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Abstract 
One of the main goals of computer graphics has always been the ability to 

generate realistic images. An essential element of a realistic image is 

illumination. The real-life situations that we are trying to simulate may contain 

multiple light sources, sometimes even thousands and more e.g. a view of a city 

in the night; lots of street lamps, windows, car headlights etc. Although, non real-

time CG usually cares more about the quality rather than time, in real-time 

rendering, especially in games, frame rendering time is strictly limited to 60 or 30 

frames per second (16 or 33 ms). Thus rendering an image with multiple lights 

becomes a serious and challenging task. 

This thesis discusses Deferred Shading – a group of algorithms that allow 

efficient dynamic rendering of multiple lights. We examine the existing algorithms 

and their optimizations and we also present a new improved version of Tile-

Based Deferred Shading that shows excellent visual results and competitive 

performance. 
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Chapter 1 – Introduction 
Rendering multiple dynamic lights is challenging problem of real-time computer 

graphics. Recently deferred shading algorithms became very popular. Deferred 

shading algorithms solve the problem of multiple dynamic lights by decoupling 

rendering of objects and their lighting. However, before we dive into a large 

variety of deferred shading algorithms and their complexities, let’s consider how 

lighting was handled before deferred shading. 

1.1 Forward Rendering 

Using conventional forward rendering to render a set of lit objects we will pick 

each object in the scene in no particular order and calculate its surface color 

based on its material and all the lights that affect that object. The pseudo code for 

that will look like this: 

For each object 
For each light 

Color += Lighting (object, light) 
Shader implementation for that approach will have a loop in the pixel shader to 

iterate over all light sources, compute and sum the contribution of each light 

source. This will give us the complexity O(N * L), where N is the number of all 

scene objects’ surface pixels and L is the number of lights. 

Forward Shading issues: 

1. High shading complexity O (N * L) 

Shading performance is dependent on the number of objects’ surface 

pixels. This happens because objects that share same pixels on the 

screen will be shaded. Therefore, performance could be lost due to 

unnecessary shading of screen pixels that will be replaced, because of 

depth test. 

2. Shader combination problem 

Since lighting calculation is tightly coupled with geometry type being 

rendered, it becomes problematic to handle all types of geometry (static, 
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skinned) and all types of lights (directional, point, spot) in a shader 

program. 

1.2 Single Pass and Multi-Pass Rendering 

There are two ways to solve the second problem of forward rendering: single 

pass and multi pass rendering. In single pass we will create a large shader (Über 

shader) that handles any geometry-material-light combination. This could be 

done by using dynamic branching in a shader of by using pre-processor defines 

to compile different versions of the shader. 

In multi pass rendering we will create a small shader for each geometry-material-

light combination and then render each object multiple times using additive 

blending. The pseudo code for multi-pass rendering will look like this: 
For each light 

For each object 
Framebuffer += Lighting (object, light) 

The problem with multi-pass rendering is that repetitive vertex transformations 

are performed for each light source. 

1.3 Deferred Shading 

History 

Deferred shading was first introduced in a hardware design in 1988 [Deering88], 

with a more generalized method using G-buffers (Geometry buffers) in 1990 

[Saito90]. Multiple Render Targets (MRT) feature was introduced in OpenGL 2.0 

and Direct3D 9. That feature allowed the programmable rendering pipeline to 

render images to multiple render target textures at once. Thus, Deferred Shading 

[Hargreaves04] in its modern form became possible on existing hardware. 

Idea 

The idea of deferred shading is to decouple lighting calculation and geometry 

rendering, making it simpler to manage large number of lights. Instead of 

calculating lighting immediately for each geometry surface pixel and writing it to 

the frame buffer, we extract any geometry data that we want to use for shading, 

store it into multiple screen-space buffers (G-buffer) using MRT. Then we 
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traverse each screen-space pixel and shade it based on the extracted properties 

in screen-space buffers and the scene light sources. This gives us a complexity 

O(N + L), where N is the number of screen pixels and L is the number of lights. 

The pseudo code for deferred shading will look like this: 

For each object 
Render to multiple render targets 

For each light 
Apply light as a 2D postprocess 

Deferred Shading solves both main problems of Forward Rendering. Deferred 

Shading advantages are the following: 

1. Low Shading Complexity O(N + L) 

In Deferred Shading geometry and lighting are decoupled. As a result 

each geometry triangle is rendered once and each visible geometry 

surface pixel is shaded only once. Many small lights are just as cheap as a 

few big ones. 

2. Easy to add new light sources 

Since geometry and lighting are decoupled, lights do not depend on 

geometry and it is easy to add various post process shaders for different 

light types (point, spot, directional etc.) 

3. Easy to add post processing effects 

It is easy to add various post processing effects such as motion blur, heat 

haze etc. to deferred shading pipeline, because geometry data is already 

available in G-buffer. 

Deferred Shading has following disadvantages: 

1. Transparency is not supported 

G-buffer stores information only about the closest geometry. Thus, 

transparent object cannot be rendered using Deferred Shading. 

2. No hardware support for MSAA (Multi Sample Anti-Aliasing) 

Hardware assisted anti-aliasing cannot be performed in screen-space after 

all lighting is calculated. It can only be used when geometry is rendered to 

G-buffer, which will produce incorrect results. 
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3. Multiple-materials problem 

There is a difficulty using multiple materials. Since lighting is applied as a 

post process using only data stored in G-buffer, G-buffer needs to store 

more information if many various materials required. 

4. High Memory Usage and Bandwidth 

G-buffer that consists of multiple buffers can easily decrease performance 

when it is being generated and passed to lighting stage and used in other 

post-processing shaders. 

5. Old hardware do not support MRT 

There are some old GPUs, consoles that do not support MRT feature. 

Deferred Shading algorithm 

To implement deferred shading algorithm we will need the following: 

1. Create several render targets. The number and size of render targets 

depends on our needs: specifically it depends on various effects or lighting 

features that we are planning to implement. The obvious render target 

layout goes something like: 

Data Format 

Position A32B32G32R32F 

Normal A16B16G16R16F 

Diffuse color A8R8G8B8 

Material parameters A8R8G8B8 

2. Ability to render full screen quad. To do that we just create 4 vertices, 

where each vertex has screen corner coordinates in NDC space: (-1, 1), (-

1, -1), (1, 1), (1, -1). And later render it with a desired shader. 

3. Low-poly meshes as convex hulls for lights: sphere mesh for point lights, 

cone mesh for spot lights. 

Deferred shading (version of 2004) algorithm is the following: 

1. Setup stage. Clear all render targets that are used as MRT and depth 

buffer. 
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2. G-buffer creation. Set MRTs for rendering. Render our geometry; 

extract per-pixel geometry properties such as Normal, Position in world 

space, color from diffuse textures, other material parameters (if 

needed) and write to corresponding render targets. 

3. Lighting stage. Set back buffer for rendering and enable additive 

blending. Render ambient light as full screen quad. If we have any 

directional or lights render them as a full screen quad. For each pixel 

read position, normal, and diffuse color from G-buffer and calculate 

lighting, output lit pixel to back buffer. If we have any point or spot 

lights render them as sphere or cone and calculate lighting per pixel in 

the same way as for directional light, but with attenuation and other 

special features depending on the light type. This is done so that pixel 

processor is only fired inside the screen space convex light volume 

projection. 

By using additive blending for lighting we perform the following operation on 

lights: 

Where: 

is ambient color 

is surface’s normal, 

is light direction of i-th light, 

is diffuse light color of i-th light, 

is specular light color of i-th light, 

is material specular color, 

is material diffuse color 
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is distance attenuation from i-th light, 

is the number of lights 

Since material diffuse color is constant we can change that calculation to: 

Using that fact we can slightly change lighting calculation which will make is 

faster. Instead of multiplying by the material diffuse color for every light we will 

first calculate the sum of all light contributions and then multiply by diffuse color. 

We will need additional render target – Light accumulation buffer. Step 3 of 

previously described algorithm will change to the following two steps: 

G-buffer (left to right): Normals, Position, Diffuse color [Hargreaves04] 

3. Light accumulation stage. Set light accumulation buffer as active 

render target. Set blend state to additive blending. Render all lights the 

same way as previously described in step 3, but output diffuse light 

and specular light to the render target separately. It can be either 

diffuse light to RGB, specular intensity (no specular color) to alpha 

channel or diffuse to RGB and specular color and intensity to the 

second render target if we want to use colored specular. 
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4. Composition. Set back buffer as render target. Draw full screen quad. 

For each pixel combine material diffuse from G-buffer and light diffuse 

and specular colors: 

framebuffer = diffuse * G-buff.diffuse + specular 

Chapter 2: Survey of current Deferred Shading 

algorithms 
In this chapter we will examine in detail the existing variations of Deferred 

Shading. The algorithms that we will discuss can be categorized in the following 

way: 

1. Deferred Lighting (3 pass algorithms) 

a. Light Pre-Pass [Engel08] 

b. Prelighting [Lee08] 

c. Inferred Lighting [Kircher09] [Kircher12] 

2. Tile-Based Deferred Shading 

a. PlayStation 3 Implementation [Balestra08] [Swoboda09] [Coffin11] 

b. Implementation with Compute Shader [Andersson09] 

[Andersson11] [Lauritzen10] [Olsson11] 

c. Clustered Deferred and Forward Shading [Olsson12] 

3. “Forward” shading 

a. Light Indexed Deferred Lighting [Trebilco08] [Pettineo12] 

b. Tile-Based Forward Shading 

i. Implementation with Compute Shader [Harada12] [McKee12] 

ii. DX11 implementation with UAVs [Lewis12] 

The first group of algorithms, Deferred Lighting, uses 3 passes: G-buffer pass, 

lighting pass and material pass. In the material pass the scene is rendered for the 

second time. 
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Tile-Based Deferred Shading algorithms use screen space tiles or spatial tiles 

(clusters) for light culling and as a result saving lighting computations. 

The algorithms from the third category render the geometry twice and they only 

store depth in the G-buffer. They combine features of deferred and forward 

shading. 

2.1 Light Pre-Pass/ Pre-Lighting 

Some of the main problems of Deferred Shading are G-buffer size and material 

problem. Light Pre-Pass (also known as Deferred Lighting) [Engel08] tries to 

solve those problems. This algorithm was presented as an internet article by 

Wolfgang Engel in 2008. Light Pre-Pass has been widely used in commercial 

video games such as Crysis 2, StarCraft 2, Blur etc. There is even an 

implementation on IPhone [Yeung12]. 

There are 3 main steps in the algorithm: 

1. Geometry pass: Render geometry and write normals and depth values to 

the corresponding buffers. 

2. Lighting pass: Calculate lighting using normals and depth values, store 

lighting information in light buffer. This pass is similar to lighting pass in 

the Deferred Shading. Lights are rendered as volumes. The only 

difference is that there is no information about specular intensity and 

diffuse color. The following data is stored in the light buffer: 

First 3 channels store 

for 3 RGB components of the diffuse light color. Alpha channel stores 

luminance of the sum of all specular contributions 
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3. Second geometry pass: Render geometry for the second time, apply 

different material terms and calculate final color using the light buffer. 

Light Pre-Pass has some advantages over Deferred Shading: 

1. Less memory and bandwidth than Deferred Shading 

2. Works better with multiple materials 

3. Works better with hardware MSAA in DirectX 9 

4. Can be implemented without MRTs 

The disadvantages are the following: 

1. Scene needs to be rendered 2 times (redundant vertex transformations) 

2. Specular contributions are blended (implementations are usually limited to 

monochromatic specular) 

3. Forward rendering required for translucent objects 

There are some variations of light pre-pass algorithm. One of the variations is 

called Pre-Lighting [Lee08]. It was used in a video game called Resistance 2. 

The main difference of the algorithm is that it uses 2 buffers for diffuse and 

specular light so that color from specular term is correctly accumulated. Pre-

Lighting also uses screen-space quads for rendering lights instead of spheres. 
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Pre-Lighting in Resistance 2: Depth buffer (Top Left), Normal buffer (Top Right), Diffuse light buffer
(Middle Left), Specular Light Buffer (Middle Right), Final result (Bottom) [Lee08] 

2.2 Inferred Lighting 

Inferred Lighting is an algorithm similar to Light Pre-Pass. However, it was 

developed independently at Volition, Inc. in 2009 by Scott Kircher and Alan 

Lawrence. This technique was used in several released commercial video games 

such as Red Faction: Armageddon and Saints Row: The third. 
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Inferred Lighting is trying to solve some problems of traditional Deferred Shading: 

transparency, material variety and MSAA anti-aliasing. In traditional Deferred 

Shading transparency is usually handled in a separate forward pass, while 

Inferred Lighting offers a unified pipeline for handling opaque and transparent 

objects. The main features of the technique are mixed resolution rendering and 

Discontinuity Sensitive Filtering. 

Normals (Top Left), Depth (Top Center), DSF data (Top Right), L-buffer (Bottom Left), Final output 
(Bottom Right) [Kircher09] 

The algorithm consists of 3 steps: 

1. Geometry pass. In the first pass geometry of the scene is rendered to G-

buffer. G-buffer uses lower resolution than frame buffer. The minimal G-

buffer information required for Inferred Lighting is normals, depth and 

discontinuity sensitive filter data (DSF). Normals stored as two 16 bit 

values, DSF data is stored as two 16 bit values, linear depth and ID value. 

2. Light pass. Contribution of ambient light and dynamic lights is calculated 

in screen space and stored in L-buffer (4x16 bit channels, diffuse lighting 

in RGB channels and specular light is stored as accumulated intensity in 

the alpha channel). L-buffer has the same low resolution as G-buffer. 

3. Material pass. Scene geometry is rendered again with material shaders 

that read data from L-buffer. Transparent objects are sorted and rendered 

after opaque objects and lit in the same manner. Material pass is rendered 
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at frame buffer resolution, which requires to up-sample the L-buffer and 

perform special filtering – Discontinuity Sensitive Filtering. 

Discontinuity sensitive filtering is performed in the pixel shader in material 

pass. The goal is to get rid of light bleeding artifacts that occur due to lighting 

being calculated at lower resolution. In geometry pass 16 bit of DSF data is 

being stored. It consists of 8 bits for Object ID and 8 bits for normal-group ID. 

Using that data in the material pass DSF samples 4 pixels from L-buffer and 

compares their depth and ID with currently rendered object. It applies custom 

bilinear filtering and discards samples that do not belong to the current 

surface. 

Bad lighting aliasing is noticeable if DSF is not used (Top), DSF solves this problem (Bottom) 
[Kircher09] 

DSF enables a way to light transparent surfaces. Transparent surfaces are 

rendered during geometry pass using a stipple pattern so that their G-buffer 

samples are interleaved with opaque polygon samples. The light pass will 

automatically light those stippled pixels. No special case processing during 

the light pass is necessary, as long as the lighting operations are one to one 

(i.e., do not involve blurring of the L-buffer). In the material pass the DSF for 

opaque polygons will automatically reject stippled transparent pixels, and 

transparent polygons are handled by finding the four closest L-buffer samples 

in the same stipple pattern, again using DSF to make sure the samples were 

not overwritten by some other geometry. 
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Interleaved transparent and opaque samples (Left), Lit result (Right) [Kircher09] 

Inferred Lighting has the following advantages over deferred shading: 

1. Greater material flexibility than deferred shading. 

2. Compatible with MSAA. 

3. Unified pipeline for processing transparent objects. 

4. Reduced memory bandwidth and pixel shading cost. 

There are some disadvantages too: 

1. Transparent objects are being lit at even lower resolution. 

2. Only 3 layers of transparency are supported. 

3. Normal maps quality is low since some information about normals is lost 

due to low resolution G-buffer. 

4. Up-sampling can be costly. 

2.3 Light Indexed Deferred Lighting 

Light Indexed Deferred Lighting was introduced by Damian Trebilco in 2008. The 

idea of the algorithm is to assign each light a unique index and store this index at 

each pixel the light hits. These indices can then be used in a pixel shader to 

lookup the light properties from the global light table to perform lighting. The 

algorithm consists of 3 steps: 

1. Z pre-pass. Render depth only. 

2. Light volumes rendering. Render light volumes into a light index texture 

with depth writing disabled. 
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3. Geometry rendering. Render geometry using standard forward rendering. 

Perform lighting using the light index texture to access lighting properties 

in pixel shader. 

There is a problem with multiple lights overlap. If no lights overlap then step two 

can simply write the light index to the texture and it can be directly accessed in 

step three. The paper proposes 3 light index packing schemes for multiple 

overlapping lights. All methods assume that light indices are 8 bit and light index 

texture is RGBA8. 

1. CPU sorting. 

a. On the CPU, create four arrays to hold light volume data. Then for 

each scene light, find the light data array it can be added to without 

intersecting any of the existing lights in the array. (eg. Attempt to 

add to array one, then attempt to add to array two etc.) If a light 

cannot be added, it will have to be discarded or stored to be 

processed in a second pass. 

b. Clear light index color buffer to zero. 

c. Enable writing to the Red channel only and render light volumes 

from light data array one. 

d. Enable writing to the Green channel only and render light volumes 

from light data array two. 

e. Enable writing to the Blue channel only and render light volumes 

from light data array three. 

f. Enable writing to the Alpha channel only and render light volumes 

from light data array four. 

2. GPU multi-pass max blend equation. 
a. Clear color and stencil buffers to zero. 

b. Set blend equation mode to MAX 

c. Mask out writes to Blue and Alpha channels 
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d. Set stencil to increment on stencil pass and set the stencil compare 

value to only pass on values < 2. (only allow a max of two writes 

per fragment) 

e. Render the light volumes and output (index, 1.0-index) in the red 

and green channels. 

f. Mask out writes to Red and Green channels and enable Blue and 

Alpha channels 

g. Set stencil to decrement on stencil failure and set the stencil 

compare value to only pass on values equal to 0. 

h. Render the light volumes and output (index, 1.0-index) in the blue 

and alpha channels. 

3. GPU bit shifting. This method requires video card with bit logic support 

(Shader Model 4) 

a. Clear the color buffer to zero. 

b. Set the blend mode to ONE, CONSTANT_COLOR where the 

constant color is set to 0.25. 

c. This shifts existing color bits down two places ( >> 2 = * 0.25) and 

adds the two new bits to the top of the number. 

d. Render the light volumes and break the 8bit index value into four 

2bit values and output each 2 bit value into RGBA channels as high 

bits. eg. Red channel = (index & 0x3) << 6. 

e. This index splitting can be done offline and simply supplied as an 

output color to the light volume pass. 

Light Indexed Deferred Lighting has following advantages: 

1. Efficient middle ground between forward and deferred 

2. Forward renderers can be easily modified to use this technique 

3. No problems with multiple materials 

The disadvantages are the following: 

1. Total lights number and total number of overlapping lights are limited 
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2. Difficult to add shadows 

3. Multiple light types are problematic 

The idea of the described algorithm is interesting, but the strict limitation on the 

number of overlapping lights may outweigh all the advantages. 

2.4 Tile-Based Shading 

The main idea of Tile-Based Shading (also known as Screen-space tile 

classification) group of algorithms is to divide the screen up into 2D tiles and 

determine how many and which light sources intersect each tile. Then calculate 

lighting only for visible light sources for each pixel in each tile. 

2.4.1 Tile-Based Deferred Shading 

Tile-Based Deferred Shading replaces the lighting stage of traditional Deferred 

Shading with light culling stage, where light sources are culled against screen 

space tile frusta. There are several implementations which use the same idea, 

but implemented on different hardware. 

PlayStaion 3 implementation 

The PS3 uses the Cell microprocessor, which is made up of one 3.2 GHz 

PowerPC-based "Power Processing Unit" (PPU) and 6 accessible Synergistic 

Processing Units (SPUs). On top of that there is a NVIDIA G70 Graphics 

Processing Unit. Since SPUs are designed for 128 bit SIMD vector operations 

that make them suitable for processing of various rendering tasks. SPU and GPU 

can execute in parallel. 

Tile-Based Deferred Shading first 

appeared on PlayStation 3 hardware 

because it allowed efficient usage of 

hardware parallelism. It was first 

mentioned in 2008 at GDC presentation 

entitled “The technology of Uncharted: 

Drake Fortune”[Balestra08]. There is not 

17 From “The Technology of Uncharted: Drake’s 
Fortune” [Balestra08] 



 
 

         

        

         

    

       

       

            

     

          

        

        

     

             

  

       

         

       

         

        

        

 

    

     

     

       

    

    

    

     

         
   

much detail about their particular implementation available. However, according 

to their presentation the algorithm they used is the following: 

1. Render opaque dynamically lit geometry: world normal + specular 

exponent in screen space 

2. Divide the screen into a grid 

3. Find which lights intersect each cell 

4. Render quads over each cell calculating up to 8 lights per pass: store 

results in a light accumulation buffer 

Another PS3 implementation was presented in 2009 in Matt Swoboda from 

PhyreEngine team. Their rendering pipeline heavily used the advantages of 

SPUs. The high-level algorithm that they presented is the following: 

1. Calculate affecting lights per tile 

a. Build a frustum around that tile using min and max depth values in 

that tile 

b. Perform frustum check with each light’s bounding volume 

c. Compare light direction with tile average normal value 

2. Choose fast paths based on tile contents 

a. If no lights affect the tile use fast path 

b. Check material values to see if any pixels are marked as lit 

3. Choose whether to process MSAA per tile 

Implementation with compute shaders 

Compute shaders thread groups can 

operate in screen-space tiles similar to 

SPUs on PlayStation 3. Therefore, ideas 

of algorithms from PS3 can be applied on 

PC. Tile-based shading implementation 

with compute shaders was first presented 

at SIGGRAPH in 2009 by Johan 

Andersson in his talk “Parallel Graphics in 

Per-tile visible light count (black = 0 lights, white 
= 40) [Andersson09] 18 



 
 

        

            

         

      

          

  

            

         

    

   

   

          

         

           

      

    

     

     

    

      

          

         

   

              

 

        

        

              

            

     

Frostbite – Current & Future”. Later different implementations appeared: by 

Andrew Lauritzen in 2010 [Lauritzen10] and Ola Olsson in 2011 [Olsson11]. 

Johan Andersson proposed a new hybrid graphics/compute shading pipeline: 

1. Graphics pipeline rasterizes G-buffer for opaque surfaces 

2. Compute pipeline uses G-buffer, culls light sources, computes lighting and 

combines with shading 

Input data for compute shader stage is G-buffer, global list of lights. Output is 

fully composited and lit HDR texture. Each thread processes each pixel. Thread 

groups (tiles) are 16x16 pixels. 

Compute shader algorithm: 

1. Load G-buffer 

2. Calculate min and max Z in thread group (tile) 

a. Use InterlockedMin / Max. Since atomics work only on integers, 

cast float to int. Z is either always positive or negative depending if 

left-handed or right handed system is used. 

3. Determine visible light 

source for each tile. Output 

for each tile is the number Example input and output [Andersson09] 

of visible light sources and 

index list of visible light sources. 

a. Each thread switches to process light sources instead of pixels. 256 

light sources in parallel per tile. Multiple iterations if number of lights 

is greater than 256. 

b. Intersect light source and tile using tile frustum with min and max Z 

values 

c. For visible lights append light index using atomic InterlockedAdd 

d. Synchronize group and switch back to processing pixels 

4. For each pixel, accumulate lighting from visible light sources in a for loop. 

Read from tile visible light index list in thread group shared memory. 
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5. Combine lighting and material albedos 

Advantages of tile-based deferred shading: 

1. Constant and absolute minimal bandwidth. G-buffer data is read once per 

pixel. 

2. No need for intermediate light accumulation buffer 

3. Scales up to huge amount of big overlapping light sources 

Disadvantages of tile-based deferred shading: 

1. DirectX 11 hardware is required (Compute Shader 5.0) 

2. Same problems with MSAA as in traditional deferred shading 

3. Same problems with transparent objects 

2.4.2 Tile-Based Forward Shading 

Tiled shading is not limited to deferred shading. Recently tile-based forward 

shading implementations have appeared, “Tile Shading” [Olsson11], “Forward+” 

[Harada12] [McKee12], “DirectX 11 implementation with UAVs” [Lewis12]. These 

implementations are similar to Light Indexed Deferred Shading. 

Implementation with compute shaders 

The idea of light culling is 

very similar to tile-based 

deferred shading. Light 

sources are being culled 

against screen space tile 

frusta. But instead of 

performing shading right 

after culling visible light lists 

are stored and then later 

used in pixel shader for 

lighting when geometry is 
Grid data structure [Olsson11] 
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rendered. Proper data structures should be used to save information about 

visible light for every tile. Ola Olsson proposes the method of using 3 arrays: 

1. Global Light List contains light properties. 

2. The light index list contains light indices to the global light list 

3. Light grid contains an offset and size of the light list for each tile 

Advantages of tile-based forward shading: 

1. Light management is decoupled from geometry 

2. Transparent objects can be shaded the same way as opaque 

3. No problems with multiple materials and lighting models 

Disadvantages of tile-based forward shading: 

1. Each pixel may be shaded more than once 

2. Problems with shadows 

3. Scales worse with increasing light overdraw than tiled deferred shading 

DirectX 11 implementation with UAVs 

This implementation was developed independently by Peter J. B. Lewis and 

presented on his website in the article entitled “Tile-Based Forward Rendering”. 

The algorithm developed by Peter Lewis is 

somewhat similar to “Light Indexed 

Deferred Lighting” [Treblico08]. In his 

original implementation he did not use 

Compute Shader, but instead he used 

UAVs. UAV stands for Unordered Access 

View (buffer, texture or texture array). It is a 

new resource type in DirectX 11 that allows 

temporally unordered read/write access 

from multiple threads. This means that this resource type can be read / written 

simultaneously by multiple threads without generating memory conflicts through 

Tiles being affected by lights [Lewis12] 
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the use of Atomic Functions. For example, UAVs can be used in pixel shader or 

compute shader. The presented algorithm is the following: 

1. Depth pre pass. Depth is rendered to a texture. Then it is down-sampled 

in additional pass so that there is one depth value per tile. Tiles are 8x8 

pixels in screen space. Shader finds the maximum depth of all the pixels in 

each tile and writes it to a smaller depth buffer. 

2. Building the Per-Tile Linked Lists. Bounding volumes of light sources 

are rendered here the same way as in traditional deferred shading. 

Instead of shading each light sources ID is added to a linked list for each 

tile. Down-sampled buffer from previous stage is used to quickly reject 

pixels that have no lights affecting them. The linked list generation is 

based on AMD’s Order Independent Transparency presentation 

[Hensley10]. Two Unordered Access Views are used: one stores the 

linked list elements (the LinkBuffer), and the other stores the offset into the 

LinkBuffer that marks the start of the list for that tile (the HeadBuffer). 

struct LightLink 
{ 

uint LightID; 
uint Next; 

}; 

3. Rendering the scene. Scene is rendered using the LinkBuffer, 

HeadBuffer and buffer containing all light sources data. 

struct PointLight 
{ 

float3 Position; 
float Radius; 
float3 Colour; 

}; 

Lighting calculation is performed in pixel shader by looping through the 

linked list of lights that affect the tile current pixel is in. 

uint next = HeadBuffer[head_index]; 
while (next != 0xFFFFFFFF) 
{ 

LightLink link = LinkBuffer[next]; 
PointLight pointLight = PointLightBuffer[link.LightID]; 
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lighting += Shade(worldPos, worldNormal, eyeVec, specPower, 
pointLight); 

next = link.Next; 
} 

2.5 Clustered Deferred and Forward Shading 

The latest available paper on tile-based shading is 

“Clustered Deferred and Forward Shading” by Ola 

Olsson, Markus Billeter, and Ulf Assarsson. In 

Clustered Shading, view samples with similar 

properties (e.g. 3D-position and/or normal) are 

grouped into clusters. This is comparable to tiled 

shading, where view samples are grouped into 

tiles based on 2D-position only. According to the 

paper clustered Shading enables real-time scenes with two to three orders of 

magnitudes more lights than previously feasible (up to around one million light 

sources). 

The Clustered Deferred Shading algorithm has the following steps: 

1. Render scene to G-buffer. This is performed in the same way as in 

traditional deferred shading. 

2. Cluster assignment. The goal of the cluster assignment is to compute an 

integer cluster key for a given view sample from the information available 

in the G-Buffer. Position and, optionally, the normal are used. Subdivisions 

are performed in view space, by spacing the divisions exponentially to 

achieve self-similar subdivisions. Cluster key tuple (i, j, k) is computed 

from screen-space coordinates and the view-space depth. 

3. Find unique clusters. The 

cluster keys in the key buffer 

are sorted and then 

compacted, to find the list of 

unique clusters. The sorting 

is, for instance, based on the 

Exponential spacing in view 
space [Olsson12] 

Sorting and compacting the key buffer to find unique 
clusters [Olsson12] 



 
 

        

          

       
          

        

             

         

           

       

            

          

               

         

 

 

                 

                     

     

 

          

          

view sample’s depth and normal direction. The paper presents two 

methods for finding unique clusters: local sorting and page tables (similar 

to page table approach used by virtual textures . 

4. Assign lights to clusters. Each frame, a bounding volume hierarchy 

(BVH)of lights is constructed by first sorting the lights according to the Z-

order (Morton Code) based on the discretized center position of each light. 

For each cluster, BVH is traversed using depth-first traversal. At each 

level, the bounding box of the cluster (either explicitly computed from the 

cluster’s contents or implicitly derived from the cluster’s key) is tested 

against the bounding volumes of the child nodes. For the leaf nodes, the 

sphere bounding the light source is used; other nodes store an AABB 

enclosing the node. If a normal cone is available for a cluster, it is used to 

further reject lights that will not affect any samples in the cluster. 

Back-face culling of lights against clusters. If the angle between the incoming light and the axis of 

the normal cone is greater than + , the light faces the back of all samples in the cluster, and 

can therefore be ignored. [Olsson12] 

5. Shade samples. Shading is different from Tile-based deferred shading. In 

the sorting approach, index into the list of uniqe clusters is explicitly stored 
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for each pixel. This is achieved by tracking references back to the 

originating pixel, and, when the unique cluster list is established, storing 

the index to the correct pixel in a full screen buffer. When using page 

tables, after the unique clusters are found, we store the cluster index back 

to the physical memory location used to store the cluster key earlier (using 

the same page table as before). This means that a virtual lookup for the 

cluster key will yield the cluster index. Thus, each 

sample can look up the cluster index using the cluster key computed 

earlier (or re-computed). 

Accroding to the paper the algorithm can support up to 1 million light sources, but 

there is an overhead of assigning clusters and finding unique clusters that make 

algorithm slower and ineffective for smaller number of lights. In one of the graphs 

presented in the paper we can see that Tiled Deferred Shading (green) is much 

faster than any variant of Clustered Shading when number of lights is smaller 

than around 2000. 

Algorithm time comparison graph [Olsson12] 

Chapter 3: Deferred Shading optimization techniques 
Deferred Shading has been used in commercial video games since 2005. 

Multiple developers have implemented some form of deferred shading and came 
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up with various optimization techniques. There are two main categories of 

optimizations: 

1. Bandwidth optimizations. Bandwidth cost is reduced by reducing the size 

of the G-buffer 

2. Light volume rendering optimizations. 

First category is the most important one since multiple MRTs is one of the most 

significant bottlenecks of the Deferred Shading. We will examine G-buffer layouts 

and optimizations used in released commercial video games. 

3.1 S.T.A.L.K.E.R (2005) 

A video game S.T.A.L.K.E.R. that was released in 2005 used 3 render targets for 

their G-buffer. It was the first game to use Deferred Shading. [Shishkovtsov05] 

Data Format 

RT0 3D Position + Material ID RGBA16F 

RT1 Normal + Ambient Occlusion RGBA16F 

RT2 Color + Gloss (Specular Exponent) RGBA8 

Additional parameters stored in G-buffer were material ID and ambient occlusion 

(AO). Ambient occlusion was precomputed and saved into special textures for 

each surface. During G-buffer creation these textures were sampled and AO 

values were saved for later use in the lighting stage. Material ID is widely used in 

Deferred Renderers to overcome the material variety problem. When geometry is 

rendered into G-buffer material ID is assigned for every object or surface. This ID 

is later used in the lighting stage to lookup and apply specific lighting model for 

the given pixel. 

This particular implementation of the G-buffer is one of the earliest one. It uses 

160 bits per pixel, which may not seem like a lot of memory, but. for example, for 

the screen resolution 1024x768 it results in 15 MB of bandwidth every frame. 
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3.2 S.T.A.L.K.E.R: Clear Sky (2009) 

A video game S.T.A.L.K.E.R: Clear Sky was released 4 years after the release of 

the original S.T.A.L.K.E.R. It featured greatly improved Deferred Shading pipeline 

[Lobanchikov09]. The major improvement is that developers managed to 

squeeze all data into 2 render targets: 

Data Format 

RT0 Normal + Depth + Material ID + Ambient Occlusion RGBA16F 

RT1 Color + Gloss (Specular exponent) RGBA8 

New G-buffer is using 96 bits per pixel vs 160 bits per pixel before. Some packing 

math is involved that increases the total number of arithmetic operations, but the 

number of texture operations and bandwidth are reduced. Main optimizations 

used here are the following: 

1. 3D position is stored as linear depth in one 16 bit float. Position is 

reconstructed from depth in the pixel shader. (See next subsection for 

details) 

2. Normal vector is stored as 2 values, 16 bit float each. Simple packing 

scheme is used where X and Y are stored and Z is reconstructed. (See 

next subsection for details) 

3. Shader bitwise operations are used to pack Material ID and Ambient 

Occlusion in one 16 bit float channel. The packing algorithm consists of 

following steps: 

a. Pack data into a 32bit uint as a bit pattern that is a valid 16bit fp 

number 

b. Cast the uint to float using asfloat() 

c. Cast back for unpacking using asuint() 

d. Extract bits 

27 



 
 

 

           

 

    
           

          

        

 

           

             

  

            

     

      

        

Bit correspondence between 32 bit and 16 bit IEEE float [Lobanchikov09] 

3.3 Killzone 2 (2007) 

Killzone 2 is a video game developed exclusively for PlayStation 3 and released 

in 2007. The game features Deferred Shading [Valient07] and uses G-buffer with 

four RGBA8 render targets that contain lots of additional parameters: 

World position is reconstructed from 24 bit depth. Normal vector is stored as X 

and Y (See next subsection for details). Additional data that is stored in the G-

buffer includes: 

1. Motion Vectors. They are used later in the pipeline for screen space per-

pixel motion blur post process. 

2. Sun-Occlusion. This is basically static sun shadows that were 

precomputed in offline renderer and saved into textures. 
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This G-buffer layout uses 128 bits per pixel. 

3.4 Battlefield 3 (2011) 

Battlefield 3 is a video game built with an engine called Frostbite 2, which uses 

Deferred Shading and also advanced features such as real-time global 

illumination [Coffin11][Andersson11]. G-buffer that is used in Frostbite 2 consists 

of four 32 bit render targets and one depth buffer with 24 bit and 8 bit stencil: 

G-buffer uses 128 bits per pixel. Some interesting pieces of data that are stored 

are the following: Sky visibility, environment map ID, material ID and other 

material parameters. One of the render targets is completely reserved for 

Irradiance which is generated by dynamic radiosity - real-time global illumination 

algorithm. 

3.5 Light Volume Rendering optimizations 

This type of optimization is used to speed up the lighting stage of the Deferred 

Shading. In Deferred Shading lights are rendered as light volumes that 

correspond to the light range: full screen quad for directional light, sphere for 

point light, cone for spot light etc. 

The following optimizations are used to improve the rendering efficiency of lights: 

1. When the camera is outside of the light volume front faces of the light 

volumes should be rendered. When it is outside – back faces are 

rendered. 

2. Geometry instancing can be used to render all light volumes of one light 

type in one draw call. This feature is only available in DirectX 10/11 level 

hardware. 
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3. As an alternative to rendering light volumes, camera facing quads can be 

rendered for each light. Quad screen coordinates need to cover the 

extents of the light volume. Rendered geometry is simpler, as a result less 

vertex shader operations. 

4. Texture read minimization. When G-buffer is fetched point-sampling 

should be used in pixel shader to avoid the cost of unnecessary bilinear 

filtering, because there is one to one correspondence between pixels in G-

buffer and the back-buffer if same resolution is used. 

5. Blending cost minimization. Additively blending lights into the light 

accumulation buffer is not free. If light contribution is zero for the given 

pixel that pixel shader output should be discarded and not written into the 

render target. 

3.6 Reconstruction of Position From Depth 

There are 2 ways to reconstruct position from depth: using inverse transformation 

and using ray from the camera and view frustum. 

Inverse transformation approach 

If depth is non-linear and stored as z/w (e.g. in hardware depth buffer) we can 

use inverse transformation matrices to get world or view space position. The 

following algorithm reconstructs position from depth: 

1. Convert UV texture coordinates in the range [0,1] to ND coordinates [-1,1] 

float x = texCoord.x * 2 - 1; 
float y = (1 - texCoord.y) * 2 - 1; 

2. Read depth from depth buffer texture 

float z = tex2D(DepthSampler, texCoord); 

3. Transform by inverse projection matrix to get position in view space or by 

inverse view projection matrix to get position in world space 

float4 projectedPos = float4(x, y, z, 1.0f); 
float4 positionVS = mul(projectedPos, InvProjection); 

4. Divide by w to get final view or world space position 
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positionVS = positionVS.xyz / positionVS.w; 

Ray and View Frustum approach 

If hardware depth is not available (e.g. in DirectX 9) and depth is stored as linear 

normalized z value we can reconstruct position by scaling linear depth by the ray 

pointing from the camera to the far plane. To get the position in world space we 

need to perform the following steps; 

1. In the vertex shader of the quad, calculate the direction vector from the 

camera position to the vertex (view ray). 

2. In the pixel shader, normalize the view ray vector 

3. Sample the depth texture to get the distance from the camera to the G-

Buffer surface 

4. Multiply the sampled distance with the view ray 

5. Add the camera position 

3.6 Compact normal storage in G-buffer 

There are multiple ways to store normals compactly in G-buffer. Majority of 

approaches try to use some compression algorithm to store normals as 2 values 

instead of 3 to save memory and space in G-buffer. This section is based on 

Aras Pranckevičius’s article “Compact Normal Storage for Small G-Buffers”. 

X&Y, Z reconstruction 

If a normal is normalized (i.e. unit length) then we can store X and Y and the 

reconstruct Z value from X and Y. This method was used in Killzone 2 

[Valient07]. The encoding for the normal is very simple. Normal’s X and Y are 

mapped from [-1, 1] range to [0, 1] 

float2 normalOut = normalIn.xy * 0.5 + 0.5; 

And decoding is the following: 

float3 normal 
normal.xy = normalOut.xy * 2 – 1; 
normal.z = sqrt(1 - normalOut.x*normalOut.x - normalOut.y*normalOut.y); 
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This method has a big disadvantage. If the normal is pointing away from the 

camera then Z will be negative, but the sign information will be lost. 

Spherical coordinates (based on Wolfgang Engel’s blog) 

It is possible to use spherical coordinates to encode the normal. Since we know 

its unit length, we can just store the two angles. This method works with normals 

both in view space and world space. But there are a lot of arithmetic operations 

involved for encoding and decoding. 

Encoding: 

float2 atanYX = atan2(normalIn.y,normalIn.x); 
float2 normalOut = float2(atanYX / PI, normalIn.z); 
normalOut = (normalOut + 1.0) + 0.5; 

Decoding: 

float2 angles = normalOut * 2.0 - 1.0; 
float2 theta; 

sincos( angles.x * PI, theta.x, theta.y ); 

float2 phi = float2( sqrt( 1.0 - angles.y * angles.y ), angles.y ); 

flaot3 normal = float3( theta.y * phi.x, theta.x * phi.x, phi.y ); 

Sphere map transform 

Spherical environment mapping (indirectly) maps reflection vector to a texture 

coordinate in [0,1] range. The reflection vector can point away from the camera, 

just like our view space normals. [Mittring09] This method was used in CryEngine 

3. The encoding and decoding is very cheap on arithmetic operations. 

Encoding: 

normalOut = normalize(normalIn.xy) * sqrt(normalIn.z * 0.5 + 0.5); 

Decoding: 

normal.z = length2(normalOut.xy) * 2 - 1; 
normal.xy = normalize(normalOut.xy) * sqrt(1 - normal.z * normal.z); 
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Stereographic Projection 

Stereographic projection maps a unit sphere to circle of infinite size. We can use 

it and the rescale it so that “practically visible” range of normals maps into unit 

circle. Scaling factor depends on field of view and on the desired precision for 

normals that point away from the camera. 

Encoding: 

float scale = 1.7777; 
float2 normalOut = normalIn.xy / (normalIn.z + 1); 
normalOut /= scale; 
normalOut = normalOut * 0.5 + 0.5; 

Decoding: 

float scale = 1.7777; 
float3 a = normalOut.xyz * float3(2 * scale, 2 * scale, 0) 
a += float3(-scale, -scale, 1); 
float b = 2.0 / dot(a.xyz, a.xyz); 

float3 normal; 
normal.xy = b * a.xy; 
normal.z = b - 1; 

Per-pixel View Space 

If we compute view space per-pixel, then Z component of a normal can never be 

negative. Then just store X&Y, and compute Z. 

Per-pixel view matrix creation: 

float3 x,y,z; 
z = -viewVector; 
x = normalize (float3(z.z, 0, -z.x)); 
y = cross (z,x); 
float3x3 viewMatrixPerPixel = float3x3 (x,y,z); 

Encoding: 

float2 normalOut = mul(viewMatrixPerPixel, normalIn) * 0.5 + 0.5; 

Decoding: 

float3 normal; 
normal.xy = normalOut * 2 - 1; 
normal.z = sqrt(1 + dot(normal.xy,-normal.xy)); 
normal = mul(normal, viewMatrixPerPixel ); 
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Best fit for normals 

Best fit for normals is a method to store a normal as 3 values with 8 bits per 

channel and utilize all available values in 8 bit per channel representation. 

[Kaplanyan10]. If we store normalized normals as 3 values in 8 bit per channel 

render targets we get various banding artifacts in the final shaded image. The 

main mistake is that we store normalized normals. 24 bit range effectively gives 

us 3D grid of 256x256x256 = 16777216 values. But by normalizing normals we 

reduce the possible range to the surface of the unit sphere in that 3D grid. As a 

result we use only around 2% of all available values of 24 bit space. 

To utilize all values best-fit method for normals was proposed. For the given 

normal direction we calculate quantization error for each cell the normal 

intersects. That effectively gives us the error if we store the normal in that cell. 

However, this task is too computationally expensive for real-time thus it was 

proposed to prebake the results of the search into a huge cubemap of directions. 

Each texel of the cubemap stores the distance to the best cell for the 

normal with this direction. Since the cubemap has a lot of symmetry inside it is 

possible to save only one 2D side as 512x512 texture. 

The algorithm of outputting the normal into the G-Buffer is the following: 

1. Prepare the texture coordinates for 2D lookup and look up the distance to 

the best cell from the precomputed 2D texture 

2. Scale the normalized normal by this value in order to fit it into the 

precomputed best cell 

3. Output the scaled normal into the G-Buffer 

The reconstruction of the normal is just reading the value from G-buffer and 

normalization. 

Best-fit for normals allows to utilize 98.2% possible values of 24 bit render target. 
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Best-fit for normals [Kaplanyan10] 

Chapter 4: Original contribution 
In the previous chapters we have examined all existing variations of deferred 

shading and optimization techniques. The most interesting ones are two recent 

approaches: Tile-Based Deferred Rendering and Clustered Deferred Rendering. 

Both methods use latest hardware features such us compute shader and 

unordered access view. Tile-Based Deferred Rendering performs fast and 

efficient light culling. There are multiple reasons why this algorithm is faster than 

traditional Deferred Shading: 
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1. Light volumes are not drawn anymore, no vertex shader computation 

needed 

2. G-buffer is accessed once for every pixel for all lights instead of accessing 

it for every light for every pixel 

3. Additional light accumulation pass is not needed 

Clustered Deferred Rendering allows using even more lights than Tile-Based 

Deferred Rendering (up to 1 million lights), but it performs worse on smaller 

number of lights (several thousand), because cluster assignment and unique 

cluster search is rather expensive and not justified for smaller number of lights. 

Considering the fact that a typical videogame scene usually does not require 

million of lights Tile-Based Deferred Rendering is more appealing. However, both 

methods present interesting ideas for improving efficiency of light culling. So we 

can combine the advantages of both methods to get an intermediate method that 

will work efficiently on average number of lights sources. Tile-Based technique 

uses screen-space tiles as clusters, this is faster and more efficient than spatial 

clusters in clustered method. Clustered technique on the other hand uses spatial 

hierarchical data structures for lights and it takes into account normals for 

clusters and that allows culling more lights and, as a result, performing fewer 

number of lighting calculations. 

If we take Tile-Based Deferred Rendering with compute shader as a basis there 

are 2 options to improve it: 

1. Use some hierarchical spatial data structure for lights 

2. Take into account normals for tiles (Back-face culling for lights) 

We will consider the second option. Clustered Deferred Shading mentions that 

normals were taken into account to perform back face culling for lights. But 

specific details of the technique were not described. 

The idea of the algorithm on the high level is that for lights that intersect the tile 

frustum, we can reject any light whose direction is opposite all normals in the tile. 

By rejecting these lights we avoid lighting computations for all pixels in that tile, 
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because their contribution will be zero anyway. For example, if we have a 16x16 

pixel tile and we reject a light we will avoid lighting calculation for 256 pixels and 

that’s where the performance increase comes from. We will gain more 

performance improvement compared to the original Tile-Based Deferred Shading 

algorithm as the number of back-face culled lights increase. On the other hand 

we will not get any improvement if no lights are culled. 

Based on the illustration presented in the paper we have designed the algorithm 

to perform back face culling for lights. To perform back-face culling we need to 

construct a normal cone and a light cone for tile. 

Back-face culling of lights against clusters. If the angle between the incoming light and the axis of 

the normal cone is greater than + , the light faces the back of all samples in the cluster, and 

can therefore be ignored. [Olsson12] 

Our algorithm is the following: 

1. If the light source’s bounding volume intersects with the tile frustum, 

perform back face culling with normals 

37 



 
 

              

          

 

           

            

             

 

          

              

               

  

          

              

        

            

            

        

          

          

          

  

   
         

        

 

    

    

         

2. For each tile, calculate the central normal direction for the tile normal cone 

by adding all normals in the tile and normalizing the resulting average 

normal. 

3. Find the angular extents of the tile normal cone by performing dot products 

between the central normal direction and all normals in the tile. The final 

maximal normal cone angle will be the arccosine of the minimal dot 

product. 

4. Calculate 8 corners of the tile frustum in view space. 

5. For each light calculate light cone. The central direction of the light cone 

will be the vector between center of the tile and the light source position in 

view space. 

6. Calculate dot products between central light cone direction and 8 vectors 

between light and frustum corners. Find the maximal angle , which will 

be the arccosine of the minimal dot product. 

7. Find the angle by calculating dot product between the given light 

direction and central normal direction of the tile. Reject the given light 

source if the angle is greater than 

We will measure the efficiency of the improved Tile-Based Deferred Lighting 

algorithm by comparing the frame time with traditional Deferred Shading, original 

Tile-Based Deferred Lighting and comparing the visual accuracy (e.g. absence of 

visual artifacts). 

4.1 Implementation details 

A demonstration application was implemented to test the new improved 

algorithm. Three algorithms were implemented and one major optimization 

technique: 

1. Traditional Deferred Shading 

2. Tile-Based Deferred Rendering 

3. Tile-Based Deferred Rendering with back-face culling (new method) 
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4. View frustum culling for lights (CPU) 

All work was done using DirectX 11 API. ATI Radeon HD5730 GPU was used for 

development. All images were rendered at 1280x720 HD resolution. 

Deferred Shading 

Traditional Deferred Shading implementation is based on [Hargreaves04]. Three 

passes are implemented: G-buffer pass, light pass and combine pass. The G-

buffer structure is the following: 

Data Format 

RT0 Albedo color + Specular Intensity RGBA8 

RT1 Normal + Specular exponent RGBA16F 

Depth Stencil (Hardware) D24S8 

Two render targets were used + hardware depth buffer. Multiple earlier 

mentioned optimizations were used to speed up the algorithm: depth was used 

instead of 3d position, light volumes have low number of triangles, instancing was 

used for light volume rendering, only back faces of light volumes are rendered, if 

light contribution is zero for a given pixel, that sample is discarded to save 

blending operation. 

One directional sun light was used and multiple small point lights. Shadowing 

technique from the directional light was also implemented. 

Tile-Based Deferred Rendering 

Tile-Based Deferred Rendering with compute shaders was implemented. 

Implementation was based on [Lauritzen10] and [Andersson09]. 16x16 pixel tiles 

were used.The most important parts of the implementation performance wise are 

the creation of the frustum per tile and the sphere-frustum intersection. 

The following code was used for the creation of the frustum per-tile: 

float2 tileScale = textureSize.xy * float(1 / (2 * BLOCKSIZE)); 
float2 tileBias = tileScale - float2(groupId.xy); 
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float4 c1 = float4(Projection._11 * tileScale.x, 0.0f, -tileBias.x, 
0.0f); 
float4 c2 = float4(0.0f, -Projection._22 * tileScale.y, -tileBias.y, 
0.0f); 
float4 c4 = float4(0.0f, 0.0f, -1.0f, 0.0f); 

Tile currentTile; 
currentTile.frustumPlanes[0]= c4 - c1; // right 
currentTile.frustumPlanes[1]= c4 + c1; // left 
currentTile.frustumPlanes[2]= c4 - c2; 
currentTile.frustumPlanes[3]= c4 + c2; 
currentTile.frustumPlanes[4]= float4(0.0f, 0.0f, 1.0f, maxGroupDepth); 
// far 
currentTile.frustumPlanes[5]= float4(0.0f, 0.0f, -1.0f,-minGroupDepth); 
// near 

Sphere frustum intersection function: 

bool Intersects(PointLight light, Tile tile) 
{ 

bool inFrustum = true; 
[unroll] for (uint i = 0; i < 6; ++i) { 

float d = dot(tile.frustumPlanes[i], 
float4(light.positionView, 1.0f)); 
inFrustum = inFrustum && (d >= -light.radius); 

} 
return inFrustum; 

} 

Tile-Based Deferred Rendering with back-face culling (new method) 

For the back-face culling for normals the algorithm described earlier was used. 

The most computationally intensive step of the algorithm is the first one, where 

central normal for the tile has to be calculated. First attempt to do that was to use 

atomic functions. Atomics in compute shader 5.0 work only on integers so 

normals were quantized and converted to integer, then added and converted 

back to float. 

int3 normalInt = int3(normal * 256.0f); // [-1, 1] to [-256, 256] 

GroupMemoryBarrierWithGroupSync(); 
InterlockedAdd(centerNormalInt.x, normalInt.x); 
InterlockedAdd(centerNormalInt.y, normalInt.y); 
InterlockedAdd(centerNormalInt.z, normalInt.z); 
GroupMemoryBarrierWithGroupSync(); 

float3 centerNormal = float3(centerNormalInt) * INV_THREAD_COUNT; // [-
256x, 256x] to [-x, x] 
centerNormal = normalize(centerNormal); // [-x, x] to [-1, 1] 
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These calculations turned out to be slow, because of multiple synchronization 

barriers. An alternative solution was found. Averaging the normals for a particular 

tile is the same operation as calculating mip level for the normal render target. If 

our thread group size is 16x16 pixels that means that need log16 mip level, which 

is 4. Mip level needs to be read with point sampling to avoid unnecessary 

interpolation of normals between tiles. 

float3 centerNormal = normalize(2.0f * 
NormalTexture.SampleLevel(SamplerPointClamp, texCoord, 4).xyz - 1.0f); 

This method is significantly faster, since hardware functions are used generate 

mip levels. Moreover, generated mip levels for the normal buffer can be reused in 

various post-effects. 

Central normals for 16x16 pixel tiles. 

View frustum culling for lights (CPU) 

View frustum culling for lights was implemented on the CPU side to reject the 

lights that are outside of the screen. Camera view frustum consisting of 6 planes 

was constructed. Each point light source in the scene is tested against the 

camera view frustum every frame using sphere-frustum intersection calculation. 
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A corresponding boolean flag is set for every light. Only lights that have that flag 

set to true are rendered in case of the traditional deferred shading or sent to the 

compute shader in case of tile-based deferred shading. 

4.2 Results 

For real-time interactive applications the most important measurement is frame 

time in milliseconds or the number of frames per second. We used both metrics 

to compare the efficiency of traditional Deferred Shading, original Tile-Based 

Deferred Rendering and new improved tile-based deferred rendering algorithm. 

Another metric that was used is the visual correctness of the algorithms: correct 

lighting and absence of visual artifacts. 

For the comparison of the three algorithms, tests were run on a large scene with 

multiple lights, while measuring the frame-rate. Four tests were carefully 

constructed varying the number of lights cullable by our algorithm from 0 to 100, 

500, and 1000 respectively. For each of the tests, the three algorithms were 

each run twice, once with CPU frustum culling enabled, and once without, and 

the resulting six measurements are displayed in a table, one per test. 

Test 1 

A total number of lights in the scene is 1500. Enabling View Frustum Culling 

(CPU) leaves only 55 lights. No lights are culled by Tile-Based Deferred Shading 

with back-face culling algorithm. 

View Frustum Culling 

(CPU) Enabled 

View Frustum Culling 

(CPU) Disabled 

Time (ms) Time (ms) 

Traditional Deferred 29.35 33.07 

Tile-Based 24.90 29.45 

Tile-Based with back-face culling 26.23 31.48 
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Test 2 

A total number of lights in the scene is 1600. Enabling View Frustum Culling 

(CPU) leaves only 183 lights. 100 lights are culled by Tile-Based Deferred 

Shading with back-face culling algorithm. 

View Frustum Culling 

(CPU) Enabled 

View Frustum Culling 

(CPU) Disabled 

Time (ms) Time (ms) 

Traditional Deferred 66.56 68.49 

Tile-Based 41.67 44.25 

Tile-Based with back-face culling 35.54 38.57 

Test 3 

A total number of lights in the scene is 2000. Enabling View Frustum Culling 

(CPU) leaves only 583 lights.500 lights are culled by Tile-Based Deferred 

Shading with back-face culling algorithm. 

View Frustum Culling 

(CPU) Enabled 

View Frustum Culling 

(CPU) Disabled 

Time (ms) Time (ms) 

Traditional Deferred 209.95 211.98 

Tile-Based 96.56 99.11 

Tile-Based with back-face culling 64.45 67.35 

Test 4 

A total number of lights in the scene is 2500. Enabling View Frustum Culling 

(CPU) leaves only 1083 lights.1000 lights are culled by Tile-Based Deferred 

Shading with back-face culling algorithm. 
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View Frustum Culling 

(CPU) Enabled 

View Frustum Culling 

(CPU) Disabled 

Time (ms) Time (ms) 

Traditional Deferred 390.49 391.47 

Tile-Based 165.79 168.58 

Tile-Based with back-face culling 99.98 103.05 

As we can see from the measurements traditional Deferred Shading is the 

slowest technique. Tile-Based Deferred Shading performs significantly better 

than Deferred Shading. And our new technique is faster than just Tile-Based 

Deferred Shading in cases were multiple lights are culled. Additionally, it is 

scaled well when the number of culled lights increase. According to the 

measured results we see that we get 15% time improvement over Tile-Based 

Deferred Shading when 100 lights are culled, 33% when 500 lights are culled and 

40% when 1000 lights are culled. However, the back-face culling computation is 

still not very cheap. Thus there is no speed improvement when no lights are 

culled. 

We can also see that all methods gain a slight speed improvement from using 

View-Frustum Culling on the CPU side. 
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Final fully lit result of a rendered scene using traditional Deferred Shading. 

Final fully lit result of a rendered scene using Tile-Based Deferred Shading. 
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Final fully lit result of a rendered scene using Tile-Based Deferred Shading with back-face culling. 

Number of lights for traditional Deferred Shading (white = more than 10 lights, black= 0 lights) 
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Number of lights for Tile-Based Deferred Shading (white = more than 10 lights, black= 0 lights) 

Number of lights for Tile-Based Deferred Shading with back-face culling (white = more than 10 lights,
black= 0 lights) 

Visual comparison images show that there is no visual difference in all tested 

algorithms. In the light number images we can see that large amount of lights 

47 



 
 

           

         

 
       

         

          

         

         

          

              

           

           

            

        

             

              

    

 
           

         

   

       

    

  

      

  

       

  

were rejected in the back-face culling approach compared to just tile-based 

approach and that saved a lot of lighting calculations. 

Conclusion 
This thesis examined optimizations and the possibility of improvement for the 

Deferred Shading algorithm. It was shown that Tile-Based Deferred Shading is 

more efficient than traditional Deferred Shading. New back-face culling approach 

was proposed that combined the strengths of Tile-Based Deferred Shading and 

Clustered Deferred Shading. The new approach gives an advantage in scenes 

with large surfaces with normals pointing away from light sources. For example, if 

a scene has a wall and there are multiple lights sources behind that wall, the new 

algorithm will reject these light sources and as a result save many lighting 

calculations. However, in scenes where no lights are rejected we will not gain any 

speed improvement. So this algorithm should be used wisely. It is possible to use 

the back-face culling conditionally depending on the scene setup. 

There are a lot of variations of deferred shading and different optimizations. It is 

still an ongoing research. So we will see better and faster algorithms in the future 

as new hardware features become available. 

References 
1. [Deering88] Michael Deering, et al. “The triangle processor and normal 

vector shader: a VLSI system for high performance graphics”, SIGGRAPH 

1988 http://dl.acm.org/citation.cfm?id=378468 

2. [Saito90] Takafumi Saito, Tokiichiro Takahashi, “Comprehensible 

rendering of 3-D shapes”, SIGGRAPH 1990 

http://dl.acm.org/citation.cfm?id=97901 

3. [Calver03] Dean Calver, “Photo-realistic Deferred Lighting” 

http://www.beyond3d.com/content/articles/19/ 

4. [Hargreaves04] Shawn Hargreaves, “Deferred Shading”, GDC 2004 

http://www.shawnhargreaves.com/DeferredShading.pdf 

48 

http://www.shawnhargreaves.com/DeferredShading.pdf
http://www.beyond3d.com/content/articles/19
http://dl.acm.org/citation.cfm?id=97901
http://dl.acm.org/citation.cfm?id=378468


 
 

         

   

  

         

    

 

      

           

  

        

 

  

        

       

  

          

  

     

  

        

  

         

  

  

      

       

  

5. [Hargreaves04] Shawn Hargreaves, Matt Harris, “Deferred Shading: 6800 

Leagues Under The Sea” 

http://http.download.nvidia.com/developer/presentations/2004/6800_Leag 

ues/6800_Leagues_Deferred_Shading.pdf 

6. [Geldreich04] Rich Geldreich, Matt Pritchard, John Brooks, “Deferred 

Lighting and Shading”, GDC 2004 

http://www.tenacioussoftware.com/pritchard_matt.ppt 

7. [Thibieroz04] Nick Thibieroz, “Deferred Shading with Multiple-Render-

Targets,” pp. 251 – 269, ShaderX2 – Shader Programming Tips & Tricks 

with DirectX9 

8. [Policarpo05] Fabio Policarpo, Francisco Fonseca, “Deferred Shading 

Tutorial” http://www710.univ-

lyon1.fr/~jciehl/Public/educ/GAMA/2007/Deferred_Shading_Tutorial_SBG 

AMES2005.pdf 

9. [Shishkovtsov05] Oles Shishkovtsov (GSC Game World), “Deferred 

Shading in S.T.A.L.K.E.R.”, GPU Gems 2 Chapter 9 

http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter09.html 

10.[Valient07] Michal Valient (Guerrilla), “Deferred Rendering in Killzone 2” 

http://www.guerrilla-games.com/publications/dr_kz2_rsx_dev07.pdf 

11.[Lee08] Mark Lee (Insomniac Games), “Pre-lighting” 

http://www.insomniacgames.com/tech/articles/0209/files/prelighting.pdf 

12.[Lee08] Mark Lee (Insomniac Games), “Pre-lighting in Resistance 2” 

http://www.insomniacgames.com/gdc09-resistance-2-prelighting/ 

13.[Engel09] Wolfgang Engel, “Light Pre-Pass -Deferred Lighting: Latest 

Development”, SIGGRAPH 2009 

http://www.bungie.net/images/Inside/publications/siggraph/Engel/LightPre 

Pass.ppt 

14.[Lobanchikov09] Igor Lobanchikov, “GSC Game World‘s S.T.A.L.K.E.R : 

Clear Sky – a showcase for Direct3D 10.0/1”, GDC 2009 

http://developer.amd.com/gpu_assets/01gdc09ad3ddstalkerclearsky21030 

9.ppt 

49 

http://developer.amd.com/gpu_assets/01gdc09ad3ddstalkerclearsky21030
http://www.bungie.net/images/Inside/publications/siggraph/Engel/LightPre
http://www.insomniacgames.com/gdc09-resistance-2-prelighting
http://www.insomniacgames.com/tech/articles/0209/files/prelighting.pdf
http://www.guerrilla-games.com/publications/dr_kz2_rsx_dev07.pdf
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter09.html
http://www710.univ
http://www.tenacioussoftware.com/pritchard_matt.ppt
http://http.download.nvidia.com/developer/presentations/2004/6800_Leag


 
 

           

    

  

        

         

   

         

        

  

  

         

   

  

        

  

        

  

       

     

 

  

         

   

  

         

      

  

15.[Mittring09] Martin Mittring (Crytek), “A bit more deferred – CryEngine3”, 

Triangle Game Conference 2009 

http://www.crytek.com/cryengine/presentations&page=2 

16.[Tovey10] Steven Tovey, Stephen McAuley, “Parallelized Light Pre-Pass 

Rendering with the Cell Broadband EngineTM“ in “GPU Pro: Advanced 

Rendering Techniques,” May 2010 

17.[Kircher09] Scott Kircher (Volition), Alan Lawrance (Volition), “Inferred 

lighting: fast dynamic lighting and shadows for opaque and translucent 

objects”, SIGGRAPH 2009 http://www.volition-

inc.com/publications/inferred-lighting-fast-dynamic-lighting-and-shadows-

for-opaque-and-translucent-objects/ 

18.[Kircher12] Scott Kircher (Volition), “Lighting and Simplifying Saints Row: 

The Third”, GDC 2012 http://www.volition-inc.com/publications/lighting-

and-simplifying-saints-row-the-third/ 

19.[Trebilco08] Damian Trebilco, “Light Indexed Deferred Lighting” 

http://code.google.com/p/lightindexed-deferredrender/ 

20.[Pettineo12] Matt Pettineo, “Light Indexed Deferred Rendering” 

http://mynameismjp.wordpress.com/2012/03/31/light-indexed-deferred-

rendering/ 

21.[Balestra08] Christophe Balestra (Naughty Dog), Pal-Kristian Engstad 

(Naughty Dog), “The Technology of Uncharted: Drake’s Fortune”, GDC 

2008 http://www.naughtydog.com/docs/Naughty-Dog-GDC08-

UNCHARTED-Tech.pdf 

22.[Swoboda09] Matt Swoboda (SCEE), “Deferred Lighting and Post 

Processing on PLAYSTATION®3” 

http://www.technology.scee.net/files/presentations/gdc2009/DeferredLighti 

ngandPostProcessingonPS3.ppt 

23.[Coffin11] Christina Coffin (DICE) “SPU-based Deferred Shading for 

Battlefield 3 on Playstation 3”, GDC 2011 

http://publications.dice.se/attachments/Christina_Coffin_Programming_SP 

U_Based_Deferred.pdf 

50 

http://publications.dice.se/attachments/Christina_Coffin_Programming_SP
http://www.technology.scee.net/files/presentations/gdc2009/DeferredLighti
http://www.naughtydog.com/docs/Naughty-Dog-GDC08
http://mynameismjp.wordpress.com/2012/03/31/light-indexed-deferred
http://code.google.com/p/lightindexed-deferredrender
http://www.volition-inc.com/publications/lighting
http://www.volition
http://www.crytek.com/cryengine/presentations&page=2


 
 

         

    

  

         

   

  

         

    

  

        

  

          

   

  

         

         

    

       

 

  

         

  

        

    

  

          

     

24.[Andersson09] Johan Andersson (DICE), “Parallel Graphics in Frostbite – 

Current & Future”, SIGGRAPH 2009 http://s09.idav.ucdavis.edu/talks/04-

JAndersson-ParallelFrostbite-Siggraph09.pdf 

25.[Andersson11] Johan Andersson (DICE), “DirectX 11 Rendering in 

Battlefield 3”, GDC 2011 http://www.slideshare.net/DICEStudio/directx-11-

rendering-in-battlefield-3 

26.[Lauritzen10] Andrew Lauritzen (Intel), “Deferred Rendering for Current 

and Future Rendering Pipelines” http://visual-computing.intel-

research.net/art/publications/deferred_rendering/ 

27.[Olsson11] Ola Olsson, Ulf Assarsson, “Tiled Shading” 

http://www.cse.chalmers.se/~olaolss/papers/tiled_shading_preprint.pdf 

28.[Olsson12] Ola Olsson, Markus Billeter, Ulf Assarsson “Clustered Deferred 

and Forward Shading” 

http://www.cse.chalmers.se/~olaolss/papers/clustered_shading_preprint.p 

df 

29.[Harada12] Takahiro Harada (AMD), Jay McKee (AMD), Jason C.Yang 

(AMD), “Forward+: Bringing Deferred Lighting to the Next Level”, 

Eurographics 2012 https://sites.google.com/site/takahiroharada/ 

30.[McKee12] Jay McKee (AMD), “Technology Behind AMD’s Leo Demo”, 

GDC 2012 http://www.slideserve.com/ojal/technology-behind-amd-s-leo-

demo-jay-mckee-mts-engineer-amd 

31.[Lewis12] Peter J. B. Lewis, “Tile-Based Forward Rendering” 

http://www.pjblewis.com/articles/tile-based-forward-rendering/ 

32.[Liktor12] Gabor Liktor, Carsten Dachsbacher, “Decoupled Deferred 

Shading for Hardware Rasterization” 

http://cg.ibds.kit.edu/publications/p2012/shadingreuse/shadingreuse_prepr 

int.pdf 

33.[Segovia06] B. Segovia et al, ”Non-interleaved Deferred Shading of 

Interleaved Sample Patterns” http://liris.cnrs.fr/Documents/Liris-2476.pdf 

51 

http://liris.cnrs.fr/Documents/Liris-2476.pdf
http://cg.ibds.kit.edu/publications/p2012/shadingreuse/shadingreuse_prepr
http://www.pjblewis.com/articles/tile-based-forward-rendering
http://www.slideserve.com/ojal/technology-behind-amd-s-leo
https://sites.google.com/site/takahiroharada
http://www.cse.chalmers.se/~olaolss/papers/clustered_shading_preprint.p
http://www.cse.chalmers.se/~olaolss/papers/tiled_shading_preprint.pdf
http://visual-computing.intel
http://www.slideshare.net/DICEStudio/directx-11
http://s09.idav.ucdavis.edu/talks/04


 
 

         

 

          

  

  

      

 

 

 

 
 

 

     
         

       

        

         

          

         

       

         

  

          

         

34.[Yeung12] Simon Yeung, “Light Pre Pass Renderer on iPhone” 

http://www.altdevblogaday.com/2012/03/01/light-pre-pass-renderer-on-

iphone/ 

35.[Kaplanyan10] Anton Kaplanyan, “CryEngine 3: Reaching the speed of 

light” 

http://advances.realtimerendering.com/s2010/Kaplanyan-

CryEngine3(SIGGRAPH%202010%20Advanced%20RealTime%20Rende 

ring%20Course).pdf 

36.[Hensley10] Justin Hensley “Order-Independent Transparency in DirectX 

11” https://graphics.stanford.edu/wikis/cs448s-

10/FrontPage?action=AttachFile&do=get&target=CS448s-10-11-oit.pdf 

Appendix A: Compute Shader - Overview 
A compute shader is a programmable shader stage that expands Microsoft 

Direct3D 11 beyond graphics programming. The compute shader technology is 

also known as the DirectCompute technology. Like other programmable shaders 

(vertex and geometry shaders for example), a compute shader is designed and 

implemented with HLSL. A compute shader provides high-speed general purpose 

computing and takes advantage of the large numbers of parallel processors on 

the graphics processing unit (GPU). The compute shader provides memory 

sharing and thread synchronization features to allow more effective parallel 

programming methods. 

A thread is a basic Compute Shader (CS) processing element. CS declares the 

number of threads to operate on (the “thread group”). 
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[numthreads(X, Y, Z)] 
void CS(uint3 groupID: SV_GroupID, 

uint3 groupThreadID: SV_GroupThreadID, 
uint3 dispatchThreadID: SV_DispatchThreadID, 
uint groupIndex: SV_GroupIndex) 
{…} 

To start CS execution the following command is called: 

ID3D11DeviceContext::Dispatch(nx, ny, nz); 

Where nx, ny, nz are the number of thread groups to execute. The total number 

of executed threads is x * y * z * nx * ny * nz. 

In Compute Shader 5.0 number of threads in thread group is limited to 

1024x1024x64. Group shared memory is limited to 32 KB per group. 

Compute Shader also supports atomic operations. They are used when multiple 

threads are trying to modify Unordered Access View or group shared memory. 

Atomic operations can optionally return original value. The following atomic 

operations are supported: 

 InterlockedAdd 

 InterlockedAnd/InterlockedOr/InterlockedXor 

 InterlockedCompareExchange 

 InterlockedCompareStore 

 InterlockedExchange 

 InterlockedMax/InterlockedMin 
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