Integration of Environment and
Realtime Weather in an Executable
Program

Using Adaptive Shaders to Construct a Conduit of Nature

BY
Zoey Schlemper
THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Fine Arts in Digital Arts
awarded by DigiPen Institute of Technology
Redmond, Washington
United States of America

June
2018

Thesis Advisor: David Longo

© 2018, DigiPen Institute of Technology. All Rights Reserved.

The material presented within this document does not necessarily reflect the opinion of
the Committee, the Graduate Study Program, or DigiPen Institute of Technology.

Abstract

Dynamic weather systems are utilized in a wide variety of videogames, and are
made up of various techniques including particle systems and graphic shaders. The wide
assortment of elements must interconnect and be driven by controllable variables in the
game engine logic. They are traditionally controlled by code in the service of game logic.
This Thesis presents a dynamic weather system that connects to the internet and
retrieves weather data from stations across the United States in order to drive this suite
of effects. It also features a graphic user interface for controlling the elements manually.
This is both an artistic statement through surrender of technologic control to nature and
a prototype for a system that could be implemented in a variety of products, including

videogames, real estate, and virtual training applications.

Acknowledgements
| owe the opportunity to complete this thesis to a few important people. First
and foremost, | thank my parents, Carol Ann and Michael. They supported my creative
endeavors since | was a child. We are all born with a love of art and creativity, but it was
my parents who fostered that joy within me. They also encouraged me to pursue the
insane idea of being an artist in the 21°t century, and in fact supported me in that
pursuit as well. Without their financial, emotional, and academic support, | would not be

writing this.

Thank you, Mom and Dad!

| thank select Digipen Faculty (you know who you are) for the time and interest
you have shown in my project. Digipen seems to demand more from their teachers
(everyone, really) than other schools | have attended. | am thankful for the extra effort
beyond your job description that has impacted me in positive ways. The late-night
classes and meetings, the extra emails and opinions, were essential to finishing during

my two short years here.

Lastly, I thank my wife, Marisa. Her support means the world to me. She has

believed in me when | didn’t believe in myself.

Table of Contents

Y o1y o - ot A TP P P PUSROTIR iii
ACKNOWIEBAZEMENTESt e e e e e e e e e st e e e e e e e aeeeeessasssreaaeeeaaaeeesennnnnns iv
Iy o T T TSP EU vii
T agoTo [V 4T] o BRSPS PRSP O U U UPUPTOUPTOPRP 1
Chapter 1: Artistic Direction and Development of Style.......cccovvvieiiiiiiiieiiiiice e 4
Concept Development and Aesthetic STYIEovv i 12
Chapter Two: Techniques and Creative ProCESS.......uuiiivciieieiiiiiiee e srieee s esiiee e ssvee e e e sveee e s 29
R T 1Y, FoTe 1=] [T = d Y.V o o 3 Lo LY 2 PSR 29
TeXEUMING WOTKFIOW ettt e e s e ee e e e s abee e e s sbaeee e snanreas 34
Shader Development in Unreal ENGINE 4.16........ccoiiiiiiiiiiiiiiieeeeriiee e esiieee s esivee e e e sveea e s 39
UX Design Process fOr MENU SYSTEIMS ...cciiicuiiiiiiiiiiiie s eriiiee et e e st e e s ssbtee e s ssareeeesssnsaeeessnes 46
Chapter 2.5: Anatomy of the Weather System......c..coiiiiiiiii e 47
Chapter Three: Coding Key Features of the Weather Systemccceeeveeiiiiiicciiiiiieeeeeee e, 49
The XML parser: How Weather Data is collected from the Internetcccocvveeeeeeiieiccicinninneen. 49
One-Way Data Manipulation in Unreal ENGINe 4.........coovviiiiiiiiiiiie e esieee e e esaeee s 52
Structure of the Python Weather Station Code Compiler......ccccoevvieiiiiiiieeiicriee e, 53
Can the System adapt to Additional Databases?..........cceeeeeeieeiiiiicciiiiiieeeee e 54
Setting the Final Executable as a Desktop Backgroundccccoveeiiiiiiiiiiiiiiiees e 54
Chapter Four: User EXPerienCe DESIGNcciivvieieiiiiiiiee ettt e eeiiee e ssiteee s esiteee e e ssaree e e s s sveeeessnnneeas 54
Designing Based on Established Methodsccceiiiiiiiiiiiiiii e 56
Chapter 4.5: Weather Effects Compilationcoccviiiiiiiiiiiiiie e 60
Examples of Weather Changesouuiiii ittt e e e e 60
Chapter Five: Conclusion and Looking FOrwardcccocccieiiiicieie it csieee e eseee e 69
Possible Critiques Of the WOIK ... raeeeen 73
RETEIEINCES ..ttt ettt ettt sttt e s bt e e sttt e sabe e e sabe e e s bt e e sabeeesabeeesabeeeeabaeesabaeas 79
FAY oY T=Y oo [t NP SPRPPPN 81
INEFOAUCTION ...ttt ettt et s et e r e st e r e san e s n e sanesneesaneeas 83
o Yo [N LY 1 S 83

https://Engine4.16

o] in E TE=R 1] o] f 4 T= 1 1T o TS 84

RESOUICES aNd HOW-TO'S. . .eiiiiiiiiiiie ittt ettt ettt e sb e e st e e sbe e e sare e e sabe e e saneeesareeesareeas 85
Creating Cloud Textures in Substance Designer and Exporting to Unreal...........cccccvvveeeeeennnn. 85
Expose Parameters in SUbStance DESIGNEN.....ccovcuiiiiiiiiiiiee i 89
Exporting @ Substance for UNrealoiiiiiiieiiiiee ettt 95

The Substance Plug In for Unreal ENGINEcooivciiiiiiiiiiee ettt sree e 96
INSTAIIATION ..ttt ettt e e st e e s e e e sab e e sabe e e sare e e sreeenas 96

The PIU IN EXPIaiN@d......eeiiiiiiiiiiee ettt e e s aae e e s s snarae e s ssnaneeae s 97

The Parameter WINOOWccoiiiiiiiiieiee ettt ettt sttt e e s sie e sbe e e sbeeesbeeesneeesanes 99
Essential Nodes in Unreal Material EditOr.......c.oovvuiiiiiiiniiie it 100
Add and Subtract: the Value Shifters........ccooiiririieii e 100
Multiply: The Mask NOE.......ccooiiiiiiiirieiceee et 101
Clamp: Keeping values under CoONtrol..........ccccoeevereeiiniiininieieeseseeseee e 102
SIMPIE, YET POWEITUL......viiiiicieie ettt e e e s e e e s st e e e s eneraeeees 104

The Core NOde NETWOIKeiiiiiiiiiie ettt st e st e st e e sbeeesaneeas 104
SECLION ONEI THE SUN .ttt st e s e e st e e sbee e sbte e sbeeesneeenas 105
SeCtion TWO: The ClOUAS.....ciiiiiiiiiee ittt ettt e e s sbe e e sbeeesbeeenas 106

10/ o1U T gl @11,V o DO O O PP PP PP PRPPUPPP 108
LEAINING RESOUICES ...eeiitiiiiiieieiiiiitieeeee et e e e e ettt ettt eeeeesssasaaabtaraaeeeeeesssassasassssaeaaeeeesssesnssnsnns 108
UV Warping A Red and Green TeXtUre Mapoccvveeiiiciieees e eecieee e scvreee s ssveeee s ssveneeeseans 109
Packing Textures to RGB in PROtOSNOP.....ccuiiiiiiiiiiic ettt 110
The Main Problem to Solve: Translating Vector Direction into Degree Rotations 112
LA LER AT a1 (S T =T] TSR 113
(€] (oY o USRS 123

Vi

List of Figures

Image Description Figure Code
Pre-Production Sketch Collection 1.11-114
Pre-Production Concept Painting Collection 1.21-1.24
Miyazaki film environment 1.3
Legend of Zelda: Breath of the Wild 1.5
RiME Environment 1.4
Alexandre Diboines Image 1.6
Alex Konstad Image 1.7
Luke Mancini Image 1.8
Triumphal Arch 1.9
Comparison of hero asset silhouette to generic object 1.10
Comparison of jagged silhouette to smooth one 1.11
Balck Widow Image 1.12.A
Crystal Lake Mountains 1.12.B
Mushroom Simplification Drawing 1.13
Prickly Pear Cactus Reference 1.14.A
Prickly Pear Cactus in Chromniview 1.14.B
Mario + Rabbids: Kingdom Battle 1.14.C
Call of Duty Screenshot 1.15
Legend of Zelda: Breath of the Wild VFX 1.16
Explosion Reference 1.17.A
Landscape Study in Gouache 1.17.B
Chromniview Fog VFX 1.18
Hard and Soft Vertex Normal Comparison 2.1
High Poly and Low Poly Comparison 2.2
Infographic: RGB = Vector Angle in a Normal Map 2.3

Vii

Arcane Scale

Example of Vegetation Cards

Modified Normals on Grass Card Example
Substance Designer Results Example

A Sculpted Trim Sheet

Curvature Map Example

Chromniview Shader Utilizing Curvature Map
Procedural Copper : Base Mat and Details
The Order: 1886 Texture Examples

Rime VFX Fire Technique

Final product: Rime Flames

Black and White Cloud Shader from Chromniview Beta

Deformed Gradient Clouds Shader from Chromniview
Final

Snippet of Shader Illustrating a Material Function
A Full Material Function Shader Graph

Relationship Between Compass Direction, UV, and Vector
Space

Menu System image
Old Menu Design
Paper Prototype
Digital Prototype

Weather Effects Compilation

viii

2.4

2.5

2.6

2.7

2.8

2.9

2.9.A

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

3.1

4.1

4.2

4.3

4.4

4.5

Outline Shader in Unreal Engine

Cel-Shading and Shadow Manipulation in Unreal Engine
Borderlands 2D/ Handdrawn shaders

Guilty Gear XRD Outline Effect

DragonBall Outline Effect

Original Thesis Statement

Original Method for Enshrining Nature

Mock-Up of Desktop Integration

51

5.2

53

54

5.5

5.6

5.7

5.8

Introduction

Culture and technology in the modern age are deeply entwined. As our lives
become more “high tech,” the norms and expectations surrounding our entertainment
experiences grow in complexity and connection. Although contrived, the idea that “the
world is at your fingertips” has never been more true. But the irony of such intoxicating
power at a personal level is the tunnel vision that coincides. The immense opportunity
for micro control forces our attention into the artificial and minute—away from the
cosmic mystery that surrounds us. And as the human race’s collective spine slowly
cranes towards the dim glow of an entirely digital age, the wondrous miracle of mother

earth roils just beyond the window, slipping into corruption and irrelevance.

This dynamic weather system (dubbed Chromniview) utilizes particle systems,
polygon shaders, and code/logic to create a system that can respond to weather data
including word-based descriptions, temperature levels, windspeed amounts, and time of
day. One of the first conceptual versions of this project included the ability to run the
program on the desktop as an interactive wallpaper, behind the icons. The system is
self-contained within the engine, and can be transferred between levels and even entire
projects. It can simulate mid-day rainstorms, quiet snowfall at night, and clear, sunny

mornings.

The implementation of the myriad and complex features included in the initial

pitch of this project was very successful, but not absolute. Some features evolved over

time, such as the user interface. The initial concept of using Rainmeter for the interface
was traded out for Unreal Engine’s UMG Designer, producing a more integrated, visually
pleasing, and game-like experience. Other features were too resource-heavy to
complete for this proof-of-concept, such as formatting the application as an interactive
desktop wallpaper. Still others were discovered and frantically pursued out of pure
necessity, such as the JSON request builder for querying the user’s desired weather-

station.

In my studies | have harnessed various technologies and achievements of other
humans and created meaningful translations between them in order to craft a new
avenue for us to remember and enshrine the glory of Nature. Chromniview is merely a
messenger of Nature’s perfect design. It reflects Her beauty, authenticity and meaning

in the inherently redundant existence of digital media.

Chromniview offers a novel passive connection with others. Though many of us
may be chained to our desks during the average work week, or we chase those elusive
jobs across the country, this application offers a non-intrusive method for “being
present” in the experience of faraway friends and family. By seeing the weather and
general time update based on their earthly position throughout the day, we can keep

our parents, children, or best friends at the forefront of our minds.

Even if Chromniview is slightly inaccurate due to a lack of weather stations in less
populous areas or long refresh periods, it offers a fresh perspective on “talking about

the weather.” It gives you a reason to call up a friend to confirm that it is actually

snowing in the middle of summer at their location. The artistic value in this project
comes from the opportunity for passive connection it creates by being a medium for
Nature to act upon. It encourages a very real connection by faithfully interpreting one of

the few things all humans have in common: the earth’s ecosystem.

In Chapter One, | explain the artistic style and approach to design used for the
entire project. | discuss and examine specific inspirations from recent media, and point
out the key areas that the style of Chromniview emphasizes in order to glorify nature.
Chapter Two is an overview of the many resources, tools, and techniques that went into
the creation of the weather system and environments. In Chapter Three, | break down
some key scripting and the technical integrations between shaders. Chapter Four details
the User Experience, and the tenants that drove the design of the usability. Finally,

Chapter Five offers a conclusion and possible future directions from this point.

Chapter 1: Artistic Direction and Development of Style

Figure 1.1.1 A Collection of PreProduction Sketches for Chromniview. Zoey Schlemper. Blue Pencil and Pen. 2017.

1

! These drawings begin to dissect the shapes and structure of natural elements, including rocks and trees.
They explore without complicating. The modest line-count and emphasis on outline serve this end as well.

4

.._.—4\(‘ 7 e h

CucoMmizee,

TREE

Figure 1.1.2 A Collection of PreProduction Sketches for Chromniview. Zoey Schlemper. Blue Pencil and Pen. 2017.

Figure 1.1.3 A Collection of PreProduction Sketches for Chromniview. Zoey Schlemper. Blue Pencil and Pen. 2017.

- =

Figure 1.1.4 A Collection of PreProduction Sketches for Chromniview. Zoey Schlemper. Blue Pencil and Pen. 2017.

Windmill

Figure 1.2.1 A Collection of PreProduction Concepts for Chromniview. Zoey Schlemper. Pencil and Digital. 2018

Spirit Golem

Assilent perciever of all things

Figure 1.2.2 A Collection of PreProduction Concepts for Chromniview. Zoey Schlemper. Pencil and Digital. 2018

Within the Windy River Valley

Atop the Stairway at the Forest's Edge

Figure 1.2.3 A Collection of PreProduction Concepts for Chromniview. Zoey Schlemper. Pencil and Digital. 2018

10

Retaining Wall

A common si¢ht in the valley of the wind serpent

Figure 1.2.4 A Collection of PreProduction Concepts for Chromniview. Zoey Schlemper. Pencil and Digital. 2018

Figure 1.3 Tonari no Totoro. Hayao Miyazaki. Studio Ghibli. 1988.

11

.

Figure 1.4. RIME. Tequila Softworks. 2017. < https://www.nintendo.com/games/detail/rime-switch>

Concept Development and Aesthetic Style

The aesthetic style of this project is heavily influenced by hand-drawn and two-
dimensional animations. The works of Miyazaki (fig 1.3), Tequila Works” “RiME” (fig 1.4),
and certain Nintendo titles (fig 1.5) have been important. Concept Artists like Alexander
Diboines (fig 1.6), Alex Konstad (fig 1.7), and Luke Mancini (fig 1.8) also influenced the
aesthetic language of this project. Finally, | hope that my own voice (fig 1.9) has peeked
through the cracks, as I've developed a stronger personal style over the past 6 years.
These influences share a number of things in common, including an emphasis on shape
language, vibrant color palettes, and reductionist representation. The most important

similarity is the emphasis on nature through these devices. | will consider two

12

dimensions of these artistic principles: that concerning the enshrinement of nature, and

that concerning game art.

Figure 1.5. Breath of the Wild. Nintendo. 2017. < https://80.lv/articles/the-legend-of-zelda-breath-of-the-wild-
environment-change-the-game/>

EVERYOHERE HE COAS GOING, PeoPlé (ould ReToice (EEKS IN ADVANCE,
ALOITING THE NEnve OF THE ulTimate C(HeF, THE COOK OF LEGEND ..

Figure 1.6. Everywhere He Would Go. Alexandre Diboines. Digital. 2017. < http://alexandrediboine.tumblr.com/>

13

http://alexandrediboine.tumblr.com
https://80.lv/articles/the-legend-of-zelda-breath-of-the-wild

Figure 1.7. Obliskura: Forest. Alex Konstad. Digital. 2015. < https.//www.artstation.com/artwork/6LRBO>

Figure 1.8. Hilltop Encounter. Luke “Mr. Jack” Mancini. Digital. 2012. < https://mr--jack.deviantart.com/art/Hilltop-
Encounter-285881079>

14

https://mr--jack.deviantart.com/art/Hilltop
https://www.artstation.com/artwork/6LRBO

Figure 1.9. Triumphal Arch. Zoey Schlemper. Digital. 2016.

15

Figure 1.10. Hero Asset VS Generic Asset. Zoey Schlemper.

Shape language is essential in both videogame development and our
understanding of nature, but for different reasons. For videogames, shape language can
signal many forms of information to the player. It can indicate the importance of
something. For example, “Hero Assets” tend to have more break-up in their silhouette
than generic pieces (fig 1.10). It can also show the general mood of a game. Compare
the general shapes of Mario enemies (fig 1.11.A) to Dark Souls (fig 1.11.B). The enemies
in Mario are mostly “safe” looking, with rounded, simplistic designs. The Dark Souls

enemies are complex and angular. Shape language seems to be considered for many

16

reasons, including the relative importance of something and the over-all tone of the

game.

Figure 1.11.A. Goomba and Koopa Troopa. Nintendo. < http://twinfinite.net/2016/03/top-10-most-iconic-video-game-
enemies/5/>

17

http://twinfinite.net/2016/03/top-10-most-iconic-video-game

Figure 1.11.B. Sewer Centipede. Capcom. Dark Souls 3. < http.//darksouls.wikia.com/wiki/Sewer_Centipede>

A smooth silhouette is a luxury afforded by the ever-increasing capacity of
computer technology, and is also important to help facilitate the suspension of disbelief
(fig 1.9). Ironically, simple shapes like those of Mario enemies are difficult to create, as

polygons can only be made of straight lines.

18

http://darksouls.wikia.com/wiki/Sewer_Centipede

Figure 1.12. Jagged Silhouette from low poly count compared to smooth silhouette from high polycount. (provided by
author, rendered in Maya 2016)

Due to the commercial nature of video games, it could be argued that all choices
concerning shape language are dictated by users. Nature, on the other hand, is her own
master. In some cases, we either respond to her dictation, or we die. “Nature” is an
umbrella term that includes countless phenomenon, creatures and scientific properties.
Nature is immutable and older than the mind of man. It dictates the meaning of its

shapes by killing us (fig 1.12.A) and awing us (fig 1.12.B) with them.

19

Figure 1.12.A.Black Widow Spider.2 Photography. National Geographic. 2015. <
https://www.nationalgeographic.com/animals/invertebrates/group/black-widow-spiders/>

I

Figure 1.12.B. Crystal Lake Mountains. Zoey Schlemper. Photography. 2017.

My primary inspirations of shape language include Alexander Deboines and
Alexander Konstad. In two words: curvilinear and voluminous. | deconstructed natural

shapes into exaggerated primitive volumes in order to invoke a sense of “alien” and

2 The design and general shape of the Black Widow illicits a response based on the actions it takes against
humanity and other creatures. There is no human origin for the meaning behind the design.

20

https://www.nationalgeographic.com/animals/invertebrates/group/black-widow-spiders

“new perspective” on archetypes such as mushroom (fig 1.13), mountain, and cactus
that we take for granted. This allowed the essence of a shape to take control over its net
impact, such as the way that 3 giant leaf shapes can constitute a “bush” just as well as
100 can. This cactus has been reduced to a few spines on an inflated body, straying
heavily from a naturalistic representation but retaining the defining qualities (fig 1.14.A-
B). Consider the sketch of the cactus from figure 1.1.4 from page 7 for the treatment of

the subject in the concept as well. A great example of this technique is in Mario +

Rabbids: Kingdom Battle (fig 1.14.C)

Figure 1.13. Reduction of Shapes in Mushrooms Exercise. Zoey Schlemper. Graphite on Paper. 2017.

21

Figure 1.14.A. Prickly Pear Cactus. El Charco del Ingenio. Photography. 2008. <
http://www.elcharco.org.mx/boletines/not vol3no06.htmi>

Figure 1.14.B. Prickly Pear Cactus. Zoey Schlemper. 3D Render. 2017.

22

http://www.elcharco.org.mx/boletines/not_vol3no06.html

Figure 1.14.C. Mario + Rabbids: Kingdom Battle. Nintendo & Ubisoft. 2017.

The colors of this project are vibrant and focused on creating a “hypersensitive”
experience in the viewer. Imagine if, instead of only having 3 color-sensitive cones in
your eye, that you had 6. Drawing parallels between the sense of taste and sight were
my primary vehicle for achieving this. | tend to think of visuals in terms of how “tasty”
they are. Are the colors sweet or sour? Does the shape make me salivate? This type of

free-association was an exciting way to approach creation.

This project also utilized the full range of colors available on the modern screen,
unlike the drab and grim realism of many AAA titles (fig 1.15). In order to properly
emulate nature, increasing the potency of color was an imperative. Notice the

difference between figure 1.15 and 1.14.C. Both of them are outside and include human

23

constructions, but the balances of nature vs civilization are different. The absence of

mankind is synonymous with vibrancy in this example.

In order to glorify nature, | use the same correlation between mood and
existence of mankind, and describe this by increasing the vibrancy of the non-man-
made. The compilation of my work in chapter 4 helps illustrate this. In those images, |
have made the physical materials of wood, metal, stone and kept their colors lower in
vibrancy, and lacking in hues that are commonly associated with energy and happiness,
such as highly saturated, high value greens, reds, and blues. Instead, the colors either
skew towards earthly, or at the very least tend to be highly desaturated, similar to figure

1.15 below.

Figure 1.15. Call of Duty, Beach Invasion. Activision & Infinity Ward. 2013.

24

The VFX are inspired heavily by Miyazaki films and The Legend of Zelda, Breath of
the Wild (fig 1.13). My interpretation of the elements focused on a reduction of sheer
number, as in moving from sand grains to pebbles. In figure 1.13, we can see about 4
large cloud bursts in the explosion and 3 debris comets. The colors have been cell
shaded to resemble something like gouache (fig 1.13.A). Whereas in figure 1.13.B we
see at least twice as many of all of those, and fractal-like details on each smaller area, as
well as a wide gamut of color. In my project, | reduce and simplify my VFX to reflect the
same methods of simplification (fig 1.14). | took these simplified forms and emphasized

their fluidity and rhythm. Hopefully this creates a sense of whimsy and imagination.

Zelda: Breath of the Wild - Fire & Explosions compilation

Figure 1.16. Legend of Zelda: Breath of the Wild. Nintendo. 2016. < https://realtimevfx.com/t/cartoon-explosions-fire-
effects-w-ref-legend-of-zelda/1490>

25

https://realtimevfx.com/t/cartoon-explosions-fire

Figure 1.17.A. Landscape Study in Kansas. Matthew Cook. Gouache. 2012.

e

Figure 1.17.B. Titleshot from Biggest Explosion Compilation 2015. InstaVids. Video. 2015.
<https.//www.youtube.com/watch?v=zhBxfNm3rJE>

26

https://www.youtube.com/watch?v=zhBxfNm3rJE

Figure 1.18. FogVFX. Zoey Schlemper. 2018.

In terms of lighting the environments, | made certain each shadow was colorful. |
followed the current trends of realism in lighting that PBR materials are so well-known
for, but hiked up the floor of the value range. Also, metallic surfaces have had their
effects reduced for the sake of subtlety and so as not to overpower the other aspects of
each scene. In order to achieve this, | increased the roughness parameter greatly, and

reduced the metallic parameter slightly.

The lighting set-up is simplified to a uniform color fill light and a directional light.
This fill light emulates the sky and is comprised of two effects in-engine: a skylight,
which adds color and reduces shadow by emanating light from a dome across the entire
scene; and the environment color, a core setting of the entire level that tints the

absolute black of shadows to a color and brightness specified by the user. The

27

directional light, unlike a spotlight, has no visible end of influence. There are no
additional spot or edge lights to ensure computational efficiency and staying loyal to

natural lighting.

28

Chapter Two: Techniques and Creative Process

Figure 2.1. Hard Normals Versus Soft Normals. Provided by Author, Rendered in Maya 2016.

3D Modeling Workflow
Video game environments are made of points in Cartesian coordinates. These
points are called vertices, and are connected to one another by edges (the white lines
in figure 2.1) and when edges enclose an area, they form polygon primitives that have
an image (or “texture”) mapped to their surface area using UV coordinates. Each vertex
can have a soft or hard transition between itself and its neighboring vertex. This is a

III

result of the “normal” of the vertex, indicating the perpendicular direction from the
polygon surface. Notice in fig 2.1 how the hard transitions have multiple green lines

protruding, while the soft transitions have only one. This is because on a hard edge, a

vertex simulates an angle change by having separate facing directions for each polygon

29

it helps construct. Vertices can store many other additional data types, like a color that
is not rendered known as “Vertex Color” or a measure of influence from a joint known
as a “Skin Weight.” Using all of these attributes and extra storage options is necessary
for creating complex and convincing 3D models. In this chapter, | will show a general
workflow for making assets, and the considerations | take in order to maximize utility

and flexibility when importing to a game engine.

The general workflow is a close relationship between the software packages
called Maya and Z Brush. Many artists use a workflow referred to as “high to low”,
including myself. This is when you create a detailed virtual sculpture, often millions of

polygons in size, and then you create another model with an extremely low polycount

using the detailed sculpture as reference (fig 2.2).

Figure 2.2. High Poly (right) and Low Poly (left) with wireframes showing. Provided by Author, Rendered in Maya 2016.

30

From there you can bake a Normal texture map. This texture encodes the refined
surface angles (a vector in XYZ space) from the high polycount model as a color in an
image (fig 2.3) mapped to the low polygon model. The game engine then loads the low
polygon model, and when computing the lighting, takes into account that image in order

to reproduce high fidelity detail for a fraction of the processing power. 3

Figure 2.3. Visual Example of how RGB values exist on an XYZ axis. FallOut Software. <
http://www.falloutsoftware.com/tutorials/gl/normal-map.html>

3 (Squircle Art. 2017)

31

http://www.falloutsoftware.com/tutorials/gl/normal-map.html

Figure 2.4. Arcane Scale. Zoey Schlemper. Digital Multimedia. 2018.

This technique was used for many of the assets, including almost all the rocks,
and hero assets such as the Arcane Scale (figure 2.4). Time management was crucial for
this project due to the limited manpower compared to the volume of assets required.
Occasionally, high-poly models and normal maps were not necessary to make if some

assets were not going to receive as much attention by users, such as the grass blades.

There were some instances where | had to hand-modify the normals of a mesh in
order to achieve the best visual results. This is most noticeable on the trees and grass
models. Much vegetation in videogames is made of “cards,” which are essentially 2D
planes with pictures of leaves and stems on them. These cards are intersected in order
to create volume for minimal cost. However, these intersecting cards tend to react to

light in a jarring, simplistic way (fig 2.5, left half of image). | tilted the normal of the

32

planes up and softened the edge transitions so that the grass would softly transition
from light to dark. | also kept them one-sided and had two planes facing opposite
directions in order to form the illusion of a single double-sided card. This is because the
normals are tilted up but not perfectly perpendicular to the ground, causing a lighting

inversion on the card’s backside (fig 2.6).4

[+] [Perspective] [Smooth + Highlights]

Figure 2.5. Hard Vertex Normals (Left) and Smooth Vertex Normals (right) on Trees. Eric Chadwick. Digital
Multimedia.< http://wiki.polycount.com/wiki/Foliage>

4 (Authors 2018)
33

http://wiki.polycount.com/wiki/Foliage

Figure2.6. Modified Normals (left) and Regular Normals (right) for grass cards. Zoey Schlemper. Digital 3D. 2018.

Texturing Workflow

| found myself intrigued by procedural texturing, and attempted to apply it to
stylized environment work. Procedural textures can achieve startling levels of realism,
and allow artists to plow through otherwise mind-numbing levels of detail necessary for
that realism by using automatic tiling, noise manipulation and other generators (fig 2.7).
In terms of stylized artwork, procedural texturing is useful for saving time, achieving
perfect tiles, and rapid prototyping. The downsides of procedural texturing include a
lack of control in fine detail, and a general lifelessness of color and texture in terms of

the stylized and hand-painted genre. In some cases, achieving the desired effect in a

34

procedural texture may take more time than doing it hand-painted, neutralizing a key

benefit of the procedural workflow.

PBR Procedural Sloppy Brick Wall Material Study ARTIST: Joshua Lynch

Figure 2.7. Sloppy Brick Wall Material Study. Joshua Lynch. Procedural Shader Network.

In this project, procedural textures worked best for less important materials that
aren’t meant to draw a lot of attention. For example, the cast iron on the archway in
Windmill Valley was procedural. However, the wood, brick, and decorative trim were
sculpted by hand (fig 2.8). Combining procedural and hand-made textures in the
stylized genre required me to make artistic choices that allow the two production
techniques to have consistent results. For example, | sometimes took the albedo from a
procedural texture into Photoshop in order to add hand-painted details. When creating

textures manually, | made sure to copy the general process of color build up used in the

35

procedural textures, such as working in grayscale for the albedo and then applying a
color ramp, before proceeding to hand-painted detail. Some textures are purely one or

the other, while others use a combination of both to achieve the desired effect.

Figure 2.8. Trim Sheet Sculpt. Zoey Schlemper. Digital Sculpture. 2017.

5

5 This is an early version of the sculpted trim sheet that appears in the project, and appears here solely for
the purpose of describing a technique rather than an outcome.

36

Procedural workflows require an understanding of how the textures will be
implemented at various levels of the pipeline. For example, a stylized copper shader |
made relies on a curvature map?® (fig 2.9) in order to generate some detail. The white

areas of the map were used to add edge wear. In figure 2.9.A we can see a curvature

map being used to add some detail to the edges of the gear.

Figure 2.9. Curvature Map Render. Zoey Schlemper. Digital Multimedia. 2017.

6 A Curvature map shows the change in angle from one polygon to another as black and white.

37

Figure 2.9.A. Large Copper Gear. Digital Multimedia. Zoey Schlemper. 2018.

As an environment artist, most of my work will need to have as much mileage
and flexibility as possible. In order to widen the use-case of all textures and meshes, |
separated each procedural material into two parts: The base material (like copper) and
detail layers (dirt, scratches, oxidization) that add variety. We can see these details
working in figure 2.9.A. | can then combine these different layers in Substance Painter,
using mesh-specific maps such as curvature or thickness in order to build complex and
mesh-unique materials from a few simple textures. This “texture library” approach was

used to impressive effect in the game The Order: 1886 (fig 2.11).

These techniques allowed me to consider nature in a pragmatic way. Just as the
earth is created from many layers of dirt, rock and minerals, my environment surface is

made from similar layers: dirt, cobblestone, stone, grass, and snow. Although a user

38

may not be aware of this technique, the parallelism of natural phenomenon and artistic
approach is worth noting, especially since a key part of this project was to create a

conduit of nature. By copying her approach to terraforming, | hope that my system can

show some form of reverence.

Figure 2.11. Sample Textures from The Order: 1886. Ready at Dawn Studio. Procedural Shader Network. 2015.

Shader Development in Unreal Engine 4.16
Creating shaders for Unreal Engine required me to become heavily involved in
visual scripting interfaces. | picked up many skills from established studios, benevolent

students, and scholarly professionals. Rather than reiterate their work here, | will

39

describe broader interpretations and principles of the design process for this project. If
you are curious about explicit details, | discuss some minutiae of these techniques in

other documentation, and point towards specific research there.

The visual effects were inspired heavily by RIME (fig 1.4) and Breath of the Wild
(fig 1.5). I used some of the exact same techniques as the creators of RiIME, but applied
them in a different way. All of these shaders were produced in Visual Scripting

Environments with no use of text coding.

Simon Schreibt goes into detail about how Tequila Softworks (the creators of
RiIME) produce water, fire, and vertex painting techniques in a stylized manner. Their
technique for fire revolves around creating color masks by deforming a simple gradient
(fig 2.12) with panning UV values. With meticulous balancing between amount of
deformation and the type of gradient this is applied to, it is possible to create

mesmerizing and smooth flames (fig 2.13). 7

7 (Schreibt 2017)
40

Figure 2.12. RiME Flame VFX Breakdown. Simon Schreibt. Presentation Slide. 2017.

Figure 2.13. RiME Flame VFX. Tequila Softworks. 2017.

While developing my procedural cloud shader, | discovered this technique and
adapted it to the clouds. Before that, | was using a rather primitive multiply mask (fig
2.14), which created problems with value banding and a lack of control of value

placement, resulting in very lumpy, flat clouds that often became pixelated. The use of

41

UV deformation allowed me to take this basic set up and us it to shape a higher
resolution gradient, solving all of the previously stated problems (fig 2.15). For a full

explanation of the cloud shader, please refer to Appendix A: 2D Procedural Sky Shader:

Using Unreal Engine 4.16 Material Editor.®

Figure 2.14. Procedural Cloud Shader Black and White Texture (BETA). Zoey Schlemper. Procedural Shader Network.
2016.

8 (Schlemper, 2D Procedural Sky Shader: Using Unreal Engine 4.16 Material Editor 2017)
42

Figure 2.15. Procedural Cloud Shader Gradient Mask UV Distortion. Zoey Schlemper. Procedural Shader Network.
2017.

Other important principles of shader development included using consistent
value ranges for variables that allowed them to be both easy to understand and
universally applicable in many different mathematical situations. For example, a
universal “cloud amount” value controls the intensity of sunlight, the amount of clouds
that appear and how much a gel/cookie blocks the sunlight to name a few. The cloud
amount needs a value between -.3 and 0, whereas the sunlight intensity needed a value
between 1-7. The original value is actually just 0-1, and it is remapped to the range
required by each unique shader. This helps reduce confusion and allows you to infinitely

expand the complexity of the system without worry—it just works.

Another key area was using parameter collections effectively.® In Unreal Engine,
it is possible to change the material of something while the game is running. Changing a

balloon from red to blue and frim shiny to dull is an example of this. However, if you

9 (Epic Games 2018)
43

wanted to change all of your objects in a scene from one color to another, you would
have to specifically code the action of changing each unique shaders color. Unreal has a
special feature called Parameter Collection that turns this into one action. If you use a
Parameter from a Collection in a material, you only have to change that parameter in
one place and that will be propagated throughout the other shaders that use the same

parameter.

Context-sensitive shaders are also important to this project. For example, the
ground materials of each world change based on how vertical they are. If some polygons
pass a certain angle threshold, the texture will change from grass to rock, creating the
illusion of a cliff or mountain. This effect is mostly the result of a dot-product from a
never-changing vector (in this case pointing straight down the vertical) compared to the
vector from each polygons surface normal on an object. This same principle was used to

mask off the snow texture when it appears, as snow doesn’t stick to vertical surfaces.

My shaders are made up of chunks, inspired by object oriented programming,
called material functions.® These are small networks of shaders that often have some
inputs and outputs. They let you copy large sections of code across materials very
quickly. Some of them include a snow material transition, a wetness effect, and a wind
vertex animator. After the unique features of the shader are put together, these chunks
are added to the final result, effectively seating them in the weather system (figure
2.16). In this figure, the nodes highlighted in blue contain something similar to the code

in figure 2.17.

10 (Epic Games 2018)

44

https://functions.10

MakeMaterialAttributes ¥
[2

WetnessFunction

To main shader

Figure 2.16. Snippet of A Shader Graph Detailing the Material Functions. Unreal Engine Material Blueprint. Zoey
Schlemper. 2018.

Figure 2.17. Inside the Snow Material Function. Unreal Engine Material Blueprint. Zoey Schlemper. 2018.

There are a number of connections between my approach to shader
construction and the end-goal of creating a dynamic weather system. The first is how |

utilized the same principles of shape reduction as discussed in chapter 1. It is interesting

45

that an approach to fire and water can also be applied to clouds/vapor, arguably a
combination of the two (really its more like water and temperature/pressure, but |
digress). The second is in the emphasis on inter-connection of shader elements, and
how they react without human intervention (after being set up the first time). This is
paradoxical, because of the immense effort needed to reproduce the phenomenon that
can’t help but happen in nature. As we have seen, parameter collections are the best
emulation Unreal Engine has of the sheer scale of natural physical reactions. Every flat
surface collects snow by merely existing in the real world. In contrast, a computer needs
to test every vertex that has a shader tailored to display snow before adjusting the
shader. It requires immense overhead cost in terms of shader creation and computing
power, but the end result is something that we can take for granted, and that we fully
expect from past experience. This inter-connection, although wildly different in terms of
how it comes to be, is one of the most important elements of a dynamic weather

system that strives to pay homage to the real thing.

UX Design Process for Menu Systems
The tutelage of Jennifer Ash was priceless when developing the menu system, as
| had little prior knowledge of UX design. The user experience design was fueled by two
imperatives: minimalism and control. The information architecture separates the
program into two main areas: the World and the Weather (in other words, the stage
and the actor). The idea is to keep the controls close at hand, but to make them invisible

otherwise. | go into detail about the User Experience design in chapter four.

46

Chapter 2.5: Anatomy of the Weather System

This weather system consists of a few different parts that rely on each other in

different ways. The vast majority of the weather system is contained in a single

blueprint, which is like a folder that contains multiple files and instructions for the

computer to use. In this section, | will detail the structural hierarchy and inventory the

individual components that make up the system.

First, | will list the weather system assets in their entirety:

e Weather System Blueprint:
o Sky Shaders:

= (Cloud shader
= Qvercast shader
= Sky and sun shader

Sky Meshes:
= Sky dome
= Qvercast dome
= C(Cloudring 1
= (Cloudring 2

Directional Light (Dynamic)
= (Cloud shadow effect light function
Particle Systems:
= Rain
= Snow
= Dust cloud / low fog
= Spirit motes
Color Curves:
= Cloud color based on time of day
= Sun color based on time of day
= Sky color based on time of day

e Shader Functions:

o

@)
@)
@)
@)

Snow on flat surfaces

Wetness / rain on flat surfaces

Raindrip screenspace post process effect
Wind animation with compass direction
Heatwave distortion post process effect

47

e Parameter Collections:

o Weather intensity collection (Wind amount, rain amount, snow amount)
e User Interface Blueprints:

o Heads Up Display

o Main Menu System

The general relationship is as follows. These assets interact with each other and
update via code inside the blueprint. Shader functions cannot exist within the blueprint,
because they need to be applied to the 3D objects in the scene that the blueprint
interacts with. The parameter collection allows the computer to update all those shader
functions at once by adjusting one variable as opposed to adjusting it at each location
that variable is used. The user interface (Ul) blueprints communicate with the weather
system blueprints by both giving and receiving data. The Ul adjusts its sliders and
options based off the current value of key variables from the weather system, and then

sends new data for those same variables when a user interacts with the Ul.

48

Chapter Three: Coding Key Features of the Weather System

The XML parser: How Weather Data is collected from the Internet
One unexpected area of difficulty | ran into was coding the weather system. |

needed to develop a series of tools and functionality that did the following:

e Download a weather website’s content as a string

e Parse the string for a specific set of words and variables

e Compare this parsed list to an exhaustive list and return hits

e Adjust the shader networks and particle systems in order to replicate the

weather and time of day based on this data.

During my research for the best way to get weather data, | discovered the
National Oceanic Association of America’s (NOAA) weather feed!?, which featured two

formats, including XML. This is a standardized format for data that can be simplified to :
<DataTagl> Your_data_here </DataTagl>
Or: <FlavorOflcecream> Mint_ChocolateChip </FlavorOficecream>

This standardized presentation of weather information was exactly what |

needed to make my project work!

11 (National Oceanic and Atmospheric Administration 2018)

49

The free plug-in VaRest!? solved the problem of requesting the URL and
downloading the XML for me. From there, | developed a parsing function that would
look for the weather data | needed. | gave it a list, such as “temperature, type of
weather, time of day, windspeed, location” and it would find those data tags and copy

the contents into an array.

In order to use what | downloaded, | needed a method of translating words into
correct numbers for shader manipulation. For example, if the XML parser returned
“Heavy Rain” | needed to translate that into “rain = on” and “rain intensity = 2.” The
NOAA graciously included an exhaustive list of all possible weather types the XML may
include. | then reduced the list to its primary vocabulary. For example, the weather
types “heavy rain” and “heavy snow” can be reduced to 3 unique words: “heavy,”
“rain,” and “snow.” When | finished the reduction, | had about 20 possible words that

may be returned.

| then classified the words based on their impact on the weather. In the previous
example, “heavy” is an intensity modifier, whereas “rain” and “snow” are precipitation
types. For the computer, heavy means multiply the amount of precipitation by 2, and
rain or snow indicates which particle system to turn on. In order to make this
translation, | used the “Dictionary” variable type, which makes a 1 to 1 connection from

one variable type to another (i.e. | can say that “Heavy” = 2 and “Light” =.5).

12 (Alyamkin 2016)

50

This was especially helpful for 2-dimensional data, such as wind direction. For
example, when the parser returns North-East wind direction it can be mapped directly
to the vector “1,-1” where “0,-1” means North and “-1,0” means West. You may be
wondering why North, traditionally upwards pointing when drawn on paper, is negative
on the Y axis. This is because UV coordinates start with (0,0) in the top left corner and
end with (1,1) in the bottom right corner. Please consider figure 3.1 to better

understand.

X axis

N(0,-1)

(1,-1)

Y axis

S(0,1) (1,1)

Figure 3.1 Mapping Compass Direction to Vectors in UV Space. Provided by Author. 2018.

51

One-Way Data Manipulation in Unreal Engine 4

At this point, the coding only supported one website that was hard-coded. | then
had to develop a user-friendly system for choosing one website from a list of hundreds
(this would be which city and state you want to pull your weather data from). The
number of weather stations was well over 500, and there was no way | was going to
write down each weather station code one by one. | had to automate this process for
both my sanity and to save precious time. There were a few approaches that came to
mind directly: Use the string parsing module in Unreal Engine in order to find the correct
codes at run-time; create a separate tool that would compile the list directly from the

NOAA sites. 13

After some research and deliberation with my technical advisor, it became clear
that the only viable option was to create a python script. This is because Unreal Engine
lacks any reasonable method for manipulating a spreadsheet at runtime. Most of its
spreadsheet capabilities are designed for user analytics and data pointers. This means
Unreal can record statistics from gameplay and exports it in a spreadsheet, or it can use
keywords in spreadsheets in order to associate two things, like an image of a sword with
the skill it represents. So although | could import the spreadsheet of all 50,000 airport

codes into Unreal, | could not manipulate it any further.

13 (Python for Beginners 2017)

52

Structure of the Python Weather Station Code Compiler

At its most basic functionality, the compiler uses one “for” loop nested in
another “for” loop. In English, this means the compiler does “Job B” for each “Job A.”
Because the NOAA website is for US territories only, “Job A” is to download the web-
page that lists all the codes for a single state. So it needs to do Job A about 50 times
(plus Cuba and others). Once it downloads a state’s web-page, it then runs Job B, which
is to start at the beginning of the webpage and use HTML headers as landmarks in order
to pinpoint the Weather Station Code, write it to a text file and insert a Delimiter!*. It
then finds the name of the location (i.e. Seattle-Tacoma Airport, Seattle, WA)
corresponding to that Code and writes it to a different text file. It does Job B until it
can’t find any more codes. Then, it moves on to the next state and starts Job A again. In
the end, two string variables are returned: the list of codes, and the list of locations
those codes correspond to. These lists are in the exact same order.® This script only

needs to run once for the entire program, assuming it runs correctly.

Once these variables were brought into Unreal Engine, | designed a combo box
system that auto populates based on user input. To start, a user can only select a state.
This is a hard-coded array, and the combo box never changes. Once they pick a state,
the program searches the master list of location names and populates the second
combo box with only ones that m