

	 	 	 	
	

	

Integration of 	Environment	and	
Realtime Weather in an	 Executable

Program

Using	Adaptive	Shaders to 	Construct	a	Conduit	of	Nature

BY

Zoey Schlemper

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Fine Arts in Digital Arts

awarded by DigiPen Institute of Technology
Redmond, Washington

United States of America

June
2018

Thesis Advisor: David Longo

© 2018, DigiPen Institute of Technology. All Rights Reserved.

The material presented within this document does not necessarily reflect the opinion of
the Committee, the Graduate Study Program, or DigiPen Institute of Technology.

ii

	

Abstract

Dynamic weather systems are utilized in a wide variety of videogames, and are

made up of various techniques including particle systems and graphic shaders. The wide

assortment of elements must interconnect and be driven by controllable variables in the

game engine logic. They are traditionally controlled by code in the service of game logic.

This Thesis presents a dynamic weather system that connects to the internet and

retrieves weather data from stations across the United States in order to drive this suite

of effects. It also features a graphic user interface for controlling the elements manually.

This is both an artistic statement through surrender of technologic control to nature and

a prototype for a system that could be implemented in a variety of products, including

videogames, real estate, and virtual training applications.

iii

	

Acknowledgements

I owe the opportunity to complete this thesis to a few important people. First

and foremost, I thank my parents, Carol Ann and Michael. They supported my creative

endeavors since I was a child. We are all born with a love of art and creativity, but it was

my parents who fostered that joy within me. They also encouraged me to pursue the

insane idea of being an artist in the 21st century, and in fact supported me in that

pursuit as well. Without their financial, emotional, and academic support, I would not be

writing this.

Thank you, Mom and Dad!

I thank select Digipen Faculty (you know who you are) for the time and interest

you have shown in my project. Digipen seems to demand more from their teachers

(everyone, really) than other schools I have attended. I am thankful for the extra effort

beyond your job description that has impacted me in positive ways. The late-night

classes and meetings, the extra emails and opinions, were essential to finishing during

my two short years here.

Lastly, I thank my wife, Marisa. Her support means the world to me. She has

believed in me when I didn’t believe in myself.

iv

	 	 	

Table of Contents
Abstract ..iii

Acknowledgements ..iv

List of Figures...vii

Introduction.. 1

Chapter 1: Artistic Direction and Development of Style... 4

Concept Development and Aesthetic Style .. 12

Chapter Two: Techniques and Creative Process... 29

3D Modeling Workflow... 29

Texturing Workflow .. 34

Shader Development in Unreal Engine 4.16... 39

UX Design Process for Menu Systems .. 46

Chapter 2.5: Anatomy of the Weather System... 47

Chapter Three: Coding Key Features of the Weather System .. 49

The XML parser: How Weather Data is collected from the Internet .. 49

One-Way Data Manipulation in Unreal Engine 4.. 52

Structure of the Python Weather Station Code Compiler .. 53

Can the System adapt to Additional Databases?.. 54

Setting the Final Executable as a Desktop Background .. 54

Chapter Four: User Experience Design ... 54

Designing Based on Established Methods .. 56

Chapter 4.5: Weather Effects Compilation... 60

Examples of Weather Changes ... 60

Chapter Five: Conclusion and Looking Forward ... 69

Possible Critiques of the Work ... 73

References .. 79

Appendix A.. 81

Introduction.. 83

Prerequisites... 83

v

https://Engine4.16

	 	 	

	 	 	 	

 	

Software Information ... 84

Resources and How-To’s... 85

Creating Cloud Textures in Substance Designer and Exporting to Unreal 85

Expose Parameters in Substance Designer... 89

Exporting a Substance for Unreal ... 95

The Substance Plug In for Unreal Engine.. 96

Installation .. 96

The Plug In Explained.. 97

The Parameter Window.. 99

Essential Nodes in Unreal Material Editor .. 100

Add and Subtract: the Value Shifters.. 100

Multiply: The Mask Node.. 101

Clamp: Keeping values under control.. 102

Simple, Yet Powerful... 104

The Core Node Network ... 104

Section one: The Sun .. 105

Section Two: The Clouds... 106

On your Own... 108

Learning Resources... 108

UV Warping A Red and Green Texture Map ... 109

Packing Textures to RGB in Photoshop... 110

The Main Problem to Solve: Translating Vector Direction into Degree Rotations 112

The Whole Graph.. 113

Glossary .. 123

vi

	 	 	

List of Figures

Image Description Figure Code

Pre-Production Sketch Collection 1.1.1 – 1.1.4

Pre-Production Concept Painting Collection 1.2.1 – 1.2.4

Miyazaki film environment 1.3

Legend of Zelda: Breath of the Wild 1.5

RiME Environment 1.4

Alexandre Diboines Image 1.6

Alex Konstad Image 1.7

Luke Mancini Image 1.8

Triumphal Arch 1.9

Comparison of hero asset silhouette to generic object 1.10

Comparison of jagged silhouette to smooth one 1.11

Balck Widow Image 1.12.A

Crystal Lake Mountains 1.12.B

Mushroom Simplification Drawing 1.13

Prickly Pear Cactus Reference 1.14.A

Prickly Pear Cactus in Chromniview 1.14.B

Mario + Rabbids: Kingdom Battle 1.14.C

Call of Duty Screenshot 1.15

Legend of Zelda: Breath of the Wild VFX 1.16

Explosion Reference 1.17.A

Landscape Study in Gouache 1.17.B

Chromniview Fog VFX 1.18

Hard and Soft Vertex Normal Comparison 2.1

High Poly and Low Poly Comparison 2.2

Infographic: RGB = Vector Angle in a Normal Map 2.3

vii

Arcane Scale 2.4

Example of Vegetation Cards 2.5

Modified Normals on Grass Card Example 2.6

Substance Designer Results Example 2.7

A Sculpted Trim Sheet 2.8

Curvature Map Example 2.9

Chromniview Shader Utilizing Curvature Map 2.9.A

Procedural Copper : Base Mat and Details 2.10

The Order: 1886 Texture Examples 2.11

Rime VFX Fire Technique 2.12

Final product: Rime Flames 2.13

Black and White Cloud Shader from Chromniview Beta 2.14

Deformed Gradient Clouds Shader from Chromniview 2.15

Final

Snippet of Shader Illustrating a Material Function 2.16

A Full Material Function Shader Graph 2.17

Relationship Between Compass Direction, UV, and Vector 3.1

Space

Menu System image 4.1

Old Menu Design 4.2

Paper Prototype 4.3

Digital Prototype 4.4

Weather Effects Compilation 4.5

viii

1

2

3

4

5

6

7

8

Outline Shader in Unreal Engine 5.

Cel-Shading and Shadow Manipulation in Unreal Engine 5.

Borderlands 2D/ Handdrawn shaders 5.

Guilty Gear XRD Outline Effect 5.

DragonBall Outline Effect 5.

Original Thesis Statement 5.

Original Method for Enshrining Nature 5.

Mock-Up of Desktop Integration 5.

ix

	 	

Introduction

Culture and technology in the modern age are deeply entwined. As our lives

become more “high tech,” the norms and expectations surrounding our entertainment

experiences grow in complexity and connection. Although contrived, the idea that “the

world is at your fingertips” has never been more true. But the irony of such intoxicating

power at a personal level is the tunnel vision that coincides. The immense opportunity

for micro control forces our attention into the artificial and minute—away from the

cosmic mystery that surrounds us. And as the human race’s collective spine slowly

cranes towards the dim glow of an entirely digital age, the wondrous miracle of mother

earth roils just beyond the window, slipping into corruption and irrelevance.

This dynamic weather system (dubbed Chromniview) utilizes particle systems,

polygon shaders, and code/logic to create a system that can respond to weather data

including word-based descriptions, temperature levels, windspeed amounts, and time of

day. One of the first conceptual versions of this project included the ability to run the

program on the desktop as an interactive wallpaper, behind the icons. The system is

self-contained within the engine, and can be transferred between levels and even entire

projects. It can simulate mid-day rainstorms, quiet snowfall at night, and clear, sunny

mornings.

The implementation of the myriad and complex features included in the initial

pitch of this project was very successful, but not absolute. Some features evolved over

1

time, such as the user interface. The initial concept of using Rainmeter for the interface

was traded out for Unreal Engine’s UMG Designer, producing a more integrated, visually

pleasing, and game-like experience. Other features were too resource-heavy to

complete for this proof-of-concept, such as formatting the application as an interactive

desktop wallpaper. Still others were discovered and frantically pursued out of pure

necessity, such as the JSON request builder for querying the user’s desired weather-

station.

In my studies I have harnessed various technologies and achievements of other

humans and created meaningful translations between them in order to craft a new

avenue for us to remember and enshrine the glory of Nature. Chromniview is merely a

messenger of Nature’s perfect design. It reflects Her beauty, authenticity and meaning

in the inherently redundant existence of digital media.

Chromniview offers a novel passive connection with others. Though many of us

may be chained to our desks during the average work week, or we chase those elusive

jobs across the country, this application offers a non-intrusive method for “being

present” in the experience of faraway friends and family. By seeing the weather and

general time update based on their earthly position throughout the day, we can keep

our parents, children, or best friends at the forefront of our minds.

Even if Chromniview is slightly inaccurate due to a lack of weather stations in less

populous areas or long refresh periods, it offers a fresh perspective on “talking about

the weather.” It gives you a reason to call up a friend to confirm that it is actually

2

snowing in the middle of summer at their location. The artistic value in this project

comes from the opportunity for passive connection it creates by being a medium for

Nature to act upon. It encourages a very real connection by faithfully interpreting one of

the few things all humans have in common: the earth’s ecosystem.

In Chapter One, I explain the artistic style and approach to design used for the

entire project. I discuss and examine specific inspirations from recent media, and point

out the key areas that the style of Chromniview emphasizes in order to glorify nature.

Chapter Two is an overview of the many resources, tools, and techniques that went into

the creation of the weather system and environments. In Chapter Three, I break down

some key scripting and the technical integrations between shaders. Chapter Four details

the User Experience, and the tenants that drove the design of the usability. Finally,

Chapter Five offers a conclusion and possible future directions from this point.

3

	 	 	 	 	 	

Chapter	 1: Artistic	 Direction and Development of Style

Figure 1.1.1 A Collection of PreProduction Sketches for Chromniview. Zoey Schlemper. Blue Pencil and Pen. 2017.

1

1 These drawings begin to dissect the shapes and structure of natural elements, including rocks and trees.
They explore without complicating. The modest line-count and emphasis on outline serve this end as well.

4

 Figure 1.1.2 A Collection of PreProduction Sketches for Chromniview. Zoey Schlemper. Blue Pencil and Pen. 2017.

5

/

_,/ /

Figure 1.1.3 A Collection of PreProduction Sketches for Chromniview. Zoey Schlemper. Blue Pencil and Pen. 2017.

6

Figure 1.1.4 A Collection of PreProduction Sketches for Chromniview. Zoey Schlemper. Blue Pencil and Pen. 2017.

7

 Figure 1.2.1 A Collection of PreProduction Concepts for Chromniview. Zoey Schlemper. Pencil and Digital. 2018

8

 Figure 1.2.2 A Collection of PreProduction Concepts for Chromniview. Zoey Schlemper. Pencil and Digital. 2018

9

 Figure 1.2.3 A Collection of PreProduction Concepts for Chromniview. Zoey Schlemper. Pencil and Digital. 2018

10

Figure 1.2.4 A Collection of PreProduction Concepts for Chromniview. Zoey Schlemper. Pencil and Digital. 2018

Figure 1.3 Tonari no Totoro. Hayao Miyazaki. Studio Ghibli. 1988.

11

	 	 	 	

Figure 1.4. RiME. Tequila Softworks. 2017. < https://www.nintendo.com/games/detail/rime-switch>

Concept Development and	 Aesthetic Style

The aesthetic style of this project is heavily influenced by hand-drawn and two-

dimensional animations. The works of Miyazaki (fig 1.3), Tequila Works’ “RiME” (fig 1.4),

and certain Nintendo titles (fig 1.5) have been important. Concept Artists like Alexander

Diboines (fig 1.6), Alex Konstad (fig 1.7), and Luke Mancini (fig 1.8) also influenced the

aesthetic language of this project. Finally, I hope that my own voice (fig 1.9) has peeked

through the cracks, as I’ve developed a stronger personal style over the past 6 years.

These influences share a number of things in common, including an emphasis on shape

language, vibrant color palettes, and reductionist representation. The most important

similarity is the emphasis on nature through these devices. I will consider two

12

dimensions of these artistic principles: that concerning the enshrinement of nature, and

that concerning game art.

Figure 1.5. Breath of the Wild. Nintendo. 2017. < https://80.lv/articles/the-legend-of-zelda-breath-of-the-wild-
environment-change-the-game/>

Figure 1.6. Everywhere He Would Go. Alexandre Diboines. Digital. 2017. < http://alexandrediboine.tumblr.com/>

13

http://alexandrediboine.tumblr.com
https://80.lv/articles/the-legend-of-zelda-breath-of-the-wild

Figure 1.7. Obliskura: Forest. Alex Konstad. Digital. 2015. < https://www.artstation.com/artwork/6LRBO>

Figure 1.8. Hilltop Encounter. Luke “Mr. Jack” Mancini. Digital. 2012. < https://mr--jack.deviantart.com/art/Hilltop-
Encounter-285881079>

14

https://mr--jack.deviantart.com/art/Hilltop
https://www.artstation.com/artwork/6LRBO

Figure 1.9. Triumphal Arch. Zoey Schlemper. Digital. 2016.

15

Figure 1.10. Hero Asset VS Generic Asset. Zoey Schlemper.

Shape language is essential in both videogame development and our

understanding of nature, but for different reasons. For videogames, shape language can

signal many forms of information to the player. It can indicate the importance of

something. For example, “Hero Assets” tend to have more break-up in their silhouette

than generic pieces (fig 1.10). It can also show the general mood of a game. Compare

the general shapes of Mario enemies (fig 1.11.A) to Dark Souls (fig 1.11.B). The enemies

in Mario are mostly “safe” looking, with rounded, simplistic designs. The Dark Souls

enemies are complex and angular. Shape language seems to be considered for many

16

reasons, including the relative importance of something and the over-all tone of the

game.

Figure 1.11.A. Goomba and Koopa Troopa. Nintendo. < http://twinfinite.net/2016/03/top-10-most-iconic-video-game-
enemies/5/>

17

http://twinfinite.net/2016/03/top-10-most-iconic-video-game

Figure 1.11.B. Sewer Centipede. Capcom. Dark Souls 3. < http://darksouls.wikia.com/wiki/Sewer_Centipede>

A smooth silhouette is a luxury afforded by the ever-increasing capacity of

computer technology, and is also important to help facilitate the suspension of disbelief

(fig 1.9). Ironically, simple shapes like those of Mario enemies are difficult to create, as

polygons can only be made of straight lines.

18

http://darksouls.wikia.com/wiki/Sewer_Centipede

Figure 1.12. Jagged Silhouette from low poly count compared to smooth silhouette from high polycount. (provided by
author, rendered in Maya 2016)

Due to the commercial nature of video games, it could be argued that all choices

concerning shape language are dictated by users. Nature, on the other hand, is her own

master. In some cases, we either respond to her dictation, or we die. “Nature” is an

umbrella term that includes countless phenomenon, creatures and scientific properties.

Nature is immutable and older than the mind of man. It dictates the meaning of its

shapes by killing us (fig 1.12.A) and awing us (fig 1.12.B) with them.

19

Figure 1.12.A.Black Widow Spider.2 Photography. National Geographic. 2015. <
https://www.nationalgeographic.com/animals/invertebrates/group/black-widow-spiders/>

Figure 1.12.B. Crystal Lake Mountains. Zoey Schlemper. Photography. 2017.

My primary inspirations of shape language include Alexander Deboines and

Alexander Konstad. In two words: curvilinear and voluminous. I deconstructed natural

shapes into exaggerated primitive volumes in order to invoke a sense of “alien” and

2 The design and general shape of the Black Widow illicits a response based on the actions it takes against
humanity and other creatures. There is no human origin for the meaning behind the design.

20

https://www.nationalgeographic.com/animals/invertebrates/group/black-widow-spiders

“new perspective” on archetypes such as mushroom (fig 1.13), mountain, and cactus

that we take for granted. This allowed the essence of a shape to take control over its net

impact, such as the way that 3 giant leaf shapes can constitute a “bush” just as well as

100 can. This cactus has been reduced to a few spines on an inflated body, straying

heavily from a naturalistic representation but retaining the defining qualities (fig 1.14.A-

B). Consider the sketch of the cactus from figure 1.1.4 from page 7 for the treatment of

the subject in the concept as well. A great example of this technique is in Mario +

Rabbids: Kingdom Battle (fig 1.14.C)

Figure 1.13. Reduction of Shapes in Mushrooms Exercise. Zoey Schlemper. Graphite on Paper. 2017.

21

Figure 1.14.A. Prickly Pear Cactus. El Charco del Ingenio. Photography. 2008. <
http://www.elcharco.org.mx/boletines/not_vol3no06.html>

Figure 1.14.B. Prickly Pear Cactus. Zoey Schlemper. 3D Render. 2017.

22

http://www.elcharco.org.mx/boletines/not_vol3no06.html

Figure 1.14.C. Mario + Rabbids: Kingdom Battle. Nintendo & Ubisoft. 2017.

The colors of this project are vibrant and focused on creating a “hypersensitive”

experience in the viewer. Imagine if, instead of only having 3 color-sensitive cones in

your eye, that you had 6. Drawing parallels between the sense of taste and sight were

my primary vehicle for achieving this. I tend to think of visuals in terms of how “tasty”

they are. Are the colors sweet or sour? Does the shape make me salivate? This type of

free-association was an exciting way to approach creation.

This project also utilized the full range of colors available on the modern screen,

unlike the drab and grim realism of many AAA titles (fig 1.15). In order to properly

emulate nature, increasing the potency of color was an imperative. Notice the

difference between figure 1.15 and 1.14.C. Both of them are outside and include human

23

constructions, but the balances of nature vs civilization are different. The absence of

mankind is synonymous with vibrancy in this example.

In order to glorify nature, I use the same correlation between mood and

existence of mankind, and describe this by increasing the vibrancy of the non-man-

made. The compilation of my work in chapter 4 helps illustrate this. In those images, I

have made the physical materials of wood, metal, stone and kept their colors lower in

vibrancy, and lacking in hues that are commonly associated with energy and happiness,

such as highly saturated, high value greens, reds, and blues. Instead, the colors either

skew towards earthly, or at the very least tend to be highly desaturated, similar to figure

1.15 below.

Figure 1.15. Call of Duty, Beach Invasion. Activision & Infinity Ward. 2013.

24

The VFX are inspired heavily by Miyazaki films and The Legend of Zelda, Breath of

the Wild (fig 1.13). My interpretation of the elements focused on a reduction of sheer

number, as in moving from sand grains to pebbles. In figure 1.13, we can see about 4

large cloud bursts in the explosion and 3 debris comets. The colors have been cell

shaded to resemble something like gouache (fig 1.13.A). Whereas in figure 1.13.B we

see at least twice as many of all of those, and fractal-like details on each smaller area, as

well as a wide gamut of color. In my project, I reduce and simplify my VFX to reflect the

same methods of simplification (fig 1.14). I took these simplified forms and emphasized

their fluidity and rhythm. Hopefully this creates a sense of whimsy and imagination.

Figure 1.16. Legend of Zelda: Breath of the Wild. Nintendo. 2016. < https://realtimevfx.com/t/cartoon-explosions-fire-
effects-w-ref-legend-of-zelda/1490>

25

https://realtimevfx.com/t/cartoon-explosions-fire

Figure 1.17.A. Landscape Study in Kansas. Matthew Cook. Gouache. 2012.

Figure 1.17.B. Titleshot from Biggest Explosion Compilation 2015. InstaVids. Video. 2015.
<https://www.youtube.com/watch?v=zhBxfNm3rJE>

26

https://www.youtube.com/watch?v=zhBxfNm3rJE

Figure 1.18. FogVFX. Zoey Schlemper. 2018.

In terms of lighting the environments, I made certain each shadow was colorful. I

followed the current trends of realism in lighting that PBR materials are so well-known

for, but hiked up the floor of the value range. Also, metallic surfaces have had their

effects reduced for the sake of subtlety and so as not to overpower the other aspects of

each scene. In order to achieve this, I increased the roughness parameter greatly, and

reduced the metallic parameter slightly.

The lighting set-up is simplified to a uniform color fill light and a directional light.

This fill light emulates the sky and is comprised of two effects in-engine: a skylight,

which adds color and reduces shadow by emanating light from a dome across the entire

scene; and the environment color, a core setting of the entire level that tints the

absolute black of shadows to a color and brightness specified by the user. The

27

directional light, unlike a spotlight, has no visible end of influence. There are no

additional spot or edge lights to ensure computational efficiency and staying loyal to

natural lighting.

28

	 	 	 	

	 	

Chapter	 Two: Techniques and	 Creative Process

Figure 2.1. Hard Normals Versus Soft Normals. Provided by Author, Rendered in Maya 2016.

3D	 Modeling Workflow

Video game environments are made of points in Cartesian coordinates. These

points are called vertices, and are connected to one another by edges (the white lines

in figure 2.1) and when edges enclose an area, they form polygon primitives that have

an image (or “texture”) mapped to their surface area using UV coordinates. Each vertex

can have a soft or hard transition between itself and its neighboring vertex. This is a

result of the “normal” of the vertex, indicating the perpendicular direction from the

polygon surface. Notice in fig 2.1 how the hard transitions have multiple green lines

protruding, while the soft transitions have only one. This is because on a hard edge, a

vertex simulates an angle change by having separate facing directions for each polygon

29

it helps construct. Vertices can store many other additional data types, like a color that

is not rendered known as “Vertex Color” or a measure of influence from a joint known

as a “Skin Weight.” Using all of these attributes and extra storage options is necessary

for creating complex and convincing 3D models. In this chapter, I will show a general

workflow for making assets, and the considerations I take in order to maximize utility

and flexibility when importing to a game engine.

The general workflow is a close relationship between the software packages

called Maya and Z Brush. Many artists use a workflow referred to as “high to low”,

including myself. This is when you create a detailed virtual sculpture, often millions of

polygons in size, and then you create another model with an extremely low polycount

using the detailed sculpture as reference (fig 2.2).

Figure 2.2. High Poly (right) and Low Poly (left) with wireframes showing. Provided by Author, Rendered in Maya 2016.

30

From there you can bake a Normal texture map. This texture encodes the refined

surface angles (a vector in XYZ space) from the high polycount model as a color in an

image (fig 2.3) mapped to the low polygon model. The game engine then loads the low

polygon model, and when computing the lighting, takes into account that image in order

to reproduce high fidelity detail for a fraction of the processing power. 3

Figure 2.3. Visual Example of how RGB values exist on an XYZ axis. FallOut Software. <
http://www.falloutsoftware.com/tutorials/gl/normal-map.html>

3 (Squircle Art. 2017)

31

http://www.falloutsoftware.com/tutorials/gl/normal-map.html

Figure 2.4. Arcane Scale. Zoey Schlemper. Digital Multimedia. 2018.

This technique was used for many of the assets, including almost all the rocks,

and hero assets such as the Arcane Scale (figure 2.4). Time management was crucial for

this project due to the limited manpower compared to the volume of assets required.

Occasionally, high-poly models and normal maps were not necessary to make if some

assets were not going to receive as much attention by users, such as the grass blades.

There were some instances where I had to hand-modify the normals of a mesh in

order to achieve the best visual results. This is most noticeable on the trees and grass

models. Much vegetation in videogames is made of “cards,” which are essentially 2D

planes with pictures of leaves and stems on them. These cards are intersected in order

to create volume for minimal cost. However, these intersecting cards tend to react to

light in a jarring, simplistic way (fig 2.5, left half of image). I tilted the normal of the

32

planes up and softened the edge transitions so that the grass would softly transition

from light to dark. I also kept them one-sided and had two planes facing opposite

directions in order to form the illusion of a single double-sided card. This is because the

normals are tilted up but not perfectly perpendicular to the ground, causing a lighting

inversion on the card’s backside (fig 2.6).4

Figure 2.5. Hard Vertex Normals (Left) and Smooth Vertex Normals (right) on Trees. Eric Chadwick. Digital
Multimedia.< http://wiki.polycount.com/wiki/Foliage>

4 (Authors 2018)

33

http://wiki.polycount.com/wiki/Foliage

	 	

Figure2.6. Modified Normals (left) and Regular Normals (right) for grass cards. Zoey Schlemper. Digital 3D. 2018.

Texturing Workflow

I found myself intrigued by procedural texturing, and attempted to apply it to

stylized environment work. Procedural textures can achieve startling levels of realism,

and allow artists to plow through otherwise mind-numbing levels of detail necessary for

that realism by using automatic tiling, noise manipulation and other generators (fig 2.7).

In terms of stylized artwork, procedural texturing is useful for saving time, achieving

perfect tiles, and rapid prototyping. The downsides of procedural texturing include a

lack of control in fine detail, and a general lifelessness of color and texture in terms of

the stylized and hand-painted genre. In some cases, achieving the desired effect in a

34

procedural texture may take more time than doing it hand-painted, neutralizing a key

benefit of the procedural workflow.

Figure 2.7. Sloppy Brick Wall Material Study. Joshua Lynch. Procedural Shader Network.

In this project, procedural textures worked best for less important materials that

aren’t meant to draw a lot of attention. For example, the cast iron on the archway in

Windmill Valley was procedural. However, the wood, brick, and decorative trim were

sculpted by hand (fig 2.8). Combining procedural and hand-made textures in the

stylized genre required me to make artistic choices that allow the two production

techniques to have consistent results. For example, I sometimes took the albedo from a

procedural texture into Photoshop in order to add hand-painted details. When creating

textures manually, I made sure to copy the general process of color build up used in the

35

procedural textures, such as working in grayscale for the albedo and then applying a

color ramp, before proceeding to hand-painted detail. Some textures are purely one or

the other, while others use a combination of both to achieve the desired effect.

Figure 2.8. Trim Sheet Sculpt. Zoey Schlemper. Digital Sculpture. 2017.

5

5 This is an early version of the sculpted trim sheet that appears in the project, and appears here solely for
the purpose of describing a technique rather than an outcome.

36

Procedural workflows require an understanding of how the textures will be

implemented at various levels of the pipeline. For example, a stylized copper shader I

made relies on a curvature map6 (fig 2.9) in order to generate some detail. The white

areas of the map were used to add edge wear. In figure 2.9.A we can see a curvature

map being used to add some detail to the edges of the gear.

Figure 2.9. Curvature Map Render. Zoey Schlemper. Digital Multimedia. 2017.

6 A Curvature map shows the change in angle from one polygon to another as black and white.

37

Figure 2.9.A. Large Copper Gear. Digital Multimedia. Zoey Schlemper. 2018.

As an environment artist, most of my work will need to have as much mileage

and flexibility as possible. In order to widen the use-case of all textures and meshes, I

separated each procedural material into two parts: The base material (like copper) and

detail layers (dirt, scratches, oxidization) that add variety. We can see these details

working in figure 2.9.A. I can then combine these different layers in Substance Painter,

using mesh-specific maps such as curvature or thickness in order to build complex and

mesh-unique materials from a few simple textures. This “texture library” approach was

used to impressive effect in the game The Order: 1886 (fig 2.11).

These techniques allowed me to consider nature in a pragmatic way. Just as the

earth is created from many layers of dirt, rock and minerals, my environment surface is

made from similar layers: dirt, cobblestone, stone, grass, and snow. Although a user

38

	 	

may not be aware of this technique, the parallelism of natural phenomenon and artistic

approach is worth noting, especially since a key part of this project was to create a

conduit of nature. By copying her approach to terraforming, I hope that my system can

show some form of reverence.

Figure 2.11. Sample Textures from The Order: 1886. Ready at Dawn Studio. Procedural Shader Network. 2015.

Shader	 Development	 in	 Unreal Engine	 4.16

Creating shaders for Unreal Engine required me to become heavily involved in

visual scripting interfaces. I picked up many skills from established studios, benevolent

students, and scholarly professionals. Rather than reiterate their work here, I will

39

describe broader interpretations and principles of the design process for this project. If

you are curious about explicit details, I discuss some minutiae of these techniques in

other documentation, and point towards specific research there.

The visual effects were inspired heavily by RiME (fig 1.4) and Breath of the Wild

(fig 1.5). I used some of the exact same techniques as the creators of RiME, but applied

them in a different way. All of these shaders were produced in Visual Scripting

Environments with no use of text coding.

Simon Schreibt goes into detail about how Tequila Softworks (the creators of

RiME) produce water, fire, and vertex painting techniques in a stylized manner. Their

technique for fire revolves around creating color masks by deforming a simple gradient

(fig 2.12) with panning UV values. With meticulous balancing between amount of

deformation and the type of gradient this is applied to, it is possible to create

mesmerizing and smooth flames (fig 2.13). 7

7 (Schreibt 2017)

40

Figure 2.12. RiME Flame VFX Breakdown. Simon Schreibt. Presentation Slide. 2017.

Figure 2.13. RiME Flame VFX. Tequila Softworks. 2017.

While developing my procedural cloud shader, I discovered this technique and

adapted it to the clouds. Before that, I was using a rather primitive multiply mask (fig

2.14), which created problems with value banding and a lack of control of value

placement, resulting in very lumpy, flat clouds that often became pixelated. The use of

41

UV deformation allowed me to take this basic set up and us it to shape a higher

resolution gradient, solving all of the previously stated problems (fig 2.15). For a full

explanation of the cloud shader, please refer to Appendix A: 2D Procedural Sky Shader:

Using Unreal Engine 4.16 Material Editor.8

Figure 2.14. Procedural Cloud Shader Black and White Texture (BETA). Zoey Schlemper. Procedural Shader Network.
2016.

8 (Schlemper, 2D Procedural Sky Shader: Using Unreal Engine 4.16 Material Editor 2017)

42

Figure 2.15. Procedural Cloud Shader Gradient Mask UV Distortion. Zoey Schlemper. Procedural Shader Network.
2017.

Other important principles of shader development included using consistent

value ranges for variables that allowed them to be both easy to understand and

universally applicable in many different mathematical situations. For example, a

universal “cloud amount” value controls the intensity of sunlight, the amount of clouds

that appear and how much a gel/cookie blocks the sunlight to name a few. The cloud

amount needs a value between -.3 and 0, whereas the sunlight intensity needed a value

between 1-7. The original value is actually just 0-1, and it is remapped to the range

required by each unique shader. This helps reduce confusion and allows you to infinitely

expand the complexity of the system without worry—it just works.

Another key area was using parameter collections effectively.9 In Unreal Engine,

it is possible to change the material of something while the game is running. Changing a

balloon from red to blue and frim shiny to dull is an example of this. However, if you

9 (Epic Games 2018)

43

wanted to change all of your objects in a scene from one color to another, you would

have to specifically code the action of changing each unique shaders color. Unreal has a

special feature called Parameter Collection that turns this into one action. If you use a

Parameter from a Collection in a material, you only have to change that parameter in

one place and that will be propagated throughout the other shaders that use the same

parameter.

Context-sensitive shaders are also important to this project. For example, the

ground materials of each world change based on how vertical they are. If some polygons

pass a certain angle threshold, the texture will change from grass to rock, creating the

illusion of a cliff or mountain. This effect is mostly the result of a dot-product from a

never-changing vector (in this case pointing straight down the vertical) compared to the

vector from each polygons surface normal on an object. This same principle was used to

mask off the snow texture when it appears, as snow doesn’t stick to vertical surfaces.

My shaders are made up of chunks, inspired by object oriented programming,

called material functions.10 These are small networks of shaders that often have some

inputs and outputs. They let you copy large sections of code across materials very

quickly. Some of them include a snow material transition, a wetness effect, and a wind

vertex animator. After the unique features of the shader are put together, these chunks

are added to the final result, effectively seating them in the weather system (figure

2.16). In this figure, the nodes highlighted in blue contain something similar to the code

in figure 2.17.

10 (Epic Games 2018)

44

https://functions.10

Figure 2.16. Snippet of A Shader Graph Detailing the Material Functions. Unreal Engine Material Blueprint. Zoey
Schlemper. 2018.

Figure 2.17. Inside the Snow Material Function. Unreal Engine Material Blueprint. Zoey Schlemper. 2018.

There are a number of connections between my approach to shader

construction and the end-goal of creating a dynamic weather system. The first is how I

utilized the same principles of shape reduction as discussed in chapter 1. It is interesting

45

	 	 	 	 	

that an approach to fire and water can also be applied to clouds/vapor, arguably a

combination of the two (really its more like water and temperature/pressure, but I

digress). The second is in the emphasis on inter-connection of shader elements, and

how they react without human intervention (after being set up the first time). This is

paradoxical, because of the immense effort needed to reproduce the phenomenon that

can’t help but happen in nature. As we have seen, parameter collections are the best

emulation Unreal Engine has of the sheer scale of natural physical reactions. Every flat

surface collects snow by merely existing in the real world. In contrast, a computer needs

to test every vertex that has a shader tailored to display snow before adjusting the

shader. It requires immense overhead cost in terms of shader creation and computing

power, but the end result is something that we can take for granted, and that we fully

expect from past experience. This inter-connection, although wildly different in terms of

how it comes to be, is one of the most important elements of a dynamic weather

system that strives to pay homage to the real thing.

UX Design Process for Menu	 Systems

The tutelage of Jennifer Ash was priceless when developing the menu system, as

I had little prior knowledge of UX design. The user experience design was fueled by two

imperatives: minimalism and control. The information architecture separates the

program into two main areas: the World and the Weather (in other words, the stage

and the actor). The idea is to keep the controls close at hand, but to make them invisible

otherwise. I go into detail about the User Experience design in chapter four.

46

	

Chapter	 2.5:	Anatomy 	of 	the 	Weather 	System

This weather system consists of a few different parts that rely on each other in

different ways. The vast majority of the weather system is contained in a single

blueprint, which is like a folder that contains multiple files and instructions for the

computer to use. In this section, I will detail the structural hierarchy and inventory the

individual components that make up the system.

First, I will list the weather system assets in their entirety:

• Weather System Blueprint:
o Sky Shaders:

• Cloud shader
• Overcast shader
• Sky and sun shader

o Sky Meshes:
• Sky dome
• Overcast dome
• Cloud ring 1
• Cloud ring 2

o Directional Light (Dynamic)
• Cloud shadow effect light function

o Particle Systems:
• Rain
• Snow
• Dust cloud / low fog
• Spirit motes

o Color Curves:
• Cloud color based on time of day
• Sun color based on time of day
• Sky color based on time of day

• Shader Functions:
o Snow on flat surfaces
o Wetness / rain on flat surfaces
o Raindrip screenspace post process effect
o Wind animation with compass direction
o Heatwave distortion post process effect

47

• Parameter Collections:
o Weather intensity collection (Wind amount, rain amount, snow amount)

• User Interface Blueprints:
o Heads Up Display
o Main Menu System

The general relationship is as follows. These assets interact with each other and

update via code inside the blueprint. Shader functions cannot exist within the blueprint,

because they need to be applied to the 3D objects in the scene that the blueprint

interacts with. The parameter collection allows the computer to update all those shader

functions at once by adjusting one variable as opposed to adjusting it at each location

that variable is used. The user interface (UI) blueprints communicate with the weather

system blueprints by both giving and receiving data. The UI adjusts its sliders and

options based off the current value of key variables from the weather system, and then

sends new data for those same variables when a user interacts with the UI.

48

	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	

Chapter	 Three: Coding Key Features of the Weather System

The XML parser: How Weather	 Data	 is collected	 from the Internet

One unexpected area of difficulty I ran into was coding the weather system. I

needed to develop a series of tools and functionality that did the following:

• Download a weather website’s content as a string

• Parse the string for a specific set of words and variables

• Compare this parsed list to an exhaustive list and return hits

• Adjust the shader networks and particle systems in order to replicate the

weather and time of day based on this data.

During my research for the best way to get weather data, I discovered the

National Oceanic Association of America’s (NOAA) weather feed11, which featured two

formats, including XML. This is a standardized format for data that can be simplified to :

<DataTag1> Your_data_here </DataTag1>

Or: <FlavorOfIcecream> Mint_ChocolateChip </FlavorOfIcecream>

This standardized presentation of weather information was exactly what I

needed to make my project work!

11 (National Oceanic and Atmospheric Administration 2018)

49

The free plug-in VaRest12 solved the problem of requesting the URL and

downloading the XML for me. From there, I developed a parsing function that would

look for the weather data I needed. I gave it a list, such as “temperature, type of

weather, time of day, windspeed, location” and it would find those data tags and copy

the contents into an array.

In order to use what I downloaded, I needed a method of translating words into

correct numbers for shader manipulation. For example, if the XML parser returned

“Heavy Rain” I needed to translate that into “rain = on” and “rain intensity = 2.” The

NOAA graciously included an exhaustive list of all possible weather types the XML may

include. I then reduced the list to its primary vocabulary. For example, the weather

types “heavy rain” and “heavy snow” can be reduced to 3 unique words: “heavy,”

“rain,” and “snow.” When I finished the reduction, I had about 20 possible words that

may be returned.

I then classified the words based on their impact on the weather. In the previous

example, “heavy” is an intensity modifier, whereas “rain” and “snow” are precipitation

types. For the computer, heavy means multiply the amount of precipitation by 2, and

rain or snow indicates which particle system to turn on. In order to make this

translation, I used the “Dictionary” variable type, which makes a 1 to 1 connection from

one variable type to another (i.e. I can say that “Heavy” = 2 and “Light” = .5).

12 (Alyamkin 2016)

50

This was especially helpful for 2-dimensional data, such as wind direction. For

example, when the parser returns North-East wind direction it can be mapped directly

to the vector “1,-1” where “0,-1” means North and “-1,0” means West. You may be

wondering why North, traditionally upwards pointing when drawn on paper, is negative

on the Y axis. This is because UV coordinates start with (0,0) in the top left corner and

end with (1,1) in the bottom right corner. Please consider figure 3.1 to better

understand.

Figure 3.1 Mapping Compass Direction to Vectors in UV Space. Provided by Author. 2018.

51

	 	 	 	 	 	 	

One-Way Data Manipulation in Unreal Engine 4

At this point, the coding only supported one website that was hard-coded. I then

had to develop a user-friendly system for choosing one website from a list of hundreds

(this would be which city and state you want to pull your weather data from). The

number of weather stations was well over 500, and there was no way I was going to

write down each weather station code one by one. I had to automate this process for

both my sanity and to save precious time. There were a few approaches that came to

mind directly: Use the string parsing module in Unreal Engine in order to find the correct

codes at run-time; create a separate tool that would compile the list directly from the

NOAA sites. 13

After some research and deliberation with my technical advisor, it became clear

that the only viable option was to create a python script. This is because Unreal Engine

lacks any reasonable method for manipulating a spreadsheet at runtime. Most of its

spreadsheet capabilities are designed for user analytics and data pointers. This means

Unreal can record statistics from gameplay and exports it in a spreadsheet, or it can use

keywords in spreadsheets in order to associate two things, like an image of a sword with

the skill it represents. So although I could import the spreadsheet of all 50,000 airport

codes into Unreal, I could not manipulate it any further.

13 (Python for Beginners 2017)

52

	 	

Structure	 of the	 Python	Weather	Station	Code	Compiler

At its most basic functionality, the compiler uses one “for” loop nested in

another “for” loop. In English, this means the compiler does “Job B” for each “Job A.”

Because the NOAA website is for US territories only, “Job A” is to download the web-

page that lists all the codes for a single state. So it needs to do Job A about 50 times

(plus Cuba and others). Once it downloads a state’s web-page, it then runs Job B, which

is to start at the beginning of the webpage and use HTML headers as landmarks in order

to pinpoint the Weather Station Code, write it to a text file and insert a Delimiter14. It

then finds the name of the location (i.e. Seattle-Tacoma Airport, Seattle, WA)

corresponding to that Code and writes it to a different text file. It does Job B until it

can’t find any more codes. Then, it moves on to the next state and starts Job A again. In

the end, two string variables are returned: the list of codes, and the list of locations

those codes correspond to. These lists are in the exact same order.15 This script only

needs to run once for the entire program, assuming it runs correctly.

Once these variables were brought into Unreal Engine, I designed a combo box

system that auto populates based on user input. To start, a user can only select a state.

This is a hard-coded array, and the combo box never changes. Once they pick a state,

the program searches the master list of location names and populates the second

combo box with only ones that match that state. A user selects the location they want

to get weather data from, and Unreal Engine uses the index of that location in order to

14 A delimiter is any characters you use to denote a separation of list elements. So the delimiter in
“Apples,+Oranges,+Bananas” is “,+”

15 (Python for Beginners 2017)

53

https://order.15

	 	 	 	 	 	

	 	 	

locate the correct weather code. This is why it was so important that they be in the

same order.

Finally, the weather code is used to download the weather data by inserting the

code into the base URL used by the NOAA database.

This Url is: http://w1.weather.gov/xml/current_obs/ABCD.xml

Where “ABCD” is the weather code desired. The program replaces ABCD with

what the user selected, and collects the weather data using the XML parser described

earlier.

Can the System adapt to	 Additional Databases?

Although this system has been designed specifically around the XML format and

the unique URL’s of the NOAA website, it is possible for this system to be expanded to

additional databases that include European, Asian, or any other weather stations you

can find, with only a little extra work. XML is an extremely common format that is used

for all sorts of applications, and the likelihood of finding other weather databases that

use it is high. The python compiler would definitely need to be tweaked to fit the set up

of other databases, but these changes are small compared to the other work that has

gone into the system in its entirety.

Chapter	 Four: User	 Experience Design

The menu system (figure 4.1) was created by testing it periodically on users and

adjusting course based on their feedback. The largest impact from the user testing

54

http://w1.weather.gov/xml/current_obs/ABCD.xml

included vocabulary for buttons, and information architecture design. I found that

clearly expressing the function of a button to any person without fail is extremely

difficult, and that creating proper user flows requires a lot of iteration.

Figure 4.1. (Left) Chromniview Menu Design. Zoey Schlemper. User Interface. 2018.

Figure 4.2. (Right) Chromniview Menu Design (Early Draft). Zoey Schlemper. User Interface. 2018.

After a round of A/B Testing, it was discovered that 5/5 users preferred Tab-

based menu system16 (fig 4.1) over a basic buttons layout (fig 4.2). In the Tabs system,

16 (Schlemper, Chromniview Prototype: User Testing 2018)

55

	

all menus are 2 or less actions away at any time. This brevity allows a user to remember

what they are doing and to perform their actions quickly. Second, the ever-present tabs

indicate the informational hierarchy at all times, giving the user a clear understanding of

how the system works.

This system also helps to enact the thesis statement by reducing user focus on

the UI. While a necessary part of the experience, the UI is only a tool to experience

nature via the dynamic weather system. The better designed this menu is, the less it

matters to the user, ensuring attention is paid to the artistic statement.

Designing	 Based	 on	 Established	 Methods

In terms of Chromniview, the menu design is a liaison between the message and

the user. It is not something with which I ever intended to experiment, create an artistic

statement, or otherwise influence the trajectory of the thesis statement in a direct way.

Instead, it is intended to bridge the gap between the weather system and the user. It

helps to create a meaningful experience by giving the user control, but it isn’t meant to

add any “flavor,” if I am to continue the metaphor from Chapter One. For these reasons,

directly referencing established methods of UX design were my primary method for

creating the menu system. I pulled heavily from the Material design philosophy

researched by Google.17

Much of Material’s design focuses on consistency, clarity, and minimalism. It is

no surprise that the style fit into Chromniview’s tenants of minimization and ease of

17 (Google 2018)

56

https://Google.17

use. The functionality of Material is typified by “Components,” which are essentially UX-

centric Archetypes: The Button, The Expansion Panel, and Dialogs are just a few of

these. These Components are organized through strict Layout guidelines. Margin and

spacing amount, relativity of text size, and placement on the screen have been given

consistent roles for relaying information to a user. This reduces the opportunity to be

creative, but it also enforces the importance of a positive and well-designed user

experience.

The UX design process was very fluid. It seemed like I was constantly changing

direction, and “going back to the drawing board,” as they say. I have been told that this

is the nature of UX design. If my process can be boiled down to a few steps, they were:

brainstorming the desired experience, enumerating needed functionality, paper

prototype (fig 4.3), user testing, revision of paper prototype, user testing, digital

prototype (fig 4.4), user testing, A/B testing of two menus (digital prototypes),

implementation into Unreal Engine, user testing, revision of system, user testing. During

the A/B testing is when I discovered the tab-based menu system that is in the final

version. This required a hard pivot and reworking front-end systems, but was required

based on user testing results as mentioned earlier.

57

Figure 4.3. Chromniview UX Paper Prototype. Zoey Schlemper. 2018.

Figure 4.4. Chromniview UX Digital Prototype. Zoey Schlemper. Powerpoint Presentation. 2018.

One of the most important lessons I learned while working on UX design was

something writers often talk about: killing your babies. Of course they mean

metaphorically, and of course they are referring to passages written that one has an

58

irrational attraction to. Having never been fond enough of my own writing, the words

were lost on me. What pain is there in erasing a few sentences?

After spending a month and a half designing and coding the menu system, I had

become very attached to it without realizing it. But user testing revealed that there was

a better option at hand, and I’d have to pursue it if I were worth my weight. It pained

me greatly to erase almost all the front-end work on the project. I was very fortunate to

have enough time to handle this setback without having to sacrifice a different area of

my academics. Like mentioned before, the project benefited from it.

The UI system has the least amount of polish amongst the various systems that

are in play in Chromniview, and this further enhances the artistic statement. To polish or

refine the UI is to make it a spectacle, and this is not something that bodes well to

maintaining weather and precipitation at center stage. By ensuring the UX was as

unintrusive and minimizable as possible, and by spending a minimal amount of time on

the refinement of the graphic design of it, I have hopefully kept these buttons in the

absolute back of a user’s mind.

59

	 	 	 	

Chapter	 4.5: Weather Effects Compilation

Figure 4.5 All images were created and provided by the author. Digital Multimedia. 2017-2018.

There are a total of 3 environments in Chromniview, featuring a multitude of

viewpoints. The first ever made, depicted in example 1, is an abandoned fountain in the

desert. While researching the weather and planning my approach, I wanted to make

sure that I explored biomes and environments that are stereotypically known for certain

weather types. In this way, I started with a hot desert, which has been contrived as

being completely devoid of water in all its forms.

The second environment, shown in example 5, and featured in the concept

paintings from 1.2.1-4, is a guarded mountain pass. In this environment, I was exploring

a possible concept of a wind serpent that enjoyed the mountains for their wind-tunnel

like valleys. In this world, the locals might’ve developed a religion around such a

majestic beast. I also wanted to avoid cultural misappropriation, and attempted to

combine some design sensibilities from both Eastern and Western cultures. In the end, I

didn’t have enough time to model the intricate designs that went with the wind-serpent

religion, but I was able to begin combining Western Feudalism with Eastern Shintoism,

in the turrets and spirit golems respectively.

Finally, the ancient arcane scale included as the 2nd in example 3, came about

through a simple desire to create a mechanical prop. From that simple prompt, I began

designing a pseudo steam-punk gear system that uses ancient magicks and integrates

actual gameplay elements, like staircases and levers. This environment may indeed exist

60

in the same world as the guarded mountain pass, but the styles vary enough that they

may not.

61

	

Examples	of	Weather	Changes

Example 1: Sunny to Overcast

62

Example 2: Dawn to Mid-Day

63

Example 3.1 and 3.2: Mid-Day to Dusk

64

65

Example 4: Clear to Snowy

66

Example 5: Clear to Rainy

67

Example 6: Day to Night

68

	 	 	

Chapter	 Five: Conclusion and	 Looking	 Forward

The artistic vision of the thesis was heavily influenced by two dimensional

representations of reality and possible methods for translating its inherently graceful

simplifications of volume. The choice of color, and the type of stylization in shape

language were selected in order to create an homage to nature. The primary goal of

artistic direction was to emphasize the beauty of nature, and to bend the human will to

serve her needs. This creates an inverted influence pattern by creating an artificial

reflection of natural consequence, giving humanity the opportunity to decide whether it

is worth caring about or not.

In creating this application, the artist posits that nature creates meaning by

influencing humanity, and we benefit from this only as much as we understand the

connection between nature’s power and our personal lives. The application and all its

simulations mean nothing except for what they inform the user about the real world.

The meaning of nature, arbitrary when experienced directly and in-person, is suddenly

made conditional on the grounds that a person finds a reason to care about this

reflection.

I utilized all sorts of techniques, from cutting-edge programs like Substance

Designer for creating procedural textures to modified versions of established UV

distortion techniques in order to follow the art direction. I made sure to create shaders

and gameplay logic that allows the art to respond and emulate the many states of

69

nature. I used these techniques to add weathering to man-made objects and to increase

the sense of how weather influences static objects.

The user interface also followed the art direction, keeping nature the center of

attention. The menus encourage exploration of the system while also letting nature

control it for you, achieving a meeting between the will of humanity and the chaos of

nature, utilizing modern technology as the liaison.

Figure 5.1 Celshading And Outline Material. PipeRift. Digital. 2016.

However, the lack of post-processing effects such as an outline shader (fig 5.1)

and shadow manipulation (5.2) leave room for a more refined emulation of 2D art.

These types of effects were popularized in the west by games like Borderlands (fig 5.3),

and eastern examples of the effect include recent entries in the Guilty Gear franchise

(fig 5.4) and Dragonball franchise (5.5).

70

Figure 5.2. Shadow Material Shader. Tom Looman. Digital. 2017.

Figure 5.3. Borderlands 3 Tech Demo. Gearbox Software. Digital. 2017.

The implications of this project are many. First, it is an adaptable, fully

procedural weather system, library of material functions, asset creation workflow, and

supporting custom-made Python script that results in a full technical environment art

suite for stylized 3D environments with miniscule fiscal budget. It could be picked up by

71

a large variety of studios and adapted to their workflow thanks to its compartmentalized

design. Second, any weather recording system in the real world that converts its data to

XML can be utilized by this system with a little adaptation. This allows for scalability as

the technology and resources of a studio change or increase.

Figure 5.4. Guilty Gear XRD. Arc System Works. Digital. 2016.

72

	 	 		

Figure 5.5. DragonBall Xenoverse 2. Bandai Namco. Digital. 2017.

Finally, the project has only had one full iteration by a single artist, and it could

be expanded in various ways. Some of these include: Geometry offset for snow system;

Full wind system for physics based objects; 3D emulation of light in cloud shader; and

many more. Rainfall could fill objects with water, allowing a system for puzzles based on

water levels to be implemented. The snow could freeze these puddles and turn them

into platforms, further increasing gameplay opportunities. This project shows a proof of

concept for creating a procedural weather system that can be driven by real time data in

order to generate narrative and other effects.

Possible Next Steps

There are a number of weaknesses in the body of work known as

“Chromniview.” They range from artistic direction to scope and subject matter. These

73

critiques are opinions by the author about his own work, and one might agree or

disagree with them. They are necessary, for an artist’s work is never finished. They are

not discouraging, but stern and confident as they offer new avenues of exploration. In

pursuing these clashing ideas one might awaken new paradigms for judging value, and

eventually break ground for the bright-eyed hopefulness that urges one to create.

The first critique is on artistic direction. The stylized design sense can be

considered half-baked. The high concept of the piece aimed at a more loyal

interpretation of 2 dimensional animation, including visible outlines and a cel-shaded

look that utilized cross hatching patterns. Scope and efficiency are the primary reasons

the style has not pursued these tenants. Rather than spend time building static shaders

like an outliner, the artist aimed to build the weather system and refine it as much as

possible. Furthermore, celshaded and outliner techniques force a forward rendering

process, while Unreal Engine uses deferred rendering by default. This would cause

noticeable costs to memory and rendering budgets. Since the final concept of this work

is to be easily accessible, efficiency is key. In the end, there was not enough time to flesh

out the style further or to ensure that the overhead of those style-specific shaders could

be minimized properly.

The second critique is on the medium used for creating the project. Unreal

Engine was initially chosen due to its emphasis on visual scripting environments and

high quality and simple lighting and rendering. These were great boons during the

development of the project, and arguably were necessary for completing the weather

74

system. The projects I have coded in the conventional text editor environment pale in

comparison to the complexity of the Unreal Blueprints in this project, suggesting that I

could not have coded this effectively in a text editor.

However, the use of such a robust engine brought with it so much opportunity to

create all sorts of things, such as particle systems, complex shaders, multiple levels,

character controls, and user interface elements, to name a few. The wide variety of

objects the artist created meant less time refining the individual elements. Had the

entire project been constructed in Wallpaper engine using only shader code and a few

3D objects, there would’ve been far more time to refine individual pieces of the project.

Not only that, but the artist would’ve been exposed to lower level code libraries,

perhaps offering more educational value in terms of technical art.

The implications of this include a weaker final portfolio, because employers

often look for quality over quantity. The artist became distracted with the sheer amount

of options for adding to the scope of the project in an engine like Unreal that the project

suffered for its added complexity. On the other hand, perhaps the use of Unreal Engine

resulted in a stronger portfolio, because the visual scripting environments lowered the

bar of entry into game and art programming, allowing the artist to explore more

complex code structures faster than a text editing environment.

Had the artist created primarily in Wallpaper Engine, he might’ve made a small

diorama and had to learn complex libraries for things like shaders, particle systems, and

JSON requests in a Javascript–based game engine. This certainly would’ve been much

75

more difficult than working in Unreal Engine. This would’ve shifted the project farther

away from “Environment Artist” and closer to “Graphics Programmer” and “Technical

Artist.”

One feature of this executable that was pitched during the inception of the

project was to display the entire experience on the desktop of an average computer,

behind the icons. This helped to align the project with the initial goal of the thesis to

enshrine nature, and to create a void for her to fill. The importance of this feature to the

final delivery of the project has been low since the initial pitch, as can be seen in figures

5.6 and 5.7, which show the most important slides. While this feature was not pursued,

it seems to garner interest and spark the imaginations of many who hear of it. The idea

is worth hanging onto. Stills from the mock-up (also from the initial pitch) can be seen in

figure 5.8.

While there are other critiques to be made about the project, these are the ones

that clung to the author’s mind most persistently. In reading this, I hope you learned

something, and I hope you make something great.

Thank you!

76

Figure 5.6. Thesis Statement Slide from official thesis pitch. Slideshow. Zoey Schlemper. April 2017.

Figure 5.7. Key points concerning the enshrinment of nature set out by the Artist. Slideshow. Zoey Schlemper. April
2017.

77

 	

Figure 5.8. Mock Up of Desktop Application. Photoshop Animation. Zoey Schlemper. 2017.

78

	

References

Alyamkin, Vladimir. 2016. Va-Rest: Github Repository. Accessed 2017.

https://github.com/ufna/VaRest.

Authors, Multiple Unnamed. 2018. Foliage. March 8. Accessed 2018.

http://wiki.polycount.com/wiki/Foliage.

Epic Games. 2018. Material Functions. Accessed 2018.

https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/Functions.

—. 2018. Material Parameter Collections. Accessed 2018.

https://docs.unrealengine.com/en-

us/Engine/Rendering/Materials/ParameterCollections.

Google. 2018. Material Design. https://material.io/guidelines/#introduction-goals.

National Oceanic and Atmospheric Administration. 2018. National Weather Service: XML

Feeds of Current Weather Conditions. Accessed 2018.

http://w1.weather.gov/xml/current_obs/seek.php?state=wa&Find=Find.

Python for Beginners. 2017. Reading and Writing Files in Python. Accessed 2018.

http://www.pythonforbeginners.com/files/reading-and-writing-files-in-python.

79

http://www.pythonforbeginners.com/files/reading-and-writing-files-in-python
http://w1.weather.gov/xml/current_obs/seek.php?state=wa&Find=Find
https://material.io/guidelines/#introduction-goals
https://docs.unrealengine.com/en
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/Functions
http://wiki.polycount.com/wiki/Foliage
https://github.com/ufna/VaRest

—. 2017. String Manipulation. Accessed 2018.

http://www.pythonforbeginners.com/basics/string-manipulation-in-python.

Schlemper, Zoey Norman. 2017. "2D Procedural Sky Shader: Using Unreal Engine 4.16

Material Editor." Game Art Documentation.

Schlemper, Zoey Norman. 2018. "Chromniview Prototype: User Testing." User

Experience Test, Redmond.

Schreibt, Simon. 2017. Stylized VFX in RiME. Accessed 2017.

https://simonschreibt.de/gat/stylized-vfx-in-rime/.

Squircle Art. 2017. Normal Map Generation." . February 26. Accessed 2017.

https://squircleart.github.io/shading/normal-map-generation.html.

80

https://squircleart.github.io/shading/normal-map-generation.html
https://simonschreibt.de/gat/stylized-vfx-in-rime
http://www.pythonforbeginners.com/basics/string-manipulation-in-python

	

	

	
	 	

	

	

Appendix	 A

Additional 	Resources 	Written	by	the	Author

2D	 Procedural	 Sky	 Shader
Using	Unreal Engine	4.16	Material 	Editor

By	Zoey	Schlemper

Professors Matt Brunner and Mark Henne | Digipen Institute of Technology |CG 598 |
December 3, 2017

81

	

	 	 	

	 	 	 	

Contents
Introduction.. 83

Prerequisites... 83

Software Information ... 84

Resources for Learning the Techniques Mentioned in the Tutorials.. 85

Creating Cloud Textures in Substance Designer and Exporting to Unreal 85

Expose Parameters in Substance Designer... 89

Exporting a Substance for Unreal ... 95

The Substance Plug In for Unreal Engine.. 96

Installation .. 96

The Plug In Explained.. 97

The Parameter Window.. 99

Essential Nodes in Unreal Material Editor .. 100

Add and Subtract: the Value Shifters.. 100

Multiply: The Mask Node.. 101

Clamp: Keeping values under control.. 102

Simple, Yet Powerful... 104

The Core Node Network ... 104

Section one: The Sun .. 105

Section Two: The Clouds... 106

On your Own... 108

Learning Resources... 108

UV Warping A Red and Green Texture Map ... 109

Packing Textures to RGB in Photoshop... 110

82

	

	

Introduction

Please read the manual before watching the videos. To acquire the videos, please

contact the author.

This Tutorial Video Series Describes the creation process of making a sky shader. Rather

than doing a node-by-node follow along, I elected to walk through the finished materials

and focus on describing why the nodes work. I do some step by step nodes for the more

difficult sections, but for the most part I assume you will be able to make your own

version of each node I talk about.

I employed a wide variety of techniques to create this shader. The resources where I

learned the skills not taught in the Video are included in this manual.

Prerequisites

Before watching the videos, make sure you understand the following. If you don’t know

how to do it, then refer to the page indicated.

• Basic use of Unreal Editor 4.16+ Material Blueprint Editor (Essential Nodes in
Unreal Material Editor, Pg. 17)

• Using UV Warping on RGB Packed Textures (UV Warping a Red and Green
Texture Map Pg. 26)

• Creating Packed RGB Textures in Photoshop (pg. 27)

• Substance Designer Skills in order to create simple cloud textures (Creating
Clouds in Substance Designer, Pg. 3)

83

	

Software	 Information

Unreal Editor 4.16.3

Substance Designer 6

84

	 	

	 	 	 	 	

Resources and	 How-To’s

Some segments of the shader graphs use more complex techniques that I learned from

Professionals. Rather than waste your time with my sub-par descriptions of how these

work, I will direct you to the official sources of this information.

Other skills that I did have confidence in are described in full here.

Creating	 Cloud	 Textures in Substance Designer and	 Exporting	 to	 Unreal

My design for the clouds utilizes textures with two different roles: A Stencil type,

which creates the silhouette of the clouds, and a Fill type that mixes and creates

variation within those bounds. They are pictured in Figure 1.2

85

Figure 1.2 The “Stencil” (Left) and the “Fill” (Right). Notice that the stencil is in the top

half of its image space. This is very important, since we are mapping to an entire sphere,

and the horizon ends at that middle point.

Before we get into Unreal Engine at all, we need to have some basic cloud

textures to work with. Looking at my reference images, I decide to make my clouds out

of large puffball shapes. See Figure 1.3

FIgure 1.3 Snippet of Cloud Substance

1. Starting with a Paraboloid Shape node, I use…

2. Perlin Noise to…

3. Warp the shape…

86

4. And Blend both together to add more lumps.

After that, I use the Tile Sampler, see Figure 1.4.

This was the base for all my cloud textures. They can definitely use some fine tuning in

order to get more personality, but they are sufficient.

From here, I apply a mask to the Tile Sampler for my stencil shape. I used a Waveform

node blended with a Transformed Rectangle Shape as a mask in the Tile Sampler. See

Figure 1.5.

87

Figure 1.4 The Tile Sampler.

88

	 	 	 	

Figure 1.5 The mask used for the “Stencil” version of the Tile Sampler.

I don’t go into detail of how exactly I made these files because I want you to

experiment and try it out for yourself! Have fun in Substance Designer!

Exposing Parameters for Use in Unreal Engine 4

Now you should have at least 1 “stencil” type and 1 “fill” type cloud texture. I could

easily export these bitmaps and use them in Unreal Engine, but I would have to re-open

Substance Designer and re-export new images if I wanted to make any change, no

matter how small.. Instead, I am going to expose some parameters. This way, I save time

and simplify my workflow.

Expose Parameters	 in Substance Designer

In your Substance Graph, pick a parameter that gives you some type of control

over your texture output. In this example, I am going to expose the Opacity Slider of my

Blend Node from Figure 1.3.

1. Select the node :

89

2. Navigate to the Specific Parameters section, usually on the right side of the UI.
Click the button in the top right of that section, circled in cyan.

3. Then click “Expose Parameters”

90

91

4. This window will appear. You now are able to toggle the parameters you’d like to
expose. Click “OK.”

92

5. Double click on the background of your substance graph OR your graph’s name

OR

6. Then, in the rightmost pane, scroll down to “Input Parameters.” Here it is on the
top level of our Graph!

93

We are almost ready to export. Before we do, we want to make sure we have the right

texture format selected.

It is common knowledge that you will use an image like a .jpeg , .tga, or .png

when making textures for games. However, how you save that file and how it is

converted by the engine will change the quality of it, sometimes drastically. For this

texture, we are using primarily Grayscale images. When exporting from an authoring

software like Substance Designer, we want one of the following:

• A 32 bit image (RGB)

• An 8 bit single color image (grayscale)

Refer to Figure 2.0 for how to do this.

94

	 	 	 	

Figure 2.0 When we have our output node selected in Substance Designer, the

Integration Attributes indicated here shows important options. Format lets us select

either 8 or 32 bit from a variety of options. For this texture, I used 32 bit.

Exporting	 a Substance for Unreal

This is the same export process as prepping for Substance Painter. Once you

have all your parameters exposed and the image format selected, simply right click the

graph name and select “export SBSAR file” as seen in Figure 2.1

Figure 2.1 The final step for exporting a Substance Designer File for Unreal.

95

	 	 	 	 	 	

	

Do the same process for your Cloud “fill” texture, and let’s move into Unreal Engine

4.16!

The Substance Plug In for	 Unreal Engine

Installation

Install the free Substance Plug In from the Unreal Market Place (Figure 4)

To enable it in your project, see Figure 4.1

Figure 4 Figure 4.1

96

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

The Plug	 In Explained

Before we work on the new material, let’s import our substance files. Use the same
process as we did for the mat, but instead of a new mat, select “import asset.” Figure
4.2

Figure 4.2 Import Asset Option Location

97

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

 	 	 	 	

 	
	 	

	 	 	 	 	

	

	 	
	

	 	

	 	 	 	

	 	

	 	 	

	 	 	

	
	

	 	 	 	

 	 	 	 	 	 	 	

	 	 		 	 	 	 	 	 	 	 	
	 	

	
	

Once you import a .SBSAR file, you will be given 3 new files and a material at
the locations specified during the import process. Here is a table explaining them:

Icon Name Description How to Use It

The	Instance	
Factory

The	file	that 	generates	
new	Instances	of	your
substance	 graphs as
Unreal 	assets.	

To make a new instance:
Rightclick	the	Icon	>	Create	
Graph	Instance	>	
Graph_Name

Substance	
Material	
Instance

The	File	that 	contains	
your parameters

Double	 Click this	 to	 Open
Parameter Window
see Figure 3.3

Texture	
Asset

An image file output
from	 your texture
graph.	
Normal, roughness, etc.
maps also might exist.

These	are	standard	Unreal
assets and 	also auto 	assigned
in the corresponding material
that	was 	created.

• One .SBSAR file can contain multiple substance graphs,	which	can	
each	have	their	own	instance	created	by	the	Instance	Factory.	In	this	
way,	you	can	have 	a	“ROCKS”	factory 	with 	a	graph 	for 	Marble,	Granite,	
and Limestone inside. Add more graphs to your Project file in
Substance	Designer 	in	order 	to	take advantage 	of 	this!

98

	

	

	

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

 	 	 		
 	
 	 	

	
	

The	Parameter	Window

Figure 4.3 The Substance Material Instance Parameter Window

This window allows you access to any parameters you exposed while in
Substance	Designer as	well	as	these	defaults:

• Output map Toggles
• Output	Texture 	Size
• Global Random	 Seed

Once 	both 	of 	our 	graphs 	have 	had 	instances 	created,	dive 	into 	the 	Material	
Editor 	window	for your Sky	Mat!

99

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	

	

	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	
	
	
	

	
	
	

	

Essential	Nodes	in	Unreal	Material	Editor

In this section, I describe the basic math nodes used in almost every Unreal
Material. I also list out all the nodes I used, and offer resources for learning them	 on
your own. Unfortunately, I don’t have the skill or time to effectively teach each node
and its specific importance in the Sky shader graph.	There	are	people	who	have	
already done it faster and better than me, and I direct you to them!

Add	and	Subtract:	the	Value	Shifters

Figure 4.5
The	 Add and Subtract nodes	take	an	input	and	shift	the	value	of	it	closer to	

black	(zero) 	or to 	white 	(one). If a value exceeds one, it will begin to be emissive.
Figure 4.5.1 shows	 us	 exactly	 how this	 works.

100

	

	 	 	 	 	 	
	 	 	 	

	
	 	 	 	

	 	 	 	 	 	

	

	

	

	 	 	 	

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Default Texture Add	Node Subtract	Node

All values in the image have
been increased, or made
closer	to	1.	The	interior	of	
the clouds	have	exceeded	1	
slightly, and become mildly
emissive.

All values in the image have
been	decreased,	or 	brought	
closer	to	black.	The	original
blacks 	have 	gone 	negative,	
and 	this 	will	influence 	other
operations	done	on	those	
areas 	accordingly.

Figure 4.5.1

Multiply: The Mask Node

Figure 4.6
Multiply is useful for many things, but the masking effect is most powerful.

Any black areas in an image that are multiplied disappear. This also means any
areas multiplied by a number less than one have their brightness reduced, and
multiplying by a number larger than one creates an emissive effect. Here is what the
node	setup	in	figure	4.6	produces:

101

	 	

	 	 	 	

	

	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	
	 	 	 	 	

Figure 4.6.1 The	result of	Figure	3.6

Clamp: Keeping values under	 control

Figure 4.7
Occasionally	you	will	end 	up	with 	large 	positive 	or negative	values	for a	

certain area of your shader . But then for further calculations you need them	 to be
between 0 and 1, like if you need to use it as a mask (Figure 4.7.1). Clamp does this
for	 you by	 cutting	 off	 any	 value	 higher	 or	 lower	 than	 specified. This	node	does	NOT	
re-map your values to a 0-1	 space.	

102

	

	 	 	 	 	 	

	
	 	 	 	 	

	 	
	

	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	
	 	 	 	 	

Default Texture Multiplied	by	500 And	then	Clamped

Notice	 the	 grays	 around	 the	
edges	of	the	clouds.

All areas > 0 have become
excessively emissive.

The grays multiplied by 500
were 	cut	off at	1.	The 	values
“broke 	the 	ceiling”	of 1 and
have	only	been	cut 	off	to	
that	height.

Figure 4.7.1 The	results	of	Figure	4.7

Thanks to this calculation, I now have the silhouette of my clouds, which
could be useful as a visibility mask for the sun!

Figure	3.7.2
• The	 Saturate	 node has the exact same functionality as a default Clamp	 node,	

but	it	is 	often	a	 free	 calculation on modern Graphics cards!

103

	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 		
	 	 	 	 	 	 	 	 	 	 	 	 	

	

Simple,	Yet	Powerful

These nodes, although simple, are surprisingly important when manipulating
your textures and values during material creation. I used dozens of them	 in my sky
material. They are also inexpensive on your processing resources. As an example,
look	at	this 	calculation for my rimlight:

Figure 4.8
Of the 10 nodes depicted, 7 of them	 are one of those basic nodes, 2 are either a
single number or a color, and only one	 node is a more complex node called 1-X.

The Core Node Network

The backbone of my material is made up of two networks. The first network	
Figure 5 is	a direct 	translation	of	Unreal’s	default 	sky	shader.	The	second	is	
inspired by the same, but features a unique solution to generating stylized cloud
cover	 Figure 5.5.

104

	

	 	 	

	 	 	 	 	 	 	

	
	 	

	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

Section 	one:	The	Sun

Figure 5 The	Calculations	for	placing	a 	sun	in	the	 sky.

Epic Games uses the Dot Product node	in	a	clever 	way	to	create	a	sunspot	
that	can	be 	controlled by 	a	vector.	 Figure 5.1

To	start,	they	take	the	light 	direction,	represented	as	a Float	3, (the	three	
values	indicate	X,	Y,	Z,	direction),	and	they	 normalize it.	This	takes	the	direction	the	
light	is 	pointing	and 	scales 	it	to 	a	standardized 	ratio.

After that, they compare this direction against the active camera’s vector
with a	 Dot Product.	 Essentially, this causes a gradient from	 0 to 1 across the dome,
with 1 being at the very point where our “light vector” is coming from. In other
words, the light from	 the sun emanates from	 a single point, and its strongest when
we 	look	directly 	at	its 	point	 of	origin!

105

	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	

	

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	

Figure 5.1

Currently we are creating a gradient across the entire mesh, and we need to
reduce	 the	 size. We	 isolate	 the	 exact point of	 1	 in our	 gradient by	 creating a
Spheremask node	 at	our 	Dot	Product’s value 	of 1 Figure 4.2..	This	puts	a	 small
circular mask over the gradient, emanating from	 our sun location calculation.
Example of this in action in Figure 4.3.

Figure 5.2

Figure 5.3

Section 	Two:	The	Clouds

As mentioned at the beginning of this tutorial, my clouds use a stencil texture to
control macro shape and fill textures to produce interior variation. The result
produces large, billowing forms like Figure 4.4. The	Network 	that 	drives	these	
shapes	 is	 depicted	in	 Figure 4.5.

106

	

	 	 	

	 	 	

	
	 	 	 	 	 	 	 	 	 	 	

Figure 5.4

I	use	a	standard Texture	Coordinate	 node	hooked	up	to	a	 Panner node	with	
very	low 	values.	This	setup	goes	into	each	individual 	texture’s	UV	input.	There	are	2	
variations	for	stencil 	and	fill 	each,	resulting	in	4 	total	textures 	that	pan.	These
textures have minor edits done to them	 before being multiplied within their

Figure 5.5 The	Cloud	Mixer

107

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	
 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	
 	
 	 	 	

	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	 	 	 	

 	

	 	 	 	 	 	
	 	 	

	 	
	

 	 	 	 	 	 	 	 	
	 	

	 	 	

	 	
	

	 	

 	 	 	 	 	 	 	
	 	 	

	 	 	 	 	 	

respective types, producing subtle cloud “roiling.” Finally, the 2 moving textures are
multiplied together, resulting in a very controlled but dynamic band of puffy clouds.

All of the effort we put into these textures in Substance Designer is going to
pay	off 	here:

• The 32 bit format allows the grayscale to be a full 8 bits, resulting in
minimal banding.

• The inclusion of parameters allows us to 	either 	influence 	the 	texture
instances dynamically during run time, or for us to make final edits
and randomization before each run time, saving hours of boring
menus.

• Substance	Designer 	does	auto	tiling	of	textures	for us.
• We 	learn	two different versions	 of	 node-based 	shading.

On 	your	Own

From	 here, you have the power to create rimlight, volumetric light, and other
interactions between your clouds and sun. Most of my calculations for these things
revolve around the main nodes I described	in	detail,	and	the	Linear	Interpolate	
node. Have fun coming up with your own solutions to all of those lighting problems!

Learning	 Resources

Looking for a website I mentioned ? They are all here:

Title Link Description

WTF	IS	 by 	Matthew	
Wadstein

https://goo.gl/A9oX8m In	depth	explanation	of 	specific	nodes and
concepts in Unreal Engine, with examples
and short runtimes.

Material	
Walkthroughs with
Dean Ashford

https://goo.gl/5b7nwJ A	 great way to expose yourself to the many
different nodes	 and	 see how 	they	work.	Each	
project	has 	you	producing	a	really	nice	
shader	 that you can	 feel proud	 of.

Getting	 Started with
Substance Designer
by Allegorithmic

https://goo.gl/2Pduy3 Very similar to Dean Ashfords material, but
done	 by	 an	 official Allegorithmic rep.
Explains many confusing and key concepts
with 	grace and 	precision.

108

	 	 	 	 	

UV	 Warping A Red	 and	 Green Texture Map

Originally used by the VFX artists at

Tequila Works for creating the game

RIME. They use this technique to

create flames, and I adapted it make

my clouds (figure 3.1 & 3.2).

https://simonschreibt.de/gat/stylized-

vfx-in-rime/

UV Warping starts at 3:40

Note: In order to use this effectively, make your base texture using the “Packing Textures to RGB in Photoshop”

technique.

Figure 3.1 (upper right) The base red and green texture with the uv warping applied.

Figure 3.2 (lower) The shading network that produces this effect. The saturate node on

the far left is connected to the panning black and white cloud textures.

109

https://simonschreibt.de/gat/stylized

	 	

Packing	 Textures	 to	 RGB in	 Photoshop

It is possible to pack 3 separate black and white textures to a single image by having one

image each in the Red, Green, and Blue color channels. Keeping these channels 100%

pure can be tough, but luckily 3D Artist Xavier Coelho-Kostolny has made a super simple

and great guide showing how to do this in Photoshop.

https://80.lv/articles/easy-way-to-pack-textures-into-rgb-channels/

110

https://80.lv/articles/easy-way-to-pack-textures-into-rgb-channels

	
	 	 	 	

Grass Wind	 Vertex	 Animation	 with	
True Compass Direction Control.

By Zoey Schlemper

5/18/2018

Compatible with Unreal 4.16 and higher

Hello! Today we are going to be making a grass wind effect that adds a new layer of

complexity to the beautiful grass wind shader created by Epic Games’ Jess Hider.

https://jesshiderue4.wordpress.com/materials/stylized-wind-blown-grass/

Once you have a wind animation material (I recommend making it a material function)

that is similar or exactly like hers, you are ready for this project! From there, I am going

to break down how we can add a control for changing the direction of the panning

movement based on North-South and East-West directions. Her solution includes

controlling the XY direction of the panning, but it doesn’t properly rotate the world

offset texture, causing a break in the illusion of “wind walls”. The solution I am going to

present rotates the panning texture so that it consistently produces the same wind

effect. We will walk through the math step-by-step in order to develop a deeper

understanding of how to code materials!

111

https://jesshiderue4.wordpress.com/materials/stylized-wind-blown-grass

	 	 	 	 	 	 	

	 	

The Main Problem to	 Solve: Translating Vector Direction into	

Degree Rotations

If we imagine looking straight down at the landscape of our grass, we can see

that the panning node needs to change its forward movement on the XY plane, where

moving in the Positive Y direction is North and moving in the Positive X is East. We can

achieve this change in direction using the Custom Rotator Node (Fig 1). The “Rotation

Angle” is 0-360 degrees remapped to 0-1. So that means .25 = 90 degree rotation

clockwise, or moving North to point East (Fig2).

Figure 2. Custom Rotator Node

So if we input a compass direction as a normalized vector direction, and then

translate that into an angle between 0 and 360, then remap that to 0-1 space, we will

achieve the result we want! Now, the trouble is how to get there.

112

	 	 	

Figure 3. Comparing Compass Direction to 2-Vector Direction

The Whole Graph

113

Here is the entire graph we will be constructing. Each step I will zoom in and describe

what is happening and why.

First, we need a point of reference, similar to how a compass has a faceplate

with the cardinal directions painted on it. Since we are assuming the un-rotated

direction of our Panner node is North, we will start with a (0, -1, 0) vector (fig 3). We

need to include a 0 in the Z-channel for a proper 360 degree rotation that will be

explained later.

Figure 4. Making True North for our calculations.

Now we bring in the Wind Direction variable. I am using a Parameter collection

because I want to make sure wind direction can easily affect any shader, such as this

grass, other foliage, water, and particle systems. I mask out the Alpha channel on it

114

115

because it is a 4 vector, and normalize both it and my True North. Then I take the dot

product of the two, which will return a number between -1 and 1. We add 1 to this

result and divide it by two so that it re-maps that range between 0 and 1. (Fig 4)

Now, 0 means our wind direction is north and 1 means our wind direction is

south, but it doesn’t differentiate between East and West yet.

Figure 5. Differentiating between North and South on a scale from 0 – 1

Quick Tip! Use the “Debug” nodes in order to see what numbers you are getting when

solving some math in-editor. It saves time to see the numbers instead of relying on Grayscale

values or your final result.

Now we need to find a way to tell if the dot product is moving across the Eastern

half or the Western half. This is where the Z-channel in our True North vector comes in.

If we do a cross product of True North with our wind direction, it returns the vector

perpendicular to both. Since we are comparing two vectors that exist only on the XY

plane, the perpendicular result will always be a positive or negative Z vector. It returns a

positive result while Wind Direction is anywhere on the Eastern Half (+X, +-Y) and a

negative result while on the Western Half (-X, +-Y). Now we have a value that directly

correlates with East and West. Next, we need to use these two values to produce the

correct amount of rotation. (Fig 5)

Figure 6. Using Cross Product and Z Vector to differentiate between West and East.

116

Now we are going to use an IF node in order to get the correct rotation values

from our Wind Direction and True North dot product. The IF node (fig 6) takes in two

values: A and B. Then it passes through 1 of 3 results of your choice depending on if A >

B, A < B, or A == B.

Figure 7. The IF node.

Remember that the dot product between a positive Z vector and our cross

product of True North and Wind Direction results in either a positive or negative? If we

make that value A and input 0 for B, then we have essentially created a switch that lets

us pass in specific calculations for reaching either the Eastern or Western halves. (Fig 7)

117

Figure 8. Connecting The IF node Properly.

When A > 0, we know we are in the eastern half. Thus, we take our 0 to 1

amount of change from north to south and lerp from 0 to 0.5, because that corresponds

to a 0 to 180 degree clockwise rotation from North to South in the Custom Rotator

node.

When A < 0, we know that the direction is in the Western half, or the Custom

Rotator range of 0.5 to 1. We do another lerp, this time adding 0.5 afterwards because

we are in the Western half, which when a full rotation clockwise from North = 1, is

between .5 and 1. Our Wind Direction and True North dot product only considers how

far away from North we are, so we have to inverse the relationship between 0 and .5

because now we are rotating from a starting point of South. Thus, when Wind direction

is pointing South West, the dot product returns a value of about 0.75, but we really

need it to return 0.125. When we add the 0.5 to that amount, we get .625, or a 225

degree clockwise rotation from North. I hope that makes sense, it is tough to explain.

118

Essentially we are inversing the relationship of the 0 =North and 1= South number so

that it can properly increase when starting from South.

To explore this idea, try using the same lerp in both A > B and A < B. Your compass

directions on the Western half will act reversed!

Finally, we use the exact same lerp as our Eastern half (A > B) for A == B. This is

because when the cross product of our Z vector and Wind Direction/True North dot

product returns 0, it means that the dot product value is either exactly 0 (Wind direction

vector is the exact same direction as True North) or 1(Wind Direction is exactly the

opposite of True North). In our A > 0 lerp, that corresponds to 0 rotation for North, or

0.5 rotation for South. We are almost there!

Finally, we can take the result of our IF node and pump it into the Rotation Angle

of our Custom Rotator. Now, when you change the Wind Direction Parameter in your

Collection, the grass wind effect will properly rotate! But wait… the displacement keeps

pushing the grass in the same direction. So even though our Wind Walls are moving

North, the grass is animated like its being pushed South. (Fig 8)

119

Figure 9. Connecting to the Custom Rotator

The solution is in our Wind Direction Vector Parameter. It includes the proper

plus and minus in X and Y relative to our panning direction, we just need to inverse the

signs and multiply it directly before outputting to World Position Offset. I added a scalar

parameter for Wind Strength in order to get the offset just right. And then I mask to Red

and Green to ensure no Z offset values are passed through. (Fig 9)

120

Figure 10. Aligning WPO positive/negative values with the panning direction.

Last but not least, we have to change the way our panning node moves. Change

the panning speed to only positive Y speed. This keeps the texture moving along its wind

walls and lets the rotator do all the work involving direction. (Fig 10)

Figure 11. Panner Settings.

I use the time node to change the speed of the panning, but you could also apply

some variables to the Speed Y here for a similar effect.

121

That’s it! You are done! If you have found better solutions while working through

this or gotten creative with this concept, please let me know, I would love to see the

awesome things you are making!

122

	

Glossary

Banding

The resulting visible artifact of excessive compression or deterioration of a range of

values.

Curvature Map

A texture that encodes relative surface angle change in a single float value.

Delimiter

A syntax device in coding that separates individual entries in variable types like sets,

lists, and strings. In Cow+_+Dog+_+Cheese, the delimiter is “+_+.”

Forward rendering

A traditional 3D rendering pipeline which renders lighting information per-object. It is a

linear process that becomes exponentially less effective as the number or size of

dynamic lights increases.

Index

The numeric position of an element in a data type that values position, such as an array

or list. In the array [apple, banana, orange], the index of “apple” is “0” and the index of

“orange” is “2.”

123

Information Architecture

The navigational structure of data in a program. The avenues through which data can be

changed or passed with or without human interaction.

Polygon mesh

A 3D model made of vertices rendered using polygon primitives

Polygon primitive

The rendered result of the area defined by connecting 3 or more vertices.

Post processing

Effects applied to each rendered frame of an image as the last step in a rendering

pipeline, for example tone mapping, some approximations to motion blur, and blooms.

Ramp

Maps individual color values to certain values on a grayscale gradient.

Screen space

The coordinate space of the resulting 2D image after a frame of 3D is rendered. The

space is often normalized to a value from 0 to 1 for the X and Y axis.

124

String

A data type in most coding languages that contains any number of alpha numeric

characters. Cannot be processed as a number, even if a string contains only numbers

(You must type-cast to an integer or float variable type).

Normal (or surface normal)

In shading calculations, the “facing direction” of a given vertex, typically compared with

the light and view vectors to compute the resulting visible colour.

UV coordinates

Coordinates in a 2D space assigned to vertices. These coordinates reference a specific

image. This image can then be rendered to the surface of the polygon primitives that

those vertices construct.

125

	Structure Bookmarks
	Integration of .Environment.and. Realtime Weather in an. Executable Program
	Abstract
	Acknowledgements
	Introduction
	Prerequisites
	Software. Information
	Resources and. How-To’s
	Expose Parameters. in Substance Designer
	The Substance Plug In for. Unreal Engine Installation
	The Plug. In Explained
	The.Parameter.Window
	Essential.Nodes.in.Unreal.Material.Editor
	Add.and.Subtract:.the.Value.Shifters
	Simple,.Yet.Powerful
	The Core Node Network
	Section .one:.The.Sun
	Section .Two:.The.Clouds
	On .your.Own
	Learning. Resources
	UV. Warping A Red. and. Green Texture Map
	Packing. Textures. to. RGB in. Photoshop
	Grass Wind. Vertex. Animation. with. True Compass Direction Control.
	The Main Problem to. Solve: Translating Vector Direction into. Degree Rotations
	The Whole Graph
	Glossary
	Banding
	Curvature Map
	Delimiter
	Forward rendering
	Index
	Information Architecture
	Polygon mesh
	Polygon primitive
	Post processing
	Ramp
	Screen space
	String
	Normal (or surface normal)
	UV coordinates

