
1

©Copyright 2008 DigiPen Institute of Technology and DigiPen (USA) Corporation. All

rights reserved.

 2

CIG-C: A Hierarchical Approach to

Continuum Crowds

BY

Christopher Mitchell Deeb

B.S. Computer Science, the University of Georgia, 2006

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science

in the graduate studies program

of DigiPen Institute Of Technology

Redmond, Washington

United States of America

Summer

2008

Thesis Advisor: Xin Li

 3

DigiPen Institute Of Technology

Graduate study program

Defense of thesis

The undersigned verify that the final oral defense of the

master of science thesis of Christopher Mitchell Deeb

has been successfully completed on 7 / 24 / 08

TITLE of thesis: CIG-C: A Hierarchical Approach to Continuum Crowds

Major filed of study: Computer Science

Committee:

Xin Li, Chair Matt Klassen

Gary Herron Michael Aristidou

Approved :

 date date

Graduate Program Director Associate Dean

 date date

Department of Computer Science Dean

The material presented within this document does not necessarily reflect the opinion of

the Committee, the Graduate Study Program, or DigiPen Institute Of Technology.

 4

INSTITUTE of DigiPen Institute Of Technology

Program of Master’s degree

Thesis approval

DATE: _________7 / 24 / 08_____________

Based on the CANDIDATE’S successful oral defense, it is recommended that the thesis

prepared by

Christopher Mitchell Deeb

ENTITLED

CIG-C: A Hierarchical Approach to Continuum Crowds

Be accepted in partial fulfillment of the requirements for the degree of master of

computer science from the program of Master’s degree at DigiPen Institute Of

Technology.

Thesis Advisory Committee Chair

Director of Graduate Study Program

Associate Dean

Dean of Faculty

The material presented within this document does not necessarily reflect the opinion of

the Committee, the Graduate Study Program, or DigiPen Institute Of Technology.

 5

Abstract ... 9

1 Introduction .. 10

1.1 The Basics ... 10

1.2 Some Uses for Path Planning .. 10

2 Previous Work ... 12

2.1 Flocks, Herds and Boids ... 12

2.2 Dijkstra’s Algorithm ... 14

2.3 The A* Algorithm ... 20

2.4 Fast March .. 21

2.5 Continuum Crowds ... 24

2.5.1 Brief Overview... 24

2.5.2 The Governing Hypotheses .. 25

2.5.3 Basic Walkthrough... 30

2.5.4 Results .. 31

3 Our Approach: CIG-C.. 33

3.1 High Concept .. 33

3.2 Significant Differences ... 35

3.3 Creation of the Field - Before the Action ... 37

3.3.1 Tree Structure... 37

3.3.2 Breakdown of a Single Frame.. 38

3.3.3 The Reasoning Behind the Quad Tree ... 39

3.4 Algorithm Overview: .. 44

 6

3.5 Step One: Frame Start ... 44

3.5.1 Resetting the Field: .. 45

3.5.2 Splattering the Units: ... 45

3.5.3 Pre-Active-List Construction: .. 45

3.5.4 Active List Construction: ... 48

3.5.5 Post-Active-List Construction: .. 51

3.6 Step Two: Find Active List Neighbors ... 51

3.7 Step Three: Density, Average Velocity, Discomfort .. 53

3.8 Step Four: Find Speed ... 53

3.9 Step Five: Find Unit Cost ... 54

3.10 Step Six: Find Potential .. 55

3.11 Step Seven: Find Final Velocity ... 56

3.12 Step Eight: Move the Units ... 57

4 Comparison .. 59

5 Conclusion: .. 65

5.1 Results ... 65

5.2 Future Works .. 65

5.3 Possible Sources of Error .. 66

6 References .. 67

 7

Here are some examples of CIG-C in action.

 8

Here is 8000 Units finding optimal paths through a dynamic environment in real time.

 9

Abstract

This paper explores CIG-C, a two-dimensional crowd simulation method that uses

velocity fields stored inside a quad tree to efficiently move large quantities of crowd

members in real-time, interactive framerates. The method is based off of the Continuum

Crowds system that attempts to solve the same problem by using a discrete, uniform grid.

Using a grid of cells contained within a quad tree, the CIG-C method creates a final

velocity field that moves crowd members in a realistic path toward their goal. The CIG-

C method is shown to be more stable, accurate, and efficient in many key cases than its

Continuum Crowds counterpart. Throughout this paper, the fundamentals of path finding

and crowd simulation will be defined and described, leading up to the more modern

approaches and methods that directly influenced the development of CIG-C.

 10

1 Introduction

1.1 The Basics

Path planning is a common problem, encountered in some form or fashion in virtually all

real-time simulations. While finding an optimal path is a complicated process even on its

own, the problem is exasperated by increasing the number of agents and increasing the

size of the search area. Planning an optimal path through terrain with dynamic obstacles

(such as other moving agents) requires a call to a path finding algorithm once per actor

per frame. Each actor's path affects every other actor's path in sequence, making the

order of path finding important. While one actor trying to find a path to its goal is

doable, the problem increases in complexity at a geometric rate as more actors try to find

paths through the same area. For all but the smallest crowds, corners must be cut to

insure real-time framerates.

1.2 Some Uses for Path Planning

Applications of large-scale path planning are numerous. Real-time strategy games and

military simulations cannot exist if the user has no way of commanding his or her troops

from location to location. In some RTS games, players may be controlling hundreds,

even thousands, of troops, and those troops are expected to be able to walk/swim/fly

across the game world in a realistic and timely manner. Crowd simulations used for

determining evacuation plans from high-occupancy venues such as stadiums and theaters

need to be able to realistically show the tendencies of groups of people as they attempt to

 11

leave the area. In these kinds of simulations, sometimes real-time speeds are not

required, instead favoring increased accuracy and complex agent behaviors. Programs

that model wildlife require extensive path planning in the form of complex group

behaviors. Systems that model herds, schools, and flocks are all examples. Fluid

simulations make extensive use of path planning by the use of force and velocity fields.

Such fields control the speed and flow of the particles that make up the fluid. Regardless

of the use, one trait unifies all applications; as more agents are added to the system, the

problem quickly becomes intractable.

 12

2 Previous Work

Figure 1: Boids flocking around with each other, from Reynolds' flock and herd simulation, 1987 [1].

2.1 Flocks, Herds and Boids

A good starting point when considering the complex issues of crowd movement is flock

and herd behavior, specifically the behavior outlined in [1]. Reynolds' simulation is a

combination of a particle system with rule-based actor objects. Most particle systems

treat a particle as a point in space with no orientation and very simple individual

behavior. A particle is generally capable of changing only its own internal states, such as

position, life span, color, etc. By adding an orientation, model, and a set of behavioral

rules to each particle, Reynolds changes the particles into entities known as "Boids," a

collection of actors that are now capable of interacting with each other as well as with

their own internal states [1].

 13

The thing that makes the Boids behave convincingly like a flock of birds is their

adherence to a set of rules. These behavioral rules can be specified by the animator, and

they are evaluated each frame per Boid in order of decreasing precedence. Such a list of

rules is stated below:

Collision Avoidance - Do not run into another Boid (or any other object for that matter).

Velocity Matching - Attempt to match velocity with nearby flock mates.

Flock Centering - Attempt to stay close to nearby flock mates.

Following these rules generates reasonably believable flock behavior. The Boids accrete

into groups, which eventually conglomerate into a large flock. The Boids stay close

together, making sure not to run into each other or anything else. When a large flock

heads into an obstacle, it is possible for the flock to become divided, and later the flock

can, and does, merge back together. The system works without an animator having to

specify a timed path for each flock member, and it works along with a dynamic

environment [1].

Reynolds' method differs from previous methods in that there is no globally-held concept

of the flock. Previous methods that simulated flocks used a "follow-the-leader" strategy

in which a single actor was designated the leader, or a central force model which

specifies a point in space to be the center of the flock. Such previous models were

unrealistic in their design; a real flock of birds has no leader, no specific center or target,

 14

and the birds are certainly not cognizant of the specific speeds and orientations of each

and every other flock mate. The system that Reynolds created has no need for such

global information. Each Boid need only be aware of the few neighboring Boids in order

to exhibit correct behavior. The movement displayed by the flock of Boids is called

emergent behavior, where complex behaviors are automatically derived from various

combinations of the smaller, simpler rules that make up the "thought" process of an actor.

This emergent behavior is the very essence of Reynolds' flocking system. In fact, the

reduction of agents' perceptions down from global knowledge to limited local intel is

necessary to generate the correct behavior [1].

While the behavior of the system is controlled by what rules are fed into the system, the

computational complexity and performance is predominantly controlled by the chosen

method of collision avoidance. A naive approach results in all Boids comparing

themselves against all other Boids every single frame, simply to determine which Boids

any given Boid will actually have to interact with at the time. This results in O(N
2
)

complexity, which severely limits the potential size of the flock. With the introduction of

spatial partitioning (or similar methods of localized collision avoidance) the complexity

can drop down to O(N) [1]. Similar concepts of particle-like actors and spatial

partitioning will be used later in CIG-C.

2.2 Dijkstra’s Algorithm

Another important consideration when trying to model crowd movement is, of course,

path finding. Here, the method conceived by E. W. Dijkstra in his 1959 paper, "A Note

 15

on Two Problems in Connexion with Graphs" is examined in detail [2]. Dijkstra's

algorithm is capable of finding an optimal path between two nodes on a fully connected

discrete graph. This process, if performed naively, incurs a complexity of O(N
2
), where

N is equal to the number of nodes in the graph; however, with the proper use of the heap

data structure, this time can be reduced to O(N log N). Consider the following scenario:

On an eight by eight chess board, the player's rook begins at space A8, and the enemy

king stands at space H1. The player's goal is to capture the enemy king, and he/she is

permitted only to move the rook. Assuming that the enemy king never moves, what is

the minimum number of spaces that the rook must move across in order to capture the

king? Furthermore, what is the shortest path from the rook to the king?

 16

Figure 2: The player may only move the rook in order to take the enemy king. As are the rules of chess, a

rook cannot move diagonally, nor can it move through occupied spaces.

In order to solve this problem, Dijkstra's algorithm performs a breadth-first search,

starting from the king's position, ending when the rook's position has been explored (or in

a more general sense, when all spaces have been explored). The procedure to determine

the shortest path and its length is as follows [3]:

1) Set the starting position's value to zero, and set the values at all other positions to

 17

infinity.

2) Make two lists: the FOUND list and the WAVEFRONT list. Place the starting space

in FOUND. Place all unobstructed spaces that are adjacent to the starting space in

WAVEFRONT, their values set to one (unobstructed means empty, diagonal spaces

are not adjacent).

3) While WAVEFRONT is not empty:

a) Pop the front space off of WAVEFRONT and push it onto FOUND. This space is

considered our CURRENT space.

b) Place all unobstructed spaces not on the FOUND list that are adjacent to

CURRENT into WAVEFRONT, setting their values to one plus CURRENT's

value. These insertions should be in order from smallest to largest, with the

smallest-valued spaces being at the beginning of the list. If a space is inserted

into WAVEFRONT that is already in WAVEFRONT, then use the version with

the smallest value and discard the other from the list (duplicates are not

permitted).

4) End.

The result of this algorithm is shown below.

 18

Figure 3: The costs on the pawn's spaces are all infinity.

With the values assigned across the chess board, the minimum number of spaces needed

to be traveled across in order to take the king now appears as the value located at the

rook's position. In this case, the answer is 22. Tracing the path that grants this number is

trivial; starting at the rook's position, always move in the direction of an adjacent value

that is smaller than the value at the rook's current position. The optimal path should look

like this:

 19

Figure 4: The optimal path from the rook to the king is displayed in red.

In the previous example, the cost of moving from one space to another was uniform; it

was always one. Dijkstra's algorithm works just as well on graphs where the cost

(distance, time, resistance, etc.) between each node is non-uniform, so long as the cost is

known. The algorithm can easily be extended into three-dimensional graphs and higher.

Because the above stated steps of the algorithm assumed that WAVEFRONT was a

sorted list, the complexity of the algorithm is O(N
2
), where N is equal to the number of

 20

spaces on the graph. This is because all N spaces must be visited (worst case), and all

visited spaces must be inserted into the WAVEFRONT list in a smallest-to-largest order,

a process that itself incurs an O(N) cost. However, if WAVEFRONT is made to be a

heap data structure (the root always being the note containing the smallest value), then

the insertion cost drops from O(N) down to O(log N), lowering the total cost of Dijkstra's

algorithm to O(N log N) [2]. Though this is a notable improvement, the best way to

speed up the algorithm is to lower the number of nodes that must be searched across.

2.3 The A* Algorithm

Algorithms such as A* do exactly this. A* is a generalized form of Dijkstra's algorithm

that uses heuristics to eliminate sections of the graph during search time. With a good

heuristic, the complexity of A* can be lowered to O(N), while a bad heuristic causes A*

to perform a breadth-first search of the entire graph, thus precisely mimicking Dijkstra's

[4]. That being said, there are uses for traversing the entire graph as Dijkstra's algorithm

does. Dijkstra's method for finding an optimal path across a graph generates a ton of

extra data in the process of finding the shortest path. In figure 3, all spaces contain a

value representing the distance from that space to the king's space. This extra data can be

directly used to find additional optimal paths at no added cost. For example, were there

another rook at space E5, after calculating the cost for the first rook, it would

immediately be known that the second rook's shortest path is 11 spaces to the king. This

illustrates the point that one iteration of Dijkstra's algorithm can be used for any number

of actors trying to find a path to a single, shared goal, unlike methods such as A* that

must be executed once per actor [5].

 21

2.4 Fast March

The chess board example assumes very rigid movement constraints; the rook can only

move in the four cardinal directions. What if our simulation calls for a more continuous

graph that allows actors to move freely in all directions?

Figure 5: Without any other considerations, a method like Dijkstra's algorithm would generate a velocity

field similar to the graph on the left. To generate a more continuous field, like the one on the right, extra

steps must be taken.

A first glance might prompt one to believe that a smoothing technique is in order.

Perhaps a bilinear interpolation across the field would do the trick? Unfortunately, no

matter what is done to smooth the left graph out, if actors are moving across it toward the

center, they will still exhibit signs of Manhattan-style path finding (jagged, right-angle

trajectories). In order to solve this problem while still maintaining the Dijkstra-like

single pass behavior, we enter the realm of level set theory and delve into a method

known as Fast March. The Fast Marching algorithm, as first described in J.A. Sethian's

 22

"A fast marching level set method for monotonically advancing fronts" [6], uses a finite

difference approximation to solve the Eikonal equation that describes a potential field in

which the solution does not change signs. This, in my opinion, is a horrible way to

describe Fast March. A much simpler way to look at things is to consider it a version of

Dijkstra's algorithm with an additional intermediate step:

FAST MARCH

1) Set the starting position's value to zero, and set the values at all other positions to

infinity.

2) Make two lists: the FOUND list and the WAVEFRONT list. Place the starting space

in FOUND. Place all unobstructed spaces that are adjacent to the starting space in

WAVEFRONT, their values set to C, where C is equal to the movement cost in that

space's direction (unobstructed means empty, diagonal spaces are not adjacent).

3) While WAVEFRONT is not empty:

a) Pop the front space off of WAVEFRONT and push it onto FOUND. This space is

considered our CURRENT space.

b) Solve the following quadratic equation, finding the largest, positive real root. If

none exists, then move onto step iii:

i) Find the directions of the less-costly adjacent spaces on the graph along both

the x and y axes:

Ci = Traversal Cost in direction i from CURRENT

Vi = Value at space in direction i from CURRENT

},{

}min{arg

EWi

CVdirX ii

},{

}min{arg

SNi

CVdirY ii

 23

ii) Use these directions to solve the following quadratic function for its largest

real root (solve for M). If either dirX or dirY is undefined because both

neighbors have an infinite cost, then simply drop that dimension out of the

following equation:

Equation 1: Finite Difference Approximation [5, 6, 9]

1

2

2

2

2

dirY

dirY

dirX

dirX

C

VM

C

VM

iii) If the largest real M is found, the value of CURRENT is set to that M.

c) Place all unobstructed spaces not on the FOUND list that are adjacent to

CURRENT into WAVEFRONT, setting their values to C plus CURRENT's

value, where C is equal to the movement cost in that space's direction. These

insertions should be in order from smallest to largest, with the smallest-valued

spaces being at the beginning of the list. If a space is inserted into

WAVEFRONT that is already in WAVEFRONT, then use the version with the

smallest value and discard the other from the list (duplicates are not permitted).

4) End.

Do not be fooled into thinking that there is nothing else to Fast March; the pseudocode

written above is a simplification geared toward a specific use rather than a full

description of the inner mysteries of Fast March. The proof of the validity of the Fast

Marching method goes beyond the scope of this work, and thus the reader is referred to

[6] for a full description of the mathematics behind Fast March. The accuracy of Fast

March is determined by the discretization of the graph. The coarser the graph is, the less

 24

accurate the method will be [7]. Fast March has many applications, from fluid mechanics

to computer graphics. Some of the most recent uses of Fast March can be seen in crowd

simulations.

2.5 Continuum Crowds

2.5.1 Brief Overview

The previous work most influential to CIG-C is the "Continuum Crowds" paper [8]. In

the Continuum Crowds system, based on continuum dynamics, a dynamic potential field

integrates global navigation with moving obstacles such as other crowd members, quickly

and effectively solving for the movement of large crowds without excessive use of

explicit collision avoidance. The notion of agent-based path planning is disposed of, in

favor of treating agents as mindless particles that an underlying field acts upon. These

particle-agents shall henceforth be known as Units. This field is a uniform grid made up

of square cells. In each cell, data such as density, flow speed, and velocity is recorded

each frame, which is used to find a movement cost from a cell to each of its four

neighbors [8].

Using the Fast Marching algorithm, a dynamic potential field is created and recorded

inside the cells of the grid. Final velocity values are assigned to each cell by tracing the

gradient of the potential field in the upwind direction, ultimately using the earlier-

calculated speed values found in the corresponding direction. Units are moved based on

the final velocity value found in the cell they currently occupy. To correct for error, the

 25

last step of the algorithm is to enforce the minimum distance between Units, insuring that

they do not overlap with each other [8].

In the Continuum Crowds system, a Group is defined as a set of Units that share a

common goal. As such, for each Group, an additional Unit Cost field and dynamic

Potential field is required.

Figure 6: Four groups of Units in a Continuum Crowds implementation cross paths. Image courtesy of

[8].

2.5.2 The Governing Hypotheses

Four hypotheses create the guidelines on which Continuum Crowds is based [8]. The

first hypothesis states that each crowd member is trying to reach a geographical goal.

This hypothesis seems obvious, but many common crowd situations are incapable of

 26

specifying a single goal. Take for example a group of people browsing in a store; they

have no specific goal or driving function, simply the will to look around. As such, a

"browsing" simulator is not an application for Continuum Crowds.

The second hypothesis states that crowd members will move at the maximum possible

speed appropriate to their current situation. Placing it in the context of people in a city,

this hypothesis becomes intuitive. A person has a maximum, unimpeded speed, which is

their walking speed on flat terrain. Note that even though it is recognized that people can

sprint faster than they can walk, the walking speed is considered the maximum speed

here because most people in a city prefer to walk than to sprint, and as such they spend

the vast majority of their travel time walking. If a person is in a dense crowd, then that

person can only walk as fast as the surrounding people are walking. If a person is

walking up a steep hill, then their walking speed will be appropriately slowed. Thus, a

person's speed is controlled by a linear interpolation of crowd flow speed and terrain

speed.

 27

Figure 7: Unit A is behind a crowd of bunched up Units, making his speed slower. Unit B's path is

unobstructed, enabling him to move at his maximum speed.

Figure 8: A Unit moves more quickly across flat terrain and slower across steep terrain.

 28

The third hypothesis introduces the concept of the discomfort field. An area with high

discomfort is less preferable to a crowd member than is an area with low discomfort.

Take, for instance, a meercat and a charging rhinoceros on a large grassy field. Rather

than waiting for the last second to leap to safety, the meercat will undoubtedly move out

of the rhinoceros’s deadly path well before it gets trampled. Such a scenario can be

modeled with a discomfort field. Simply project the rhino's density in the direction of its

velocity onto the discomfort field. Now, the meercat will avoid the path of the rhino just

as sure as it will avoid the rhino itself.

 29

Figure 9: The hapless meercat does not avoid the rhino because its density is currently not blocking its

path.

Figure 10: With the addition of the discomfort field, the meercat now sees the impending danger and

promptly changes course.

The fourth hypothesis states that when a crowd member is trying to find a path to its goal,

it will pick the path that minimizes a linear combination of the following three factors:

the length of the path, the amount of time to the destination, and the discomfort field, per

unit time, along the path. Basically, a crowd member will pick the fastest, shortest, and

 30

most comfortable path it can find in order to get to its goal. To make the equation fit

specific scenarios more appropriately, three user-defined constants scale the strength of

each one of the three contributing factors. The constant α affects the path length, β

affects the time across the path, and ɤ affects the discomfort felt across the path.

P
C , where

f

gf
C

Equation 2: P represents the current path. The integral is taken with respect to the path's length. Equation

taken from [8].

2.5.3 Basic Walkthrough

A basic walkthrough of the simulation is as follows [8]:

For each frame:

 - Convert the Units to a density field.

 For each Group:

 - Construct the Unit Cost field.

- Construct the dynamic Potential field, and find its gradient.

 - Update the Unit's locations.

 - Enforce the minimum distance between Units.

 31

Figure 11: General algorithm overview. Image borrowed from [8].

2.5.4 Results

The Continuum Crowds approach yields very impressive results, generating large,

interactive crowds (10000+ Units) at real-time framerates. However, there is room for

improvement here. In the Continuum Crowds simulation, the size of the cells must be

uniform. Using large cells has the advantage of increased speed and lighter calculations,

but this is at the cost of accuracy, and can result in "dumb" and rigidly-moving crowds.

Indeed, if the cell size is too large, the minimum distance reinforcement step begins to

become a quadratic collision-detection problem rather than a nice linear one, due to the

fact that there can be way too many Units in a single large cell, which can greatly slow

down the system.

On the other side of the coin, if the cell size is too small, then there will be too many

cells, and the simulation will simply run too slowly. Thus, a user must estimate in any

given implementation how crowded he or she expects the most congested areas will be,

and the cell size must be a good balance between large and small to account for correct

accuracy at high traffic areas and good performance overall. Oftentimes much of the grid

 32

is unoccupied and unused. Many scenarios result in only a few, select areas of heavy

Unit concentration, while the remainder of the grid is sparsely populated. Some may

wonder if there is a way to get the best of both worlds, high accuracy at key areas

coupled with good performance due to the use of fewer cells.

 33

3 Our Approach: CIG-C

Figure 12: A CIG-C implementation running with the quad tree lines showing. Four groups, 8000 Units

total, to a tree depth of 10 divisions.

3.1 High Concept

In case the reader is curious, “CIG-C” stands for “Continuum-Improved-Graph-Crowds.”

The CIG-C crowd simulation method takes an approach similar to Continuum Crowds,

yet does away with the notion that all cells are uniformly sized. Instead, the simulation's

area is encompassed by a quad tree of cells, going down to a user-defined depth. In the

quad tree, cells near the root are larger, with cells at the leafs of the tree the smallest and

 34

the root itself the largest. All cells have the same aspect ratio, which is equal to the

aspect ratio of the entire rectangular simulation area as a whole. Rather than iterating

through all cells like in Continuum Crowds, CIG-C creates a small subset of cells from

out of the quad tree, designated the "Active List". The Active List's cells comprise an

area that completely spans the entire simulation space, with larger cells located at areas of

low occupancy and smaller cells at areas of high occupancy.

Figure 13: Blue cells represent active cells. As seen by this graphical summation, the combined area of the

Active List completely covers the simulation area.

 35

3.2 Significant Differences

Unlike in Continuum Crowds, in CIG-C, while updating the field and thus moving the

crowd, it is not necessary to update all cells within the grid, only the ones in the Active

List. Because CIG-C only updates a relatively small number of cells each frame, the

most expensive part of the simulation, the creation of the dynamic potential field, is

minimized in complexity and thus greatly alleviated. This is the key factor in the

performance increase that CIG-C offers over Continuum Crowds.

Of course, what is gained in one area must be paid for in another area. In the case of

CIG-C, the structure of a cell, and thus its connections with other cells are significantly

more complicated than in the Continuum Crowds method. A cell from Continuum

Crowds has exactly four neighbors (with the exception of edge cases, which have fewer

than four), and because all the cells are of uniform size, the directions and distances from

a cell to any of its neighbors are static and deterministic. The directions are always north,

south, east, and west, and the distance in all cases is simply the length of the cell. In

CIG-C, a cell can potentially have hundreds of neighbors depending on its size and

position; furthermore, each cell's number of neighbors can be different. Even cells of the

same size can have drastically different neighbor counts. On top of that, the directions

between a cell and its neighbors are no longer set to the four cardinal directions, nor are

they a constant, pre-calculated length.

 36

Figure 14: The center cell is connected to eight neighboring cells. The blue lines represent the anisotropic

data stored along with the cell pointer leading from the center cell to the adjacent neighbors. Please note

that in CIG-C, diagonal cells are considered to be adjacent in this context.

These directions and lengths must be calculated and recorded each frame for every new

Active List. Fortunately, this process is not as bad as it sounds. The additional time it

takes to perform these calculations is more than made up for by the savings gained during

the dynamic potential field step. Also, even though a vast number of neighbors are

possible, most of the time a cell will end up having close to eight neighbors. Due to the

increased and varying number of neighbors, the Fast March technique has been replaced

by a version of Dijkstra's algorithm. The actual structure of CIG-C is now explored in

further detail, starting with the field's creation, followed by a step-by-step breakdown of

what happens during a single frame.

 37

3.3 Creation of the Field - Before the Action

3.3.1 Tree Structure

To create the field, first set the dimensions of the field, width and height (this should

correspond to the width and height of whatever area the user wants the crowd to be in).

This aspect ratio will be maintained across all the field's cells. Next, allocate the space

for the cells themselves. The cells will need to represent a quad tree that spans the

simulation area. It will have a user-specified depth. This allocation is done to avoid

having to dynamically allocate and deallocate memory during execution. After having

made all the cells in the tree, go through each level of the tree, linking neighboring cells

with cell pointers. At this point, only cells on the same level of the tree can be considered

neighbors of each other; these neighbors are specially-designated "same-level" neighbors,

and are only used when constructing the list of active neighbors during execution. This

completes the creation of our field, and it is only done once at the beginning of execution.

 38

Figure 15: A graphical representation of a four-leveled quad tree. This structure is allocated once at the

beginning of the simulation.

3.3.2 Breakdown of a Single Frame

1) Frame Start

2) Find Active List Neighbors

3) Density, Average Velocity, and Discomfort

4) Speed Calculation

5) Unit Cost Values

6) Potential (via Dijkstra’s)

7) Final Velocity

8) Move Units

 39

3.3.3 The Reasoning Behind the Quad Tree

The whole point of replacing the uniform grid with something else is to take advantage of

the special properties of spatial partitioning, namely the highly structured storage of

sparse information without wasting memory on empty space. Structures like KD trees

accomplish this goal, but they are not as predictable as quad trees in one key sense: their

cells’ connections to their neighbors. Whereas it is quite a challenge to find connectivity

data between cells in a KD tree, it is comparatively trivial in a quad tree structure.

Perhaps most important is the fact that in a quad tree, it is a guarantee that any two

neighboring cells have a straight-line path from one center to the other that does not cross

over any third cell. The same cannot be said about cells in a KD tree.

Proof of Claim:

Situation:

There exists a 2D rectangular region (called a "Gridspace") with coplanar neighbor

Gridspaces of the same aspect ratio. Gridspaces are aligned as such that they are

members of the same quad tree.

Hypothesis:

For any Gridspace G with width Wg and height Hg and any Gridspace N with width Wn

and height Hn, there exists a line segment L such that:

1) L starts at the center point of G and ends at the center point of N.

2) All points on line segment L lie inside either G or N

 40

 (In other words, NGL).

, so long as:

1) G and N are neighbors, i.e. the perimeter of G and the perimeter of N share more than

one point, and

2) G and N have the same aspect ratio

(HnWnCHgWg ** , where 0C).

Proof:

To begin, we will consider the most "extreme" case of G and N having met the

requirements for adjacency. G will be located in the farthest corner of N.

Figure 16: Gridspace G is at the place that maximizes the angle α with respect to Gridspace N. When

proven at this position, all other cases will be trivial.

 41

Note: It is assumed that all distances and positions are positive, and degrees are measured

in radians.

Before we can proceed, we must describe the variables. Already described above, there

is Wg and Hg (width and height of Gridspace G, respectively), and there is Wn and Hn

(width and height of Gridspace N, respectively). Line segment L extends from the center

point of G to the center point of N. There also exists a variable R such that:
Hg

Wg
R and

Hn

Wn
R . The variable R is the aspect ratio of the Gridspaces and is shared by both G

and N. Another way to express the aspect ratio is through the scalar C, as described in

the hypothesis. Finally, we get to α and β. The angle α represents how much the line

segment L must deviate from a "straight shot" to get to the neighbor's center point. It can

be expressed as the following equation:

L

WnWg

a 2cos

Angle β represents the maximum amount of "deviating" the line segment L is allowed to

do before it no longer satisfies the condition that all of its points lie within the union of

the areas of Gridspaces G and N. It can be expressed as the following equation:

Hg

Wg
a tan

2

, or alternatively:

Ra tan
2

 42

If α > β, then the line segment L would not lie entirely inside the union of G and N and

therefore would disprove my hypothesis. However, if the converse were true, that α is

always less than or equal to β, then by definition my hypothesis would be proven correct.

Therefore I will show that for any C one to infinity, α can never be greater than β.

We start with the equation of α,

L

WnWg

a 2cos

and we perform simple substitutions using the following equalities:

Equation 3: Simple algebra derives these equations, using the equation Wg * Hg = C (Wn * Hn) as a

starting point.

i

i

H

W
R , where },{ NGi

R

W
H i

i , where },{ NGi

ii RHW , where },{ NGi

R

C
Wg

Hn

1

C

WgWn
1

22

2

1

2

1

2

1

2

1
WnWgHgHnL

, reducing the equation to

 43

2

2

2

1
1

1
1

1
1

cos

C
R

C

C
R

a

If we take the limit of α as C approaches infinity, it is shown that α converges to the

upper bound:

1
cos

2R

R
a

Finally it is shown

1
costan

2 2R

R
aRa

, and since the upper bound is equal to β, it is impossible that it will ever be greater than

β. As shown, the actual length, width, and aspect ratio of each Gridspace is irrelevant, so

long as the aspect ratio maintains a constant, positive, real number.

In a similar manner, it can be shown that for any position such that G and N are adjacent,

α is less than or equal to β. Therefore my hypothesis has been proven true.

Note that the above proof does not attempt to prove the four “perfect diagonal” cases,

being northeast, northwest, southeast, and southwest connectivity. Those four cases

require no proof, as they are trivial; the line drawn from the first Gridspace to the second

crosses precisely through the single point connecting the two Gridspaces. This is a fact

for the exact same reason as the proof is possible: all Gridspaces have the same aspect

ratio.

 44

3.4 Algorithm Overview:

A frame begins by resetting the field and constructing the Active List. Next, all the cells

in the Active List find their respective Active List neighbors. Once the Active List is

done finding its adjacency information, each cell's density, average velocity, and

discomfort is calculated. Then, a linear interpolation is used to find the speed values

inside each cell in the Active List. Using the speeds, distances, and discomforts in any

given cell in the Active List, the Unit Cost values are calculated.

The next step is the most costly: finding the potential values. In order to find the

potential values at each cell in the Active List, a version of Dijkstra's algorithm is

executed, using Unit Cost as the path weights. After the potential values have been found

at each cell throughout the Active List, they are used to find the final velocity term in

each cell. Finally, using the final velocity vectors appropriate to each Unit, the Units are

moved.

3.5 Step One: Frame Start

At the beginning of each frame, the Active List must be reset and reconstructed. In order

to do this, first the field must be wiped clean. Next, the Units are "splattered" onto the

field. Finally, in a three-step process, the Active List is constructed from the cells inside

the field's tree.

 45

3.5.1 Resetting the Field:

To reset the field, iterate through the tree, resetting each cell's dynamic values. Each cell

must be removed from the Active List. Also, each cell's number of occupants, density,

and discomfort values must all be set to zero. Then, the "potential" values must be set to

infinity (99999.9f will do in C++). Finally, we must clear the Active List.

3.5.2 Splattering the Units:

To splatter the Units onto the field, iterate through the Unit list. Look at each Unit’s

position, and pair it up with the corresponding cells. A Unit is guaranteed to be on more

than one cell; in fact, they are guaranteed to be on exactly H cells, where H is the height

of the quad tree. For each Unit, keep track of these H overlapping cells. Later, when the

Active List has been constructed, exactly one of the H cells will be Active, and that cell

will be the proper “current” cell for the Unit.

3.5.3 Pre-Active-List Construction:

The "pre-Active-List" step prepares the tree for the construction of the Active List.

During this step, each cell designated as a goal has its occupant count artificially inflated

by a large constant (say, 99999). Going up the tree from each goal toward the root, each

subsequent parent cell's occupant count is identically inflated. This is done to force the

grid around each goal cell to be divided into the smallest possible discretization. In a

similar manner, all cells at a specified level have their occupant counts inflated. This

level is designated as the "minimum level" for the tree, and it is a user specified constant.

 46

The minimum level represents the coarsest level of any grid cell that will be allowed to

appear on the Active List.

Figure 17: Blue cells represent cells that do not need to be broken down any further, and white cells are

cells that have too many Units in them and so must be split into smaller cells. Here, we start in step A, with

a top level cell that is filled past capacity.

Figure 18: Step B divides the cell into four smaller cells, which finishes the division process for the bottom-

right quadrant. The rest of the grid still needs some work.

 47

Figure 19: Step C splits the white cells again, which finishes off all the divisions except the top-right-most

and top-left-most cells, which are still beyond capacity.

Figure 20: Step D divides the white cells one last time, finishing off the division step entirely. Note that in

the top-left cell, there are still three Units. The division ended in this case because in this example we are

working with a tree of depth four, and when the maximum depth is reached, a cell cannot be divided any

further. So, those three guys in the top-left will have to make do with being a bit crowded for a frame or

two.

 48

3.5.4 Active List Construction:

The function that constructs the Active List is recursive. A simple description of its

functionality is to say that it starts at the root of the tree, steps through each cell, and uses

the occupant count to determine which cells will make it onto the Active List. Cells with

too many occupants must be "broken down" into finer levels, stopping at the appropriate

amount of occupancy.

The time complexity of this process is linear, with respect to the number of cells in the

Active List. The worst-case time is O(N * C), where C is a constant based off of the

worst-case time of finding the neighbors for a single cell, which will of course evaluate to

is O(N). The term C is composed of two parts: (4(K-3)), which is the number

representing the total quantity of diagonal same-level neighbors times the quad tree’s

height at the worst-case level (the second level), and the quantity representing the

maximum number of recursions needed to find the active children (4(2
K-3

-1), where K is

equal to the quad tree’s height). The second, more interesting of these terms, (2
K-3

-1),

can only occur in its worst case at most twice.

 49

Figure 21: As shown, there can only be a maximum of two worst-case cells (red). Any other positions

would not have as many neighbors because the cells would either be adjacent to another worst-case cell, or

because they would be adjacent to the edge of the grid space.

The breakdown is as follows; the N term exists because the entire Active List is traversed.

The constant C is used to represent the cost associated with finding the adjacency

information for a single cell. The term 4(2
K-3

-1) is used because, in the worst case, for

each of the four cardinal directional same-level neighbors, the function CheckChildren()

must be recursed starting at two levels below the root of the quad tree and going down to

the leaves, at a depth of K, and at each level, the recursion branches into two calls.

Ignoring the fact that the worst case can only occur to a maximum of twice per Active

List, the complexity analysis will proceed using this worst case value as an upper bound

for all cells. Because 4(2
K-3

-1) evaluates to being a constant term with respect to N, the

worst-case time complexity of finding the adjacency information for the entire Active

List is O(N * (4(K-3))+(4(2
K-3

-1))), or O(NC) where C equals 4((K-3)+(2
K-3

-1)), which of

 50

course reduces to O(N). It is also worth mentioning that on average, the

FindActiveListNeighbors() function finds all of its adjacency information on step (2)A,

resulting in a virtually negligible constant C of exactly eight.

Pseudocode for finding the adjacency information in the Active List:

FindActiveListNeighbors(CellList ActiveList)

START

For each Cell in ActiveList (n):

(1) SLN[8] := {

ActiveList[n].same-level-neighbor-N ,

ActiveList[n].same-level-neighbor-E ,

ActiveList[n].same-level-neighbor-S ,

ActiveList[n].same-level-neighbor-W ,

ActiveList[n].same-level-neighbor-NE ,

ActiveList[n].same-level-neighbor-NW ,

ActiveList[n].same-level-neighbor-SE ,

ActiveList[n].same-level-neighbor-SW

}

(2) For each Cell in SLN (i):

 A. If SLN[i].isActive == TRUE then

 i. ActiveList[n].AddNeighbor(SLN[i])

 ii. Next i (break and goto 1).

 B. For each Cell in SLN[i].parents (p, from SLN[i] to ROOT):

 i. If SLN[i].parents[p].isActive == TRUE then

 a. ActiveList[n].AddNeighbor(SLN[i])

 b. Next i (break and goto 1).

 ii. Next p.

 C. CheckChildren(ActiveList[n], i)

 D. Next i.

(3) Next n.

END

CheckChildren(Cell cur, int direction)

START

(1) If cur does not exist, then RETURN.

(2) Cell children[2] := { FindAdjacentChildrenPair(direction) }

(3) If children[0] does not exist, then RETURN.

(4) If children[0].isActive == TRUE then cur.AddNeighbor(children[0]),

else CheckChildren(children[0], direction).

(5) If children[0] == children[1], then RETURN.

(6) If children[1].isActive == TRUE then cur.AddNeighbor(children[1]),

else CheckChildren(children[1], direction).

END

FindAdjacentChildrenPair(int direction) finds and returns the set of two child Cells that are adjacent to the

center cell. There can only be eight possible directions passed into this function, so the function runs in

constant time, looking up the correct answers off of a very short list.

 51

3.5.5 Post-Active-List Construction:

The "post-Active-List" step is the direct opposite of the "pre-Active-List" step, undoing

the artificial inflation of various cells' occupant counts. During this step, each cell

designated as a goal has its occupant count reduced by the same large constant as was

used in the "pre-active-list" step. Going up the tree from each goal toward the root, each

subsequent parent cell's occupant count is identically reduced. This should correct the

occupant count of all cells, making it accurately reflect the number of Units present on

any given cell. In a similar manner, all cells at the designated "minimum level" have

their occupant counts reduced and corrected.

Also, during this step, the system iterates through the Unit list in order to determine each

Unit's "current cell". Recall that in the pre-Active-List step, each Unit recorded the list of

H cells that the Unit occupied. Now, exactly one of those H cells will be Active. That is

the cell that will become the Unit’s “current cell”.

3.6 Step Two: Find Active List Neighbors

In order to do anything useful with the Active List, we must find all the necessary

adjacency information. Therefore, in this step, we iterate through the Active List,

figuring out which cells are adjacent to which other cells. The simple description of this

process is to consider it a two-step process that is repeated eight times per active cell.

 52

Each cell has four pre-calculated neighbors, called "same-level-neighbors", which were

defined during field construction. Go through each one of the same-level neighbors (the

four cardinal directions as well as the four secondary directions), look at its parents, then

all of its children, searching for any and all Active cells, adding them as an Active List

neighbor to the current cell.

Figure 22: Shortly after the tree's cells are allocated, each level of the tree is iterated through, hooking

each cell up with its neighbors on the same level of the tree. During the step where the neighbors for the

cells on the Active List are found, these eight same-level-neighbors are used extensively. Each one of the

eight is tested; a cell’s progeny, ancestry, and even itself, are all tested to find any and all active cells that

are adjacent to the center cell.

 53

3.7 Step Three: Density, Average Velocity, Discomfort

Once the Active List is constructed and the appropriate adjacency information is found, it

can be put to good use.

First, the cells in the Active List are cleared of temporary data. To find the density and

the average velocity, iterate through the Unit list. Add the Unit's density and velocity

terms to the density and average velocity terms of the Unit's specified "current cell".

Then, iterate through the Active List, dividing the cells' densities by the appropriate cell

area to get the appropriate cell density. Also, divide the average velocity term by the

number of occupants to find the appropriate average velocity.

Similar to the way density is calculated, discomfort is also found here. Discomfort from

a Unit is that Unit's density projected in the direction of that Unit's velocity; it represents

where the Unit will probably be in the near future, or at the very least, where the Unit is

trying to go. The discomfort from a Unit is distributed in the direction of its velocity. In

that direction, a center cell is chosen. Weighted by its distance away from the center cell

and all of the center cell's neighbors, the discomfort will be spread among this set of

cells.

3.8 Step Four: Find Speed

To find the speed, step through the Active List, calculating each cell’s' anisotropic data.

The key pieces of information obtained for any single anisotropic data set are the distance

 54

and the direction of the anisotropy. Once the distance and direction terms are found, a

linear interpolation is performed between the maximum Unit speed and the average

velocity at the current cell. The parameter for the interpolation is the density at the

current cell. At low densities, the maximum Unit speed is favored, and at high densities,

the average velocity is favored. When a speed is acquired, clamp it between the

maximum and minimum possible speeds (the minimum should be a number slightly

above zero). Though there is nothing about the CIG-C technique that prohibits the

calculation of terrain contributions to speed, in this paper’s tested implementation terrain

was left out, choosing to focus only on the crowd's interaction with itself.

Equation 4: For each cell in the Active List, the speed going in the direction of each one of a cell's

neighbors must be individually calculated and stored with the rest of the anisotropic data gathered in this

step.

Di = The density of the neighboring cell in the direction of i from the current cell

Ai = Average velocity of the neighboring cell in the direction of i from the current cell

diri = The unit-length vector from the center of the current cell pointing to direction i

DM = Maximum Density , SM = Top Speed

M

i
i

D

D
t

iiiiMi dirAttSSpeed 1

3.9 Step Five: Find Unit Cost

To find the Unit Cost, iterate across the Active List, performing the Unit Cost equation

on each cell. The equation makes use of three user-defined weights (alpha, beta, and

gamma) in conjunction with a simple speed-based equation. The method used to find

each cell's Unit Cost greatly affects crowd behavior. This is where it is decided whether

 55

density, flow speed, or crowd discomfort is weighted more heavily than the other factors.

Altering these weights directly changes the behavior of the crowd.

Equation 5: The Unit Cost function is exactly the same as from the Continuum Crowds approach, except

now that our distances between cells is non-uniform, we must reflect that fact inside this equation.

Intuitively, just scale the whole term by the distance d, as shown here.

P
C , where d

f

gf
C

3.10 Step Six: Find Potential

The potentials at each cell are found using a version of Dijkstra's algorithm. To start off,

set the "current cell" to be the goal. Set the current cell's potential to zero, set its

candidate flag to false, and set its done flag to true. Now enter the while loop, which

continues until the size of the candidate list is zero. Iterate through the current cell's

active neighbors list; if a neighbor's done flag equals true, then move on to the next

neighbor. Find the anisotropic data that leads from the specified current cell's neighbor to

the current cell, which is thusly labeled "correct anisotropy". The projected cost is equal

to the current cell's potential plus the correct anisotropy's Unit Cost. If the current cell's

neighbor's potential is not greater than the projected cost, then move on to the next active

neighbor. If the current cell's neighbor is a candidate, then remove it from the candidate

list. Set the current cell's neighbor's potential to the projected cost, then place it on the

candidate list. Please note that all insertions into the candidate list should be ordered

insertions, from smallest to largest potential. Once all neighbors have been considered,

set the current cell equal to the cell at the beginning of the candidate list. Then set the

 56

current cell's done flag to true and remove it from the candidate list. Now, continue with

the while loop.

Figure 23: On a simulation area of dimensions 1024x768 pixels, with a tree depth of 10, at a Unit count of

8000, this is the dynamic potential field for the red goal. The lighter areas represent the places that are

easier to get to from the goal, and the darker areas represent locations that are more obstructed or farther

away. The Units have been made invisible to better examine the dynamic potential field itself in this

picture.

3.11 Step Seven: Find Final Velocity

After having found the potential values at each cell, next the final velocities are

calculated. Iterate through the Active List, finding the correct direction to travel for each

cell. This is found by searching through a cell's list of anisotropic data and finding the

piece with the correct potential. The correct potential is the one that, when subtracted by

its neighbors potential, is equal to zero. This method of finding the correct potential

differs from the method used in Continuum Crowds, where the smallest potential is

 57

always chosen. The final velocity is equal to that anisotropy's direction times that

anisotropy's speed.

Figure 24: Following the final velocity vectors at their respective cells, 8000 tiny Units chase after the red

goal as the user moves it around with the mouse.

3.12 Step Eight: Move the Units

At this point, all cells' final velocities have been acquired. Now, all that must be done is

to move each Unit according to its currently occupied cell's velocity field. However,

simply doing so without any other considerations will result in choppy, rigid movement.

Therefore, for each Unit, take the weighted average of several nearby velocities. The

 58

velocities to be considered consist of the velocity at the Unit's currently occupied cell

along with all of that cell's neighbor's velocities. The weight applied to each velocity is

the Euclidian distance from the center of the Unit to the center of each respective cell.

Once the averaged velocity is determined, apply it to the Unit.

If desired, a final step, minimum distance reinforcement, can be executed, which is a

simple collision check between all adjacent Units. This minimum distance reinforcement

insures that no Units overlap each other, though Units automatically avoid areas of high

congestion and thus are unlikely to be overlapping other Units.

Equation 6: Use this finalVelocity value to move the current Unit. The term C represents the current cell,

N is equal to the number of neighbors at C, and U is the current Unit. The term Cn→i translates to mean

“the cell that neighbors C in the direction i from C.” The terms Vx and Px refer to the velocity of object x

and the position of object x, respectively. The i term of sigma begins at zero rather than one for the

convenience of most computer scientists.

1

0

1

0

11 N

i UCUC

N

i UC

C

UC

C

PPPP

PP

V

PP

V

ityfinalVeloc

in

in

in

 59

4 Comparison

Having implemented CIG-C as well as Continuum Crowds, eight test cases were

evaluated. The unifying factor in all test cases is that the simulation area always spanned

1024 by 768 pixels, and the maximum number of Units was always 4500. Please note

that the CIG-C implementation was set to use a minimum tree depth of four for all tests.

The CIG-C implementation was pitted against the Continuum Crowds implementation on

a laptop containing the following hardware:

Toshiba Satellite X205, running Windows Vista Home Premium

Intel® Core™2 Duo CPU T7100 @ 1.80GHz / 1.80GHz

2046 MB RAM

32-bit Operating System

Graphics Card: NVIDIA GeForce 8700M GT

In each test case, the behavior of both implementations was almost identical; the only

difference was the performance.

 60

0 500 1000 1500 2000 2500 3000 3500 4000 4500

511

220

142
108

80 75
61 55 48

40

131
116

102
93 85

78 72
65 62

56

0

100

200

300

400

500

600

Frames Per Second

Number of Units

Test I: Field Size: 1024x768

Single-Goal Framerate Comparison: Cell Resolution 16x16

Continuum Crowds

CIG-C

Table 1: To match the resolution of the Continuum Crowds cells (16 by 16 pixels), CIG-C generates a tree

with a depth of 7, making the smallest cells 16x12 pixels.

0 500 1000 1500 2000 2500 3000 3500 4000 4500

382

165

110

78
60

50
42

37 33 29

52 47 45 44 41 39 37 36 34 33

0

50

100

150

200

250

300

350

400

Frames Per Second

Number of Units

Test II: Field Size: 1024x768

Four-Goal Framerate Comparison: Cell Resolution 16x16

Continuum Crowds

CIG-C

Table 2: As will be seen shortly, Test II marks the last of the test cases where Continuum Crowds even

compares with CIG-C's results.

 61

0 500 1000 1500 2000 2500 3000 3500 4000 4500

163

112

86

68
57

49
43

39
35

31
20 18 18 17 16 16 16 16 15 15

0

20

40

60

80

100

120

140

160

180

Frames Per Second

Number of Units

Test III: Field Size: 1024x768

Single-Goal Framerate Comparison: Cell Resolution 8x8

Continuum Crowds

CIG-C

Table 3: To match the resolution of the Continuum Crowds cells (8 by 8 pixels), CIG-C generates a tree

with a depth of 8, making the smallest cells 8x6 pixels.

0 500 1000 1500 2000 2500 3000 3500 4000 4500

144

103

73

57

46
39

34
30

27
248 7 7 7 7 6 6 6 6 6

0

20

40

60

80

100

120

140

160

Frames Per Second

Number of Units

Test IV: Field Size: 1024x768

Four-Goal Framerate Comparison: Cell Resolution 8x8

Continuum Crowds

CIG-C

Table 4: At 4500 Units, CIG-C performs four times faster than Continuum Crowds. Also, notice that the

number of goals present in the simulation has a greater effect on Continuum Crowds than it does on CIG-

C. In Test III, Continuum Crowds ran at 15 frames per second with 4500 Units, but in Test IV, with the

addition of three extra goals, the framerate drops by nearly 66%. Compare this to CIG-C, which loses less

than 25% of its speed from Test III to Test IV.

 62

0 500 1000 1500 2000 2500 3000 3500 4000 4500

163

112

86

68
57

49
43

39
35

31
3.27 3.02 2.92 2.87 2.8 2.72 2.61 2.5 2.45 2.31

0

20

40

60

80

100

120

140

160

180

Frames Per Second

Number of Units

Test V: Field Size: 1024x768

Single-Goal Framerate Comparison: Cell Resolution 4x4

Continuum Crowds

CIG-C

Table 5: To match the resolution of the Continuum Crowds cells (4 by 4 pixels), CIG-C generates a tree

with a depth of 9, making the smallest cells 4x3 pixels.

0 500 1000 1500 2000 2500 3000 3500 4000 4500

71

59

47

40

34
30

27
24

21
20

1.35 1.21 1.16 1.11 1.09 1.09 1.08 1.07 1.05 1.05

0

10

20

30

40

50

60

70

80

Frames Per Second

Number of Units

Test VI: Field Size: 1024x768

Four-Goal Framerate Comparison: Cell Resolution 4x4

Continuum Crowds

CIG-C

Table 6: As the resolution of the grid increases, the performance gap between CIG-C and Continuum

Crowds widens. Here, in Tests V and VI, CIG-C maintains healthy framerates, while the Continuum

Crowds implementation begins to lose its “real-time” status.

 63

0 500 1000 1500 2000 2500 3000 3500 4000 4500

23

21
20

18
17

16
15 15

14
13

0.42 0.41 0.4 0.4 0.39 0.37 0.37 0.37 0.36 0.36

0

5

10

15

20

25

Frames Per Second

Number of Units

Test VII: Field Size: 1024x768

Single-Goal Framerate Comparison: Cell Resolution 2x2

Continuum Crowds

CIG-C

Table 7: To match the resolution of the Continuum Crowds cells (2 by 2 pixels), CIG-C generates a tree

with a depth of 10, making the smallest cells 2 by 1.75 pixels.

0 500 1000 1500 2000 2500 3000 3500 4000 4500

23

21
20

18
17

15
14

13
12

11

0.15 0.15 0.15 0.14 0.14 0.14 0.14 0.13 0.13 0.13

0

5

10

15

20

25

Frames Per Second

Number of Units

Test VIII: Field Size: 1024x768

Four-Goal Framerate Comparison: Cell Resolution 2x2

Continuum Crowds

CIG-C

Table 8: Tests VII and VIII push the resolution of the grid to the point where Continuum Crowds takes

about seven or eight seconds to complete a single frame of simulation, regardless of Unit count. The CIG-

C method continues to flourish, however, maintaining interactive framerates even with 4500 Units and four

goals.

From Test III and beyond, the CIG-C method consistently displays a higher framerate

than the Continuum Crowds method while maintaining equal, if not superior, behavior.

 64

After the results of Test VIII, one concludes that once the resolution of the cells becomes

sufficiently fine, the Continuum Crowds method simply has too many calculations to

make; it cannot stay at interactive framerates. By the end of Test VIII, the CIG-C method

is over eighty times faster than Continuum Crowds.

The CIG-C implementation was also stress tested. On the same hardware, the CIG-C

method was capable of pushing even further, simulating the same size space to a tree

depth of eleven, making the minimum cell dimensions smaller than a single pixel (1 by

0.75). There were four goals, and 16,000 Units, with a framerate of three frames per

second. The Continuum Crowds implementation virtually froze when similar conditions

were tested on its system.

 65

5 Conclusion:

5.1 Results

The CIG-C method has been shown to be superior in performance to the Continuum

Crowds method in situations that demand a very high grid resolution across a very large

area. However, CIG-C might not be the right method to use if memory usage is a big

concern. At a tree depth of eight, the CIG-C method uses 46 megabytes of RAM,

compared to the equivalent Continuum Crowds method at a resolution of 8 by 8 pixels

per cell, which uses only 29 megabytes. Though CIG-C offers better performance in this

case, it uses over 58% more memory than the Continuum Crowds method. However, it is

important to note that CIG-C does not always use more memory than Continuum

Crowds. At depth seven, CIG-C has an almost identical memory profile to the equivalent

Continuum Crowds implementation at a cell resolution of 16 by 16 pixels.

5.2 Future Works

If memory is a problem, then a good goal for future works would be to dynamically

allocate only the required cells on the Active List each frame without creating a static

quad tree. This may be accomplished with the aid of a memory manager to help avoid

the overhead of multiple news and deletes each frame. In fact, it is quite possible that

such a method could grant large improvements over the current method of tree creation

simply by allowing more useful information to remain in low-level caches.

 66

Also, the CIG-C functions that iterate across all Units or all cells in a list lend themselves

easily to parallelization. On modern hardware, such parallel processing might yield

improvements that could double, even quadruple performance without significantly

raising the complexity of the system.

The problem of having too many high-resolution cells across the required grid space is

exasperated when the simulation takes on a third dimension. If the purpose is to simulate

a crowd across a three-dimensional space, the CIG-C method with a little bit of tweaking

would, in theory, be a much better choice than other methods, simply due to its ability to

severely limit the number of active cells.

5.3 Possible Sources of Error

Though extra care was taken to faithfully represent the capabilities of the Continuum

Crowds system [8], the claim cannot be made that this paper’s test implementation is by

any means perfect. In this paper’s implementation of [8], there is only a single thread

running the entire system, and the GPU is unused for the purposes of path finding

calculations. Also, an ordered list is used during Fast March rather than a heap structure.

The reasoning behind not including these improvements is that because the exact same

improvements could be implemented for CIG-C, comparing both systems with the

improvements should be the same as comparing both systems without the improvements.

It is hereby acknowledged that this reasoning is a hypothesis, not a fact, and with more

time, this reasoning would have been tested.

 67

6 References

[1] Reynolds, C.W. Flocks, herds, and schools: A distributed behavioral model. In

Computer Graphics (Proceedings of SIGGRAPH 87), vol. 21, 25-34.

[2] E. W. Dijkstra: A note on two problems in connexion with graphs. In Numerische

Mathematik, 1 (1959), S. 269-271.

[3] Wikipedia. July 12, 2008. Dijkstra’s Algorithm.

<http://en.wikipedia.org/wiki/Dijkstra's_algorithm>

[4] Hart, P. E.; Nilsson, N. J.; Raphael, B. (1968). "A Formal Basis for the Heuristic

Determination of Minimum Cost Paths". IEEE Transactions on Systems Science and

Cybernetics SSC4 (2): pp. 100–107.

[5] Livingstone, Daniel; McDowell, Robert. 2008. Fast Marching and Fast Driving:

Combining Off-Line Search and Reactive A.I. <http://cis.paisley.ac.uk/livi-

ci0/livingstone_mcdowell_fmm1.pdf>

[6] Sethian, J. A., Proc. Nat. Acad. Sci., A Fast Marching Level Set Method for

Monotonically Advancing Fronts, 93, 4, pp. 1591-1595, 1996.

Dept. of Mathematics, Univ. of California, Berkeley, California.

 68

[7] Sethian, J. A., Dept. of Mathematics, Univ. of California, Berkeley, California,

November 25, 2006. LEVEL SET METHODS and FAST MARCHING METHODS.

<http://math.berkeley.edu/~sethian/2006/level_set.html>

[8] Adrien Treuille, Seth Cooper, and Zoran Popovic. Continuum Crowds. ACM

Transactions on Graphics, 25(3):1160–1168, 2006.

[9] Adrien Treuille, Seth Cooper, and Zoran Popovic. 2008. Crowd Flows: Errata

Section. <http://grail.cs.washington.edu/projects/crowd-flows/>

	Copyright
	Title Page
	Table of Contents
	Abstract
	Chapter 1 Introduction
	1.1 The Basics
	1.2 Some Uses for Path Planning

	Chapter 2 Previous Work
	2.1 Flocks Herds and Boids
	2.2 Dijkstra’s Algorithm
	2.3 The A Star Algorithm
	2.4 Fast March
	2.5 Continuum Crowds
	2.5.1 Brief Overview
	2.5.2 The Governing Hypotheses
	2.5.3 Basic Walkthrough
	2.5.4 Results

	Chapter 3 Our Approach CIG C
	3.1 High Concept
	3.2 Significant Differences
	3.3 Creation of the Field Before the Action
	3.3.1 Tree Structure
	3.3.2 Breakdown of a Single Frame
	3.3.3 The Reasoning Behind the Quad Tree

	3.4 Algorithm Overview
	3.5 Step One Frame Start
	3.5.1 Resetting the Field
	3.5.2 Splattering the Units
	3.5.3 Pre Active List Construction
	3.5.4 Active List Construction
	3.5.5 Post Active List Construction

	3.6 Step Two Find Active List Neighbors
	3.7 Step Three Density Average Velocity Discomfort
	3.8 Step Four Find Speed
	3.9 Step Five Find Unit Cost
	3.10 Step Six Find Potential
	3.11 Step Seven Find Final Velocity
	3.12 Step Eight Move the Units

	Chapter 4 Comparison
	Chapter 5 Conclusion
	5.1 Results
	5.2 Future Works
	5.3 Possible Sources of Error

	References

