two faces lie in

the same plane with opposite normals.” [MCK13]

24

The meshes they create via VACD fit these requirements, and they refer to said meshes

as “compounds.” The algorithm proceeds as outlined in Algorithm 4. The fracture

that develops from this algorithm is more dynamic than other geometrically-based

algorithms because it depends on both the fracture pattern and the composition of

the compound.

Algorithm 4 VACD Fracture

function FractureVACD
Align fracture pattern to impact point
Compute intersection of all cells with all convexes
Fuse connected pieces into one object
Form compounds from convex pieces in a cell
Detect disjoint islands and separate them

end function

Geometric-based fracture methods involving Voronoi regions are presented in

[BHTF07] and [SO14]. These methods are a hybrid between geometrically-based and

physically-based fracture (see section 2). Using this method a fracture pattern is

applied at the point of impact and the propagation is initiated based on the energy

in the Voronoi cells of the entire body being fractured. In other geometrically-based

fracture, the entire body is often not taken into consideration.

2. Physically-based fracture using FEM deformables

There are a number of ways physically-based fracture has been simulated. Here

we discuss physically-based fracture using FEM deformables.

O’Brien et al. used a very similar method to simulate brittle fracture in [OH99]

and ductile fracture in [OBH02]. Their basic deformable model is based on the finite

25

element method in a similar fashion as outlined in section 2. After each time step,

they resolve internal forces into tensile and compressive components. At each node,

those forces are used to calculate a tensor describing how internal forces are acting

to separate that node. Their algorithm proceeds as follows,

• Resolve internal forces into tensile and compressive forces, discarding

unbalanced portions

• Form tensor describing internal forces that are acting to separate that node

• If forces are large enough, split node and calculate splitting plane

• All elements attached to node are split along the plane

The eigenvalue is calculated in order to separate tensile and compressive forces out

of the stress tensor of an element. The tensile component, σ+, corresponds to the

positive eigenvalues while the compressive component, σ+ correspond to the negative

eigenvalues, which are calculated by,

X3
σ+ = max(0, v i(σ))m(n̂i(σ)) (4.1)

i=1

X3
σ+ = min(0, v i(σ))m(n̂i(σ)) (4.2)

i=1

where vi(σ) is the ith eigenvalue of the stress tensor, σ, n̂i(σ) is the corresponding

unit length eigenvector, and m(a) is a symmetric matrix with |a| as an eigenvector,

defined by, ⎧ ⎪⎨ ⎪⎩

aaT /|a| : a = 0 6
m(a) = (4.3)

0 : a = 0

26

The tensile and compressive forces are concatenated into a separation tensor. If

the largest positive eigenvalue, v+ of this tensor is greater than the material toughness,

τ , then the material fails at the node. The corresponding eigenvector of this eigenvalue

is used as the normal of the splitting plane. Once the splitting plane is calculated, all

elements associated with the splitting node are examined to determine if they need to

be remeshed. The remeshing algorithm, as outlined by O’Brien et al. [OH99] proceeds

as follows,

• The splitting node is replicated into two nodes, n+ and n− on the positive and

negative sides of the splitting plane, respectively

• All elements attached to the original node are examined

• If an element is not intersected by the splitting plane, then the element is

assigned to either n+ or n− depending on which side of the splitting plane the

element lies.

• If the plane does intersect an element, then that element is split along the

plane. For each edge intersecting the plane, a new node is created. The

intersected element will be split into three tetrahedrons because all elements

must be tetrahedrons.

One important distinction in [OH99] is the purposeful neglect of plasticity.

This neglect of plasticity results in brittle fracture. Their later work includes the

plasticity term which allows for the resultant behavior to include ductile fracture.

The inclusion of plasticity has only minor affects on the fracture algorithm itself

27

however this change results in ductile fracture because the deformable will result in

permanent deformation before the fracture.

Similar to O’Brien et al, Müller et al. perform brittle fracture on FEM

deformables, [MMDJ01]. Depending on the maximum eigenvalue in the stress tensor

and the material type of the body being fractured, a radius of fracture, rfrac, is

calculated. All tetrahedron within rfrac are marked as either positive or negative

depending on which side of the fracture plane they lie on. The tetrahedrons with

opposite signs are disconnected. Müller et al. note that the fracture plane can

be used to split the tetrahedron at the origin of the fracture if that tetrahedron is

particularly large. They also note that their method is advantageous because crack

growth is independent of both time step and granularity of the FEM mesh.

In [IO09], only surface cracks are simulated, rather than full fracture. As a

follow up to the work discussed in [OH99] and [OBH02], the researchers used the

finite element method to discretize their deformables. A triangle mesh is used for

discretization instead of tetrahedrons, as they are only concerned with the surface.

Additionally, the stress field is initialized with heuristics instead of a full FEM

simulation. They use a four-part algorithm to generate and display the surface cracks

as outlined in algorithm 5.

Surface crack generation algorithm in [IO09]

function SurfaceCrackGeneration
Initialize stress field according to heuristics
For each node compute failure criteria and store in a priority queue
Crack the surfaced via user input and propagate via the stress field
Display by moving the nodes or rendering cracks directly

end function

28

Parker et al. simulated FEM deformables fracture in a real-time game engine,

[PEO09]. In previous works, the fracture was allowed to split individual tetrahedral

elements. In the work by Parker et al. this splitting is removed as an optimization.

Instead, the FEM deformables are only allowed to split along tetrahedral boundaries.

Additional differences include the idea of embedding the rigid-body system in an

FEM proxy (see section 3. There were other optimizations they implemented as

well. Another major optimization is the use of islands in the mesh. The islands are

formed at runtime based on nodal adjacency and are put to sleep. Sleeping islands

are not actively updated, unless they are awoken by a collision. Further optimization

includes not running the fracture algorithm every frame as well as parallelizing certain

calculations (e.g. stress tensor updates, eigenvalue calculation, etc).

Parker et al. used rather coarse FEM meshes. In order to enhance the visual

appeal of the fracture, they separated the graphical and FEM meshes. In order to

couple the graphical mesh to the FEM mesh, they assign each point, in a graphical

polygon to a tetrahedron in the deformable mesh. For a given point, a, the barycentric

coordinates within the tetrahedron are calculated. As the tetrahedron is deformed,

the position of a is updated based on the barycentric weights.

3. Other techniques in fracture

3.1. Fracture on the GPU. The expensive computations of fracture

simulation are highly parallelizable. This lends itself to doing the calculations on

the GPU. Real-time simulations are increasingly relying on the GPU, [PEO09],

29

[MCK13]. A modular framework for simulating deformation and fracture on the

GPU is presented in [MAP12]. Parker et al. [PEO09] use the GPU to calculate values

such as stress tensors in their fracture algorithm (see sections 2 and 2).

3.2. Other fracture models. Pauly et al. modeled a deformable using a

meshless method, [PKA+05]. Their fracture technique is easier for nodes to split

as they are not connected via a mesh compared to an FEM deformable fracture

model. One downside is the expensive meshless method simulation instead of an

FEM simulation for modeling the deformable itself (see section 2.3).

Glondu et al. simulate brittle fracture using modal analysis, [GMD13]. They

break down the fracture algorithm into three parts. The first part is fracture initiation.

For each fracturable body, an offline modal analysis estimates contact properties and

deformation properties. Modal analysis is a measurement of vibrational modes of a

material. In a material, certain frequencies are more likely to resonate. Resonance and

vibrational modes are an enormous topic outside the scope of this work. Such topics

are covered quite extensively in classical mechanics textbooks, such as [Gol50], [Fre65],

or [TM08]. These properties are used to determine when and where fracture will be

initiated on the body. Propagation of the fracture through the body is determined

from a calculation of the stress state of the material, which is to say, once a crack tip

is formed, it propagates in the direction of maximal stress. Generation of fracture

fragments happens as they separate from the body. Glondu et al. stated the intent

to extend this model to ductile fracture.

Smith et al. simulated brittle fracture through the use of distance-preserving

30

linear constraints, [SWB00]. A fracturable body is a collection of particles connected

via distance constraints. When colliding with another object, the distance constraints

are broken at the point of impact. If the force applied to a particle is strong enough to

break a constraint, it then weakens constraints around it. These weaken constraints

are more likely to break, thereby propagating cracks.

3.3. Post-processing techniques. Another approach to visually appealing

fracture in real-time is the use of post-processing effects. Busaryev et al. [BDW13]

used a FEM deformable approach to brittle fracture, similar to [OH99]. In addition,

there is post-processing adaptive remeshing around the fractured area. After the

fracture, the newly exposed area is remeshed with a finer mesh to represent a torn

area. We note that in the work presented by Busaryev et al, they focused on multi-

layered thin plates. In follow-up work presented in [CYFW14], they demonstrate a

similar technique as applied to a 3D FEM deformable fracture.

CHAPTER 5

Fracture Contribution

The fracture technique of this work uses an elastostatic calculation of stress

and strain and calculates a separation tensor at each node within a finite element

method (FEM) deformable similar to that of Parker et al. [PEO09] and O’Brien et

al. [OH99]. Fracture determination is made by analyzing this separation tensor. This

work only fractures along element boundaries and does not split elements, as does

Parker et al. [PEO09].

This work has several key differences from previous work. First, the work

uses a custom algorithm for determining when to perform fracture based purely on

aesthetics dubbed Aesthetic Joint Pruning (see Sect. 4.1). Second, this work uses

rigid-body-proxies as a means for fracturable objects to interact with a rigid-body

physics engine (see Sect. 5). Finally, this work presents a new “Plasticity-based

fracture” technique for calculating fracture at nodes (see Sect. 6) that is compared

to the separation tensor based model.

The fracture algorithm (see Alg. 6) is performed independently on each island

with each sub-step outlined below.

32

Algorithm 6 Fracture algorithm

function FractureCalculation
DecomposeInternalForces
CheckNodesForFracture
PerformFracture

end function

1. Simulation architecture

Fracture simulation requires a thoughtful approach to general architecture for

simulation purposes. For a deformable that cannot fracture, a single deformable

entity is common practice, e.g., a finite element method (FEM) based deformable

might have an engine entity called “FEMDeformable.” This entity would contain all

relevant data for simulating the deformable as well as all the calculations to perform

the simulation.

Upon introduction of FEM-based fracture simulation, the simulation

architecture must be flexible enough to support splitting of a deformable into two

or more objects in a robust, efficient manner. Hypothetically, all volume elements

and FEM-nodes could be used in a global CGM solver. However, such an architectural

choice would eliminate the possibility for parallelization of the fracture simulation.

This work utilizes a fracture architecture that allows islanding [PEO09].

1.1. Data storage. The storage method of the node and element data has

a significant impact on the performance of an island-based FEM solver. This work

stores the elements and nodes in manager classes, one manager for volume elements

and one for nodes. The managers are structured in the same manner, using an array-

33

linked-list to track elements for efficient insertion and removal. Each manager has an

underlying array data structure. Each entity in the array contains indices referring

to the previous and next entities in the list, i.e. a doubly-linked list. Unused entities

are stored in a free list. Should an entity be destroyed, its data is cleared and it is

returned to the free list.

The node data includes:

• Matrix container for global stiffness matrices associated with that node

• Matrix container for global dynamics matrices associated with that node

• Dynamics vector

• Physical data: position, velocity, etc

• A list of which elements are currently using this node

The matrix containers are an STL map where the key is the index of a node interacting

with the current node and the value is a 3x3 matrix.

The element data includes:

• Orientation matrices

• Elasticity data: Young’s modulus, Poisson’s ratio, etc

• Physical data: mass, volume, etc

• A list of nodes used by this element

34

Because the elements and nodes are managed by a global system, there is no

need for an FEM-based deformable entity to manage them. In order to render the

simulation, a global list of exposed faces is tracked. Upon fracturing, newly exposed

faces are added to this list. The list of faces is used to update a list of vertices,

normals, and texture coordinates to be drawn.

1.2. Islanding and solving. Because the elements contain which nodes

compose this element, and the nodes keep track of which elements are using that node,

a “connectivity graph” is formed that is used to form islands. At each simulation time

step, nodes and elements are traversed in an exhaustive breadth-first manner with

elements representing the “graph nodes” and the FEM-nodes representing the “graph

edges.” The elements and nodes are set on islands during this traversal. This is very

similar to a contact graph used to form islands in a rigid-body engine [Cat07].

Because individual islands have no connection to one another, they can be

solved independently. As an additional optimization, the simulation caches islands

if no fracture event occurred on that island. Island formation is handled by the

“FEM-solver” subsystem.

1.3. Rendering. The approach for rendering is a fairly simple one. The

FEM-solver system maintains a list of “Graphical-Elements” to be rendered. A

graphical-element is a key-value pair with a key of the FEM Element ID and a value

which stores the local node indices which make up the face to be rendered. Separately,

FEM-solver sends data to the GPU for rendering, including vertex position, normal,

35

and texture coordinates. This GPU data is accessible to systems outside of the

simulation. After each island has been solved, FEM-solver uses the list of graphical-

elements to update the GPU data including the position and normal.

1.4. Creation of rigid-body proxies at run-time. This work uses rigid-

body proxies (RBP) as the mechanic for interactions between the rigid-body system

and the FEM system (see Sect. 3). Because of the overhead associated with

collision detection and updating the proxy data, the number of RBPs should be

minimized. For this reason, not all FEM elements are given a RBP. Creation of RBPs

cannot be determined at compile time because fracture events can expose internal

elements. Instead, only volume elements with exposed faces have a RBP. Using the

aforementioned graphical-element list, the FEM elements are informed whenever a

new graphical face is exposed. When an element is informed of its first exposed face,

the element will create a proxy. This reduces the number of proxies and provides

some boost to performance.

2. Decomposing internal forces

Decomposing the internal forces in an element is the process of breaking the

stress into tensile and compressive forces at each node in the element.

Recall that the stiffness matrix, K, is given by:

K = VeB
T DB, (5.1)

36

Algorithm 7 Decomposing internal forces

function DecomposeInernalForces
for all element e do
Compute stress tensor
Decompose stress tensor into tensile and compressive components
for all node i of e do
Calculate and apply tensile and compressive forces

end for
end for

end function

where B is gradient of the element’s shape functions, Ve is the element’s volume, and

D is the elasticity matrix.

~Since the force on a node is given by f = K~u, the stress tensor is given by

σ = DB~u. (5.2)

where both D and B are both static per element and their product could be computed

at initialization.

O’Brien et al. present a method to decompose the stress tensor into tensile and

compressive components [OH99]. Given a vector ~a in R3, a symmetric 3x3 matrix,

m(~a) with ~a as an eigenvector can be constructed using the outer product, ⎧ ⎪⎪⎪⎨aa~~T /|~a| : ~a =6 ~0
m(~a) = (5.3)⎪⎪⎪⎩0 : ~a = ~0.

Let vi(σ) be the ith eigenvalue of σ with a corresponding unit length

eigenvector n̂i(σ). The tensile, σ+, and compressive, σ−, components of the stress

tensor can be calculated by

X3
σ+ = max(0, v i(σ))m(n̂i(σ)) (5.4)

i=1

37

3X
σ− = min(0, v i(σ))m(n̂i(σ)). (5.5)

i=1

~ ~Using these, the tensile, f+, and compressive, f− forces from an element onto

each node can be computed using

f~+ = BT σ+ . (5.6)

The compressive force can be calculated in a similar fashion using the

compressive stress tensor. Alternatively, it can be calculated using f~ = f~+ + f~− .

These forces are stored on each node as they are computed for later use in the fracture

algorithm.

3. Checking nodes for fracture

Each node must be checked for fracture conditions after all elements using a

particular node have finished calculating their tensile and compressive forces on that

node. Checking nodes for fracture (see Alg. 8) is fairly straight forward. There are

two main parts to the algorithm: computing the separation tensor and calculating

eigenpairs. The separation tensor is formed from the tensile and compressive forces

acting on a node. The eigenvalues and corresponding eigenvectors (i.e. eigenpairs)

are used to determine if and how the fracture occurs.

The simulation calculates the separation tensor similarly to O’Brien et al.

~ ~[OH99]. Let {f+} and {f−} represent the set of compressive and tensile forces i i

~on the ith node, respectively. The set of forces on the node are denoted by {fi}.

38

Algorithm 8 Checking nodes for fracture

function CheckNodesForFracture
for all node n do
Compute separation tensor
Compute eigenvalues λ of separation tensor
if λ > material toughness then
Fracture occurs at that node
Fracture plane defined by corresponding eigenvector

end if
end for

end function

The corresponding sums of the compressive, tensile, and total forces on a node are

~f

~a

~f

i. Using the m(

tensor can be calculated as,

~f

X X1 +) + m(−

∈{

represented by , and) notation (see Sect. 2), the separation , +~fi
−~fi

~fm()). (5.7)(−m() −ζ
~f

) + m(

∈{

=
2

~fi
~fi

i~fi} }i
~f+

For calculating the eigenpairs of this tensor, the simulation uses an open-source

solution, Eigen [GJ+10]. When checking for fracture, the simulation uses only the

largest, positive eigenvalue to check for fracture.

4. Perform fracture

Once a fracture plane has been found, fracture must be performed. The

simulation uses an approach similar to that of Parker et al. [PEO09]. The general

algorithm is outlined in Alg. 9.

There are several subtleties in the fracture algorithm.

• Instead of performing all fracture events each frame, the simulation only

performs the largest fracture event in a given time-step.

39

Algorithm 9 Performing fracture

function PerformFracture
for all Fracture events do
Replicate fracture node
for all Element e on original node do

if e is on positive side of fracture place then
Replace original node with replicated node
Attach e to replicated node

else
e retains relation to original node

end if
end for
Recalculate cached data
Expose new element faces
Aesthetic Joint Pruning

end for
end function

• For determining which side of the fracture plane an element resides on, a

distance from plane to element center calculation is used.

• Fracture calculations are skipped on islands with 3 or less elements for aesthetic

reasons. Fracture events on such islands produce single-tetrahedral islands.

• Node mass needs to be recalculated on fracture as node mass is determined by

the elements that are sharing that node.

• Sometimes a fracture event creates a node with no elements attached. In these

cases the replicated node is destroyed, and the fracture event is skipped.

• In order to expose element faces, the simulation checks each element for a face-

face connection based on pre-fracture node list.

40

Figure 2. Ball joint.

A ball joint where two tetrahedrons share a node.

4.1. Aesthetic Joint Pruning. The simulation’s post-fracture visual clean

up, or Aesthetic Joint Pruning, is an algorithm to determine when additional fractures

should be performed. This is the first presentation of such an algorithm.

During a fracture event, hinge and ball joints can form. A ball joint is when

two elements are connected by a single node (see Fig. 2). A hinge joing occurs when

two elements are connected by a single edge (see Fig. 3). This is an artifact of

elements only being connected at shared nodes and is not visually appealing. The

simulation checks for these joints and breaks them. If an element has three exposed

faces that share a single fracture node, then it must have a ball joint. This implies

that if all faces attached to a node are exposed, there is a ball joint at that node (see

Fig. 2). In this case, the simulation replicates the node and attaches the element

with the exposed faces to the new copy of the node, eliminating the ball joint.

Certain cases are not caught by this simple algorithm, such as the case where

a hinge forms on a double-tetrahedron. A more robust algorithm might look at all

exposed faces attached to a node and count them in order to determine if a ball

41

Figure 3. Hinge joint.

A hinge joint where two tetrahedrons share an edge.

joint has occurred. Alternatively a robust graph traversal using face-face connections

between elements could also determine if this case exists. These cases are rare and

the computational overhead of dealing with them was deemed unnecessary.

For a hinge joint (Fig. 3), there must be two exposed faces on either side of an

edge between two nodes on an element. In this case, each node on the edge must be

used by multiple elements. This joint is broken in a similar fashion as the ball joint

case. The node replication is repeated for both nodes rather than the single node of

a ball joint.

5. Rigid-body proxies

The simulation uses a Lagrangian velocity-constraint-based rigid-body engine

[Cat05]. Collision detection is handled through Gilbert-Johnson-Keerthi Expanding-

Polytope-Algorithm (GJK-EPA), [GJK88, Ber00]. The work of this section expands

upon previous work by Fishman and Davis, [Fis12, Dav13] (see Sect. 3). This

42

is the first simulation to use rigid-body proxies to interact with fractureable FEM

deformables.

5.1. Proxy data. In order to simulate the interaction between FEM-based

deformables and rigid bodies, the proxy needs certain data including velocity, mass,

inertia tensor, and angular velocity. There are several ways which this information

could be calculated and presented to the rigid-body proxy. The most notable issues

are surrounding the mass and inertia tensor.

Given that an FEM deformable is broken into nodes, volume elements

(tetrahedrons), and islands, there are several things to consider. The proxies and

colliders are attached to the individual tetrahedrons (with GJK-EPA being run on

the tetrahedron). One might consider using an entire island with a proxy. Two major

issues arise from this alternate solution when dealing with fracture: the FEM-based

deformable can quickly become non-convex so a non-convex collision detection scheme

would be required and updating of proxies every frame with changes in the deformed

shape. Secondly, due to the breaking and reforming of islands, the proxies would

require regular destruction and recreation.

Determining how the mass and inertia tensor are calculated for each proxy is

another major concern. From the perspective of the FEM-solver, the tetrahedrons

are of uniform density, and the mass in the model is distributed at the nodes (see

Sect. 2). That is to say that the mass of a tetrahedron is not equal to the sum of

the masses of the nodes comprising that tetrahedron as the nodes are shared across

multiple tetrahedrons.

43

Three possibilities for calculating mass of the proxy are the mass of the

tetrahedron, the sum of the masses of the nodes on the tetrahedron, and the mass

of the whole island. For this simulation, all cases were tested and the best stability

was found when using the mass of the whole island for each tetrahedron. While

this is physically unintuitive, stability and visual appeal are more important in a

real-time environment than physical accuracy. In the cases of using the sum of the

node masses or the mass of the tetrahedron, the interaction is only strong enough to

effect the motion of the element instead of the motion of the center of mass of the

whole island. This leads to strong local effects which require very small time steps

to stabilize and propagate believably to the rest of the deformable body. It should

also be noted that whenever an island is fractured, the mass of the proxies must be

updated to reflect the new islands they reside on.

The momentum of the proxies are calculated using,

3X
Mp ~vp = mi ~vi, (5.8)

i=0

where Mp and vp are the proxy mass and velocity, respectively, and mi and vi are the

ith node mass and velocity, respectively.

Similar considerations must be made when calculating the inertia tensor of

the tetrahedron. The simulation uses a simple point-mass model for calculating the

inertia tensor, [Gol50,Fre65]. For the sake of stability and consistency with the mass

calculations, the inertia tensor is calculated by evenly distributing the mass of the

proxy to the nodes. In other words, each node uses one-quarter of the proxy mass

for inertia tensor calculations. While this overestimates the inertia tensor, it was

44

not found to create stability issues. An alternative approach could approximate the

tetrahedral inertia tensor [BB04]. The angular momentum of the proxy is calculated

using,
3X

~Ipω~ p = (~pi − Ce) × mi ~vi, (5.9)
i=0

~where Ip and ~ωp are the inertia tensor and angular velocity of the proxy, Ce is the

center of the tetrahedral element, and p~i is the position of the ith node.

5.2. Proxy-proxy collisions. When considering proxy-proxy collisions its

important to allow self collisions as a highly fractured deformable can easily collide

with itself. Not all elements within an island should collide with each other, e.g. two

neighbor elements that are interacting via the FEM-solver shouldn’t collide as their

interaction is defined by the FEM-solver.

The rigid-body engine uses a jump table of function pointers to determine what

collision detection function to use based on the collider’s shape. As an example, the

rigid-body engine uses a separate sphere-sphere collision function instead of running

GJK-EPA on sphere-sphere interactions. In this jump table, the proxy-proxy function

performs a check on the two proxies to determine if they are collidable or not. The

determination is made based on shared nodes. If the two elements share any nodes,

then they cannot collide.

Alternative solutions could increase the number to one allowable shared node

or perform a check to see how the two elements are connected (e.g. hinge or ball

joint). This simulation uses aesthetic joint pruning which would eliminate cases where

elements might collide if they are connected by 1 or 2 nodes (see Sect. 4.1).

45

5.3. Single tetrahedron islands. After fracture events, it is possible for

a single tetrahedron to be separated into its own island. This can be an issue for

stability and aesthetic reasons. A single tetrahedron is not a valid FEM-based object

as the FEM technique works on a continuous volume broken into discrete pieces.

Depending on the Young’s modulus of a material, a single tetrahedron can appear

unstable while resting on the ground. If the Young’s modulus is too low, it will

compress in unappealing ways. If it is too high, it will appear to hop on the ground.

Even the most ideal values have some minor appears of jittering.

One attempted solution to this problem is to choose not to run certain parts of

the FEM solving algorithm on a single tetrahedron (e.g. conjugate gradient method).

The idea being that this single tetrahedron would behave as if it were a simple rigid

body. This resulted in worse stability. Other proposed solutions include removing

a single tetrahedron when detected or changing the rigid-body proxy into a true

rigid-body if simply removing objects is not desired.

6. Plasticity-based fracture

This simulation has the option of running an entirely new fracture technique,

referred to as plasticity-based fracture. The fracture determination is made based on

excess plastic force.

Previously, any plastic force over the maximum allowable is ignored. In this

technique, that excess force is stored on each node. When checking for fracture, the

46

magnitude of the excess, pexcess, is calculated using,

X
~pexcess = |fi,pexcess |, (5.10)

i

~where is the excess plastic forces from each element on that node. fi,pexcess

The fracture plane is calculated using,

X
~n̂ = normalize(), (5.11)fi,pexcess

i

where n̂ is the fracture plane normal.

After performing a fracture event, all elements attached to the fractured node

have their plasticity reduced by an arbitrary factor. Additionally, the fracture node

has its excess plastic force cleared. These two measures help reduce chance of

catastrophic fracture. If these measures are not in place, then the nodes fracture

repeatedly in successive frames.

One disadvantage of this technique is its non-physical basis for computing

n̂. The more traditional fracture calculation discussed previously is more physically

accurate in this regard. However, this new technique is a computationally inexpensive

method for calculating fracture in an FEM-based deformable.

7. Computational expense comparison

Analysis comparing plasticity-based fracture to separation tensor-based

fracture was performed with regards to computational expense.

47

7.1. Floating point calculation analysis. A floating point operation

(FLOPS) estimation was performed between the two algorithms, separation tensor-

based fracture and plasticity-based fracture. The analysis was done on a per node

and per element basis.

For separation tensor-based fracture, the following assumptions were made:

1) an eigenvalue calculation takes about 90 floating point operations. 2) For this

calculation, each node has 4 tensile and 4 compressive components. 3) Per element,

it is estimated that the stress tensor computation takes 216 FLOPS. 4) Decomposing

the stress tensor takes about 315 FLOPS.

This leads to a total of 531 FLOPS per element per fracture calculation. On

a per node basis, computing the separation tensor takes about 213 FLOPS and

decomposing the separation tensor takes about 90 FLOPS for a total of 303 FLOPS

per node per fracture calculation.

For plasticity-based fracture, one assumption was made: similar to the second

assumptions for separation tensor-based fracture, there are about 4 plastic excess

forces per node. On a per element basis, it is estimated there are roughly 48 FLOPS

per element per fracture step. On a per node basis, it is estimated to take 51 FLOPS

per node per fracture step.

7.2. Profiling comparison. A comparison between the two techniques was

made using a custom system profiler. The profiling was run on objects with varying

number of elements and nodes. The results are compared by amount of time spent in

fracture calculation versus number of elements plus the number of nodes (see Fig. 4).

48

Figure 4. Comparison of fracture calculation time by technique..

Lines were added to guide the eye.

49

Figure 5. Sub-step comparison for separation tensor.

The data columns are stiffness assembly (blue), dynamics assembly (red), conjugate
gradient solver (orange), and separation tensor-based fracture calculation (green). The
plasticity-based fracture calculation column (teal) is indistinguishable from the x-axis.

The data was taken on an island with 250 nodes + elements.

A log fit to the data was performed to guide the eye. In the chart, the blue, bottom

line is for plasticity-based fracture and the red, top line is for separation tensor-based

fracture. There are several parts of the FEM-based deformable that contribute to the

overall computation expense. A comparison of how the fracture techniques stand up

against the other contributions can be seen in figure 5. On the chart, the y-axis is

a measure of time in milliseconds, and along the x-axis is the sub-step contributions

to the total computation time. With plasticity-based fracture, the computational

bottle-neck is no longer the fracture calculations, but rather the other parts of the

50

deformable calculation.

CHAPTER 6

Conclusions

Fracture simulation is a broad field. It has increasing applications in real-time

environments [PEO09, MCK13], and offline animations [BHTF07, SSF09]. Growing

computational power is increasing the number of viable options for fracture simulation

in real-time.

In the area of real-time fracture simulation, speed and aesthetic appeal

are of utmost concern. Finite-element-method-based deformation and fracture

is computationally expensive. This thesis presents a new approach to fracture,

“Plasticity-based fracture,” that is less computationally expensive than other

techniques. Plasticity-based fracture is efficient enough that the computational bottle

neck for fracture simulation is no longer the fracture calculations. This thesis also

presents an algorithm to allow low-resolution fracture to look more appealing through

joint pruning (“Aesthetic Joint Pruning”), and it presents a technique for interacting

with rigid-bodies by creating rigid-body proxies at run-time.

The techniques presented here should help to push the field of real-time,

dynamic fracture forward by presenting faster algorithms and allowing for the use

52

of lower resolution models especially if combined with mesh coupling [PEO09]. The

rigid-body proxy system provides a way to add physically-based ductile fracture to

an existing rigid-body engine.

Future work in this area includes finding a better technique for calculating

the fracture plane in plasticity-based fracture, better friction handling for rigid-

body proxies, multi-threading and GPU implementations, and dealing with collision

detection, including an effective broad phase for highly tesselated, deformable objects.

APPENDIX A

LINEAR COMPLEMENTARITY PROBLEM

The linear complementarity problem (LCP) was originally presented in [CD68].

The general formulation, as explained in [Erl13], is given by the equation:

~~y = A~x + b, (A.1)

where the vectors are in Rn and A is in Rn×n . The solution is further restricted by:

• ~x ≥ 0,

~• (A~x + b) ≥ 0,

T (A~ ~• ~x x + b) = 0.

These restrictions must be satisfied in order to have a solution for values of ~y and ~x.

Note that the restrictions are defined without the use of ~y, and that (the first two

items in the aforementioned list) the conditions hold on an element-wise case, i.e. if

~x ≥ 0 then xi ≥ 0 for all i. The LCP shows up in physics simulation when solving a

~system of bodies interacting by Newton’s second law, F = m~a

For a detailed example, we turn to the one dimensional case. The conditions

on the equation y = ax + b, become:

• x ≥ 0,

• ax + b ≥ 0,

54

b < 0 b = 0 b > 0

a < 0 0 1 2
a = 0 0 ∞ 1
a > 0 0 1 1

Table 1: Solution space for 1D LCP for x, y as discussed in [Erl13]. Shows the number of
possible solutions for x, y in the 1D case for each combination of a and b.

• x(ax + b) = 0,

where a, x, b, and y are all members of R. The third condition can be rewritten as

xy = 0. Due to this condition, the solutions are restricted such that either x = 0

or y = 0. We can consider our solution space by the table 1. This table contains

the number of solution sets which are possible for the various combinations of x and

y. As an example, if we consider the case where b = −1 and a = 1, then the only

possible solution (as the table says there is only one possible solution) is that x = 1

and y = 0. Considering the case where b = 1 and a = −1, then there must be two

solutions as outlined in the table: (0, 1) and (1, 0) (in the notation (x, y)).

If the matrix A is invertible, then it is possible to solve LCP through matrix

inversion. However, it is often not the most efficient method for solving the problem.

Notably, if the matrix is singular (i.e. non-invertible) or if it is a large, sparse matrix,

then numerical solvers are the best option. There are a number of numerical solvers

that exist for LCPs including Projected Gauss Seidel (see [Erl13]) and Conjugate

Gradient Method (see appendix B).

APPENDIX B

CONJUGATE GRADIENT METHOD

A very thorough discussion of the Conjugate Gradient Method (CGM) is

presented in [She94]. Here we present only a brief outline. CGM was developed

in order to solve large systems of linear equations of the form:

~b~xA

where A is a known, symmetric, positive-definite matrix in Rn×n

(B.1)= ,

, ~b is a known vector

in Rn, and ~x is a vector in Rn which we are solving for.

CGM works iteratively and is efficient for solving large, sparse matrices, such

as the stiffness matrix discussed in section 2.4. This linear system of equations is a

special case of the LCP, presented in appendix A), with ~y = 0 from equation A.1.

~x~x

The solution to equation B.1 will minimize the quadratic form,

1 T Af(T~b−) = + c (B.2)~x ~x
2

~x, A, and ~bwhere are the same as in equation B.1, and c is a scalar constant.

~x

~x

The quadratic form can be minimized by setting the gradient of f() to 0 and

solving for The gradient of f() is given by ~x.

1 1
AT −~b −~b (B.3)) = ~x+
2 2

~x~x~xrf(A = A

where the simplification in the final form is the result of A being a symmetric matrix.

56

In order to solve this system of equations, iteratively choose orthogonal search

directions d0, d1, ..., dn−1 in the phase space of A. The initial direction is given by,

~ ~d0 = r~0 = b − Ax~0, where x~0 is the initial guess of ~x, and i + 1 direction is given by,

~ ~di+1 = ~ri+1 + βi+1di, (B.4)

where β is given by
T~ri+1 ~ri+1βi+1 =

T . (B.5)
~r ~rii

The residual, ri, is updated via

~~ri+1 = ~ri − αiAdi, (B.6)

where α is given by
T~r ~ri

αi = i . (B.7)
~ ~dTi Adi

The indices i range from 0 to n.

The residual is related to the error term by transforming the error, ~e by A, i.e.

d~T ~r~i = A~e. The search directions are conjugate with respect to A, i.e. i Adj = 0 for

i 6 Algorithmically, CGM has four primary steps: = j.

~• Update ~xi+1 based on search direction, di

~• Update residual, ~ri+1, based on search direction, di

• If the residual is small enough, exit

~• Update search direction, di+1, based on residual, ~ri+1

57

The search direction is updated via the residual because of the aforementioned relation

between residual and error. Updating the search direction in this manner also provides

a new search direction which is orthogonal, or conjugate, in A [She94].

APPENDIX C

GRAM-SCHMIDT ORTHONORMALIZATION AND POLAR

DECOMPOSITION

Gram-Schmidt orthonormalization and polar decomposition are two techniques

used to construct rotation matrices for finite element method based deformables (see

section 2).

1. Gram-Schmidt orthonormalization

Gram-Schmidt orthonormalization is a technique for transforming a set of

linearly independent functions into an orthogonal basis [AW05]. Consider a set of

k linearly independent vectors, a1, a2, ..., ak. We can define the projection of vector

a onto vector e using the inner product (for vectors in RN , simply the dot product):

he, ai
projea = . (C.1)

he, ei

We can calculate a set of orthogonal vectors, u1, u2, ..., uk, using:

u1 = a1, (C.2)

u2 = a2 − proje1
a2, (C.3)

kX
uk = ak − projej

ak, (C.4)
i=j

where ei = ui . We can now construct an orthonormal matrix from the vectors ei.|ui|

59

2. Polar decomposition

In polar decomposition, a square, invertible matrix, A, can be uniquely

decomposed into

A = UP (C.5)

where P is the orthonormal basis and U is the transformation matrix between the

basis and A. The matrix P is calculated by

P = (A ∗ A)(
1
, (C.6)2)

where A∗ is the conjugate transpose of the matrix, and U is:

U = AP−1 . (C.7)

The matrix P is the orthonormal matrix used for rotations.

REFERENCES

[AS88] Sepehr Arbabi and Muhammad Sahimi. Elastic properties of three-

dimensional percolation networks with stretching and bond-bending

forces. Phys. Rev. B, 38:7173–7176, Oct 1988.

[AW05] G.B. Arfken and H.J. Weber. Mathematical Methods for Physicists.

Mathematical Methods for Physicists. Elsevier, 2005.

[Ban94] Prasanta Kumar Banerjee. The Boundary Element Methods in

Engineering. McGraw-Hill, 2nd edition, 1994.

[BB04] Jonathan Blow and Atman J. Binstock. How to find the inertia tensor

(or other mass properties) of a 3d solid body represented by a triangle

mesh. 2004.

[BDW13] Oleksiy Busaryev, Tamal K. Dey, and Huamin Wang. Adaptive fracture

simulation of multi-layered thin plates. ACM Trans. Graph., 32(4):52,

2013.

[Ber00] Gino Van Den Bergen. Abstract proximity queries and penetration depth

computation on 3d game objects, 2000.

61

[BG00] Daniel Bielser and Markus H. Gross. Interactive simulation of surgical

cuts, 2000.

[BGTG03] Daniel Bielser, Pascal Glardon, Matthias Teschner, and Markus Gross.

A state machine for real-time cutting of tetrahedral meshes. In Pacific

Graph, pages 377–386. IEEE Computer Society, 2003.

[BHTF07] Zhaosheng Bao, Jeong-Mo Hong, Joseph Teran, and Ronald Fedkiw.

Fracturing rigid materials. IEEE Trans. Vis. Comput. Graph., 13(2):370–

378, 2007.

[Cat05] Erin Catto. Iterative dynamics with temporal coherence. 2005.

[Cat07] Erin Catto. Box2d, 2007.

[CD68] R. W. Cottle and G. B. Dantzig. Complementary pivot theory of

mathematical programming. Linear Algebra and Its Applications, 1:103–

125, 1968.

[CRHG96] J. W. Chung, A. Roos, J. Th. M. De Hosson, and E. van der Giessen.

Fracture of disordered three-dimensional spring networks: A computer

simulation methodology. Phys. Rev. B, 54:15094–15100, Dec 1996.

[CYFW14] Zhili Chen, Miaojun Yao, Renguo Feng, and Huamin Wang. Physics-

inspired adaptive fracture refinement. ACM Trans. Graph., 33(4):113,

2014.

62

[Dav13] Joshua Davis. Survey of multi-physics: A comparison between coupling

and embedding. Master’s thesis, DigiPen Institute of Technology, 2013.

[DM95] Frdric Donz and Sophie-Adlaide Magnier. Formulation of a 3-d

numerical model of brittle behaviour. Geophysical Journal International,

122(3):790–802, 1995.

[dt03] NETGEN development team. Netgen. http://www.hpfem.jku.at/

netgen/, 2003.

[Erl13] Kenny Erleben. Numerical methods for linear complementarity problems

in physics-based animation. In ACM SIGGRAPH 2013 Courses,

SIGGRAPH ’13, pages 8:1–8:42, New York, NY, USA, 2013. ACM.

[ESHD05] Kenny Erleben, Jon Sporring, Knud Henriksen, and Kenrik Dohlman.

Physics-based Animation (Graphics Series). Charles River Media, Inc.,

2005.

[Fis12] Theodore Fishman. Real-time deformation with the finite element

method and embedding using rigidbody proxies. Master’s thesis, DigiPen

Institute of Technology, 2012.

[Fre65] A.P. French. Newtonian Mechanics. M.I.T. introductory physics series.

Nelson, 1965.

[GJ+10] Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3.

http://eigen.tuxfamily.org, 2010.

http://www.hpfem.jku.at/netgen/
http://www.hpfem.jku.at/netgen/
http:http://eigen.tuxfamily.org

63

[GJK88] E.G. Gilbert, D.W. Johnson, and S.S. Keerthi. A fast procedure for

computing the distance between complex objects in three-dimensional

space. Robotics and Automation, IEEE Journal of, 4(2):193–203, Apr

1988.

[GM77] R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics

- Theory and application to non-spherical stars. Monthly Notices of the

Royal Astronomical Society, 181:375–389, November 1977.

[GMD13] Loeiz Glondu, Maud Marchal, and Georges Dumont. Real-time

simulation of brittle fracture using modal analysis. IEEE Trans. Vis.

Comput. Graph., 19(2):201–209, 2013.

[Gol50] Herbert Goldstein.

1950.

Classical Mechanics. Addison-Wesley, 3rd edition,

[HW04] Ernst Hairer and Gerhard Wanner. Solving Ordinary Differential

Equations II: Stiff and Differential-Algebraic Problems. Springer, 2nd

edition, 2004.

[IO09] Hayley N. Iben and James F. O’Brien. Generating surface crack patterns.

Graphical Models, 71(6):198–208, 2009.

[ITF06] G. Irving, J. Teran, and R. Fedkiw. Tetrahedral and hexahedral invertible

finite elements. GRAPH. MODELS, 68:66–89, 2006.

64

[Kel06] Micky Kelager. Lagrangian fluid dynamics using smoothed particle

hydrodynamics, 2006.

[LL07] Shaofan Li and Wing Kam Liu. Meshfree Particle Methods. Springer, 1st

edition, 2007.

[LRK10] W Michael Lai, David Rubin, and Erhard Krempl. Introduction to

Continuum Mechanics. Elsevier, 4th edition, 2010.

[MAP12] Derek John Morris, Eike Falk Anderson, and Christopher Peters. A

modular framework for deformation and fracture using gpu shaders. In

VSMM, pages 267–274. IEEE, 2012.

[MCK13] Matthias Müller, Nuttapong Chentanez, and Tae-Yong Kim. Real time

dynamic fracture with volumetric approximate convex decompositions.

ACM Trans. Graph., 32(4):115, 2013.

[MG04] Matthias Müller and Markus Gross. Interactive virtual materials. In

Proceedings of Graphics Interface 2004, GI ’04, pages 239–246, School of

Computer Science, University of Waterloo, Waterloo, Ontario, Canada,

2004. Canadian Human-Computer Communications Society.

[MM05] K. W. Morton and D. F. Mayers. Numerical Solution of Partial

Differential Equations: An Introduction. Cambridge University Press,

2nd edition, 2005.

[MMDJ01] Matthias Müller, Leonard McMillan, Julie Dorsey, and Robert Jagnow.

65

Real-time simulation of deformation and fracture of stiff materials. In

Proceedings of the Eurographic workshop on Computer animation and

simulation, page 113–124, New York, NY, USA, 2001. Springer-Verlag

New York, Inc., Springer-Verlag New York, Inc.

[MO03] Maciej Matyka and Mark Ollila. Pressure model of soft body simulation.

In Proc. of Sigrad, UMEA, 2003, 2003.

[NPF05] Matthieu Nesme, Yohan Payan, and François Faure. Efficient, physically

plausible finite elements. In Eurographics, August 2005.

[OBH02] James F. O’Brien, Adam W. Bargteil, and Jessica K. Hodgins. Graphical

modeling and animation of ductile fracture. In Tom Appolloni, editor,

SIGGRAPH, pages 291–294. ACM, 2002.

[OH99] James F. O’Brien and Jessica K. Hodgins. Graphical modeling and

animation of brittle fracture. In SIGGRAPH, pages 137–146, 1999.

[PEO09] Eric G. Parker, Pixelux Entertainment, and James F. Obrien. Real-time

deformation and fracture in a game environment. In Proceedings of the

2009 Symposium on Computer Animation, pages 156–166, 2009.

[PKA+05] Mark Pauly, Richard Keiser, Bart Adams, Philip Dutré, Markus H. Gross,

and Leonidas J. Guibas. Meshless animation of fracturing solids. ACM

Trans. Graph., 24(3):957–964, 2005.

66

[Pro96] Xavier Provot. Deformation constraints in a mass-spring model to

describe rigid cloth behavior. In Graphics Interface, pages 147–154, 1996.

[Red05] J. N. Reddy. An Introduction to the Finite Element Method.

Hill, 3rd edition, 2005.

McGraw-

[Say08] Francisco-Javier

method, 2008.

Sayas. A gentle introduction to the finite element

[She94] Jonathan R Shewchuk. An introduction to the conjugate gradient method

without the agonizing pain. Technical report, Pittsburgh, PA, USA, 1994.

[SO14] Sara C. Schvartzman and Miguel A. Otaduy. Fracture animation based

on high-dimensional voronoi diagrams. In Symposium on Interactive 3D

Graphics and Games, I3D ’14, San Francisco, CA, USA - March 14 - 16,

2014, pages 15–22, 2014.

[SSF09] Jonathan Su, Craig A. Schroeder, and Ronald Fedkiw. Energy stability

and fracture for frame rate rigid body simulations. In Dieter W. Fellner

and Stephen N. Spencer, editors, Symposium on Computer Animation,

pages 155–164. ACM, 2009.

[SWB00] Jeffrey Smith, Andrew Witkin, and David Baraff. Fast and controllable

simulation of the shattering of brittle objects. In Graphics Interface,

pages 27–34. Blackwell Publishing, 2000.

[TF88] Demetri Terzopoulos and Kurt Fleischer. Modeling inelastic deformation:

67

Viscolelasticity, plasticity, fracture. SIGGRAPH Comput. Graph.,

22(4):269–278, June 1988.

[THMG04] Matthias Teschner, Bruno Heidelberger, Matthias Müller, and Markus H.

Gross. A versatile and robust model for geometrically complex deformable

solids. In Computer Graphics International, pages 312–319. IEEE

Computer Society, 2004.

[TM08] P.A. Tipler and G. Mosca. Physics for Scientists and Engineers: With

Modern Physics. W. H. Freeman, 2008.

	Copyright
	Title Page
	Abstract
	Table of Contents
	LIST OF FIGURES
	List of Algorithms
	CHAPTER 1 Introduction
	CHAPTER 2 Physics and Math Primer
	Physics background
	Hooke's law
	Brittle versus ductile fracture

	Numerical techniques
	Finite difference method
	Boundary element method
	Meshless method
	Finite element method

	CHAPTER 3 Modeling Deformation
	Spring-based deformables
	Finite element method deformables
	Time integration
	Stiffness matrix
	Plasticity forces
	Dynamics assembly and lumped mass matrix
	Stiffness warping
	Element inversion

	Multi-physics: interacting with rigid bodies

	CHAPTER 4 Modeling Fracture
	Geometrically-based fracture
	Physically-based fracture using FEM deformables
	Other techniques in fracture
	Fracture on the GPU
	Other fracture models
	Post-processing techniques

	CHAPTER 5 Fracture Contribution
	Simulation architecture
	Data storage
	Islanding and solving
	Rendering
	Creation of rigid-body proxies at run-time

	Decomposing internal forces
	Checking nodes for fracture
	Perform fracture
	Aesthetic Joint Pruning

	Rigid-body proxies
	Proxy data
	Proxy-proxy collisions
	Single tetrahedron islands

	Plasticity-based fracture
	Computational expense comparison
	Floating point calculation analysis
	Profiling comparison

	CHAPTER 6 Conclusions
	APPENDIX A Linear Complementarity Problem
	APPENDIX B Conjugate Gradient Method
	APPENDIX C Gram-Schmidt Orthonormalization and Polar Decomposition
	Gram-Schmidt orthonormalization
	Polar decomposition

	REFERENCES

