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Chapter 1 

INTRODUCTION 

Fluids are present in many parts of our daily lives. From the milk in our cereal bowls to 

the wind blowing in our face when we ride our bikes, fuids are everywhere. It should come 

as no surprise then that there has been a great deal of interest in using computers to model 

this complex and interesting phenomenon. Luckily, engineers in the feld of Computational 

Fluid Dynamics (CFD) have devised extremely accurate methods to model fuid motion. The 

drawback is that many of these methods are not computationally eÿcient enough for a computer 

graphics application where the major concern is to quickly produce fuid motion that appears 

to be realistic as opposed to motion that is truly realistic. 

This paper presents a number of techniques that have been developed by the computer 

graphics community to physically simulate the motion of fuids. Although the methods are 

generally applicable to all fuids, particular attention will be directed toward simulating the 

motion of water, as that is the primary concern of this researcher. 

1 



Chapter 2 

VECTOR CALCULUS REVIEW 

This section is intended for readers that may not deal with vector calculus on a day-to-day 

basis. It will introduce basic concepts and principles. The discussion is intended for those with 

a mathematical background that have either never had a reason to deal with vector calculus or 

those that haven’t had to use their knowledge of this feld for a long time. It is not intended to 

be a comprehensive review, but should give enough to help understand the basic concepts that 

are going to be discussed in the following sections. 

2.1 Scalar Fields and Vector Fields 

A scalar feld is defned as a scalar valued function of position. For example, t(x, y, z) might be 

used to represent the temperature in a room. Temperature is a scalar value and it is defned at 

every point in the room, so temperature is a scalar feld. In another example, p = P (r) where 

r = (x, y, z) might be used to represent the pressure in a fuid. 

A vector feld is very similar to a scalar feld, except that it is a vector-valued function of 

position. In this paper u =< u, v, w > where u, v and w are all functions of x, y and z such 

that u = u(x, y, z), v = v(x, y, z) and w = w(x, y, z). u will commonly be used to represent the 

velocity of a fuid at any given point. 

2.2 Gradient 

The gradient of scalar feld s is denoted as, rs where the symbol r is known as “nabla” or 

“del”. The gradient of a scalar feld is defned as 

ˆ ˙ 
@s @s @s rs = , ,
@x @y @z 

. In English, the gradient of a scalar feld is the vector of partial derivatives with respect to 

each of the coordinate axes. From a physical perspective, the gradient represents the direction 

in which the scalar feld is increasing. The magnitude of the gradient vector is equal to the rate 

2 
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of change. As a concrete example, let s(r) = xy + z2 + yz3. Then the gradient of s, rs, is: 

3 rs = (y, x + z , 2z + 3yz 2) (2.2.1) 

The gradient operator can also be applied to a vector feld. The gradient of an n-dimensional 

vector feld is an nxn matrix of partial derivatives. The gradient of vector feld, u =< u, v, w >, 

is 10 BBBB@ 
@u 
@x 

@u 
@y 

@u 
@z 

@v 
@x 

@v 
@y 

@v 
@z 

@w 
@x 

@w 
@y 

@w 
@z 

CCCCA = ru 

2.3 Flux 

Flux is defned as the total volume of fuid passing through a surface per unit time [22]. Given 

a surface, S, that has a normal, n, located inside of a vector feld u let �S represent a small 

subsurface of S. Let the area of �S be defned as �x�y = A. First assume that u is parallel to 

n and |u| = c where c is a constant. In time t a “block” of fuid of size ctA moves through S. 

Therefore, the fux, Q, is Q = cA. 

Now suppose that u is not parallel to n and |u| is no longer constant. See fgure 2.1. Since 

Figure 2.1: u represents the vector feld. The shaded region, �S represents a sub-section of the 
larger surface S. n reperesents the outward pointing normal to S. 

u is no longer parallel to n then the only portion of u contributing to the fux is the portion 

that is in the direction of n. This is simply u · n. Summing the contribution of the fux of each 

small �S over the entire surface S yields the defnition of fux 

ZZ 
Q = 
 u · n�x�y (2.3.1) 

S 

3 



2.4 Divergence 

The concept of divergence is closely related to that of the gradient. While the gradient acts on 

a scalar feld and results in a vector feld, the divergence acts on a vector feld and results in a 

scalar feld. The divergence of vector feld v = (v1, v2, v3) is denoted as r · v and is defned as: 

ˆ ˙ 
@v1 @v2 @v3 @ @ @ r · v = + + = , , · (v1, v2, v3) (2.4.1)
@x @y @z @x @y @z 

. From the last term in equation (2.4.1) it is shown that the divergence of a vector feld can be 

thought of as the dot product of the “nabla” operator and the vector feld. 

2 2As a simple example, let the vector feld v be defned as v = (x2+2z, y z3−6x+4, x yz4−2x). 

The divergence of v is 

2 3 r · v = 2x + 2yz 3 + 4x yz (2.4.2) 

The divergence of u is equal to the fux through the surface of a small volume, �V , surrounding 

Figure 2.2: A sub-volume, �Vi. 

any point in the feld divided by the volume of �V . Mathematically this can expressed as 

ZZ 
1 r · u = lim 
 u · n�S (2.4.3) 

�V!0 �V �S 

where �V is a small volume surrounding a point P with surface �S and n is the outward pointing 

normal of �S. Assume that �V is a small rectangular box with sides �x, �y and �z. See fgure 

2.2. Since the box has six faces then the integral around the entire box is the sum of the six 

4 



face integrals. Starting with the surface labeled S1 in fgure 2.2, n1 = (1, 0, 0), �S = �y � �z. 

Let u = (u, v, w). 

Therefore, u · n = u. The point at the center of the surface is c1 = (Px + �x/2, y, z). Since 

the area of surface S1 is assumed to be very small then the surface integral can be given by 

ZZ 

 u · n�x�y ˇ u1(Px + �x/2, y, z) . (2.4.4) 

S1 

A similar argument can be made for the surface S2. 

ZZ 

 u · n�x�y ˇ −u1(Px − �x/2, y, z) . (2.4.5) 

S2 

Adding both integrals together and reducing gives 

ZZ 

 

S1+S2 

u · n�x�y ˇ @u 
�V 

@x 
(2.4.6) 

Since divergence is defned as �V ! 0 then equation (2.4.6) is the true divergence with respect 

to the surface whose normals are parallel to the x-axis. The same procedure can be repeated 

for y and z. 

2.5 Divergence Theorem 

The divergence theorem states that the total amount of expansion of u within the volume V is 

equal to the fux out of the surface S. Mathematically this can be expressed as 

ZZZ ZZ 
r · udV = 
 u · ndS (2.5.1) 

V S 

To prove this theorem assume that volume V is divided into a bunch of very small sub-

volumes, �Vi each with surface �Si. In each �Vi the divergence is 

ZZ 
1 r · u = lim 
 u · n�S (2.5.2) 

�V!0 �V �S 

5 



Multiplying both sides by �Vi and summing for �Vi yields 

ZZ X X 
r · u�V ˇ 
 u · ndS (2.5.3) 

i i RRR 
Taking the limit as �Vi ! 0 makes the left-hand side equal to the volume integral, r· udV .V 

For the right-hand side, consider two adjacent sub-volumes as shown in fgure 2.3. Note that 

Figure 2.3: A 2D representation of two sub-volumes 

u · n1 +u · n2 = 0. This is because the normals are equal and opposite. Thus all interior surfaces 

will cancel each other leaving only the exterior edges. Therefore, 

ZZZ ZZ 
r · udV = 
 u · ndS (2.5.4) 

V S 
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Chapter 3 

EQUATIONS OF MOTION - THE NAVIER STOKES EQUATIONS 

In this section the Navier-Stokes equations that are used to describe the conservation of 

momentum and mass for a fuid are presented. The presentation is followed by a derivation of 

each equation. 

In the 19th century, two mathematicians, Claude-Louis Navier and George Gabriel 

Stokes developed the Navier-Stokes equations that describe the motion of a fuid [29]. For 

incompressible fows there are two equations 

@u 1 2= −(u · r)u − (rp) + �r u + g (3.0.1) 
@t ˆ

r · u = 0 (3.0.2) 

where u = (u, v, w) represents the velocity of the fow, ˆ is the density of the fuid, p is the 

pressure, � is the kinematic viscosity and g is the acceleration due to any external forces. 

Equation (3.0.2) indicates a conservation of mass and equation (3.0.1) describes how the rate 

of change of the velocity of a fow is related to the process of advection, the acceleration due to 

pressure, the acceleration due to viscosity and acceleration resulting from external forces such 

as gravity. It is important for the reader to understand that equation (3.0.1) is a vector-valued 

equation that actually represents three equations. Equation (3.0.2) is sometimes referred to as 

the continuity equation. 

3.1 Conservation of Mass Equation 

Consider a fuid with density given by the scalar feld ˆ(x, t) and velocity given by the vector 

feld u(x, t). Let V be an arbitrary stationary volume with surface S and outward pointing 

normal n. The total mass of the fuid inside of V is defnied as 

ZZZ 
M = ˆdV (3.1.1) 

V 

7 



The rate at which mass enters the volume, r, is defned as the fux through the surface and can 

be expressed as ZZ 
r = −
 ˆu · ndS (3.1.2) 

The minus sign is used because n is assumed to point outward. The rate of change of mass in 

the volume must be equal to the rate of mass fow into or out of Vi. Thus, we get 

ZZZ ZZ 
d 

dt V 
ˆdV = −
 ˆu · ndS (3.1.3) 

The surface integral on the right-hand side can be written as a volume integral using the 

divergence theorem, also the order of the derivative and the integral on the left-hand side can 

be interchanged thus yielding 

ZZZ ZZZ 
@ˆ 

dV = − r · (ˆu)dV (3.1.4) 
V @t V 

Since the integrals are over the same volume then we can add the right-hand side to the left-hand 

side and place both integrands under the same integral 

ZZZ 
@ˆ 

+r · (ˆu)dV = 0 (3.1.5) 
@t 

If the chosen volume, V , is small enough then the value of the integrand can be considered 

constant throughout the volume so the integral can be dropped and we’re left with 

@ˆ 
+r · (ˆu) = 0 (3.1.6)

@t 

Since the density is defned to be constant, then it can moved outside of the di�erentiation, 

giving 
@ˆ @ˆ 

+r · (ˆu) = + ˆr · (u) = 0 (3.1.7) 
@t @t 

Again using the fact that density is constant with respect to both time and space then the 

above equation reduces further giving 

0 + ˆr · (u) = 0 (3.1.8) 

8 



Therefore, r · u = 0 must be true. 

3.2 Conservation of Momentum Equation 

The conservation of momentum says that the rate of change of momentum through a fxed 

volume must equal the fux through the surface plus any external forces, F. Assume a 

rectangular volume, dV of dimensions �x, �y and �z. The rate of change of momentum can be 

defned as 
@ˆu 

dV (3.2.1) 
@t 

where u = (u, v, w). The fux of momentum in the x-direction through the face whose normal 

is (−1, 0, 0) is 

ˆ(u · n)Au = −ˆu � u �A = −ˆu � u � �y�z (3.2.2) 

where A is the area of the surface. The fux through the face whose normal is (1, 0, 0) is 

� � 
@ˆu � u 

ˆu � u + �x �y�z (3.2.3) 
@y 

The fux in the x-direction of the face whose normal is (0,−1, 0) is 

−ˆv � u � �x�z . (3.2.4) 

The fux through the opposite face whose normal is (0, 1, 0) is 

� � 
@ˆv � u 

ˆv � u + �y �x�z (3.2.5) 
@x 

The fux in the x-direction of the face whose normal is (0, 0,−1) is 

−ˆw � u � �x�z . (3.2.6) 

The fux through the opposite face whose normal is (0, 0, 1) is 

� � 
@ˆw � u 

ˆw � u + �y �x�z (3.2.7) 
@x 

9 



Summing all six faces gives 

� � 
@ˆu � u 

Qx = −ˆu � u � �y�z + ˆu � u + �x �y�z (3.2.8) 
@x � � 

@ˆv � u −ˆv � u � �x�z + ˆv � u + �y �x�z (3.2.9) 
@y � � 

@ˆw � u −ˆw � u � �x�z + ˆw � u + �y �x�z (3.2.10) 
@z 

@ˆu � u @ˆv � u @ˆw � u 
= �x�y�z + �y�x�z + �y�x�z (3.2.11) 

@x @y @z 

(3.2.12) 

Including the time derivative yields the fnal equation for the total fux in the x-direction as 

� �X @ˆu @ˆu � u @ˆv � u @w � u 
Fx = + + + �x�y�z (3.2.13) 

@t @x @y @z 

Simplifying and extending the same concept for y and z yields 

� �X @u @u @u @u 
Fx = ˆ + u + v + w �X�Y �Z (3.2.14) 

@t @x @y @z 

� �X @v @v @v @v 
Fy = ˆ + u + v + w �X�Y �Z (3.2.15) 

@t @x @y @z � �X @w @w @w @w 
Fz = ˆ + u + v + w �X�Y �Z (3.2.16) 

@t @x @y @z 

The rate of change of momentum is equal to the total force acting on the fuid. Fluids are 

subject to two di�erent forces. These forces are surface forces and body forces such as gravity. 

Body forces will not be discussed here, but their inclusion into the system are trivial. 

Surface forces occur due to pressure and viscosity. They can be described by ˙i,j where 

subscript i indicates the normal direction of the face on which the force is acting and j indicates 

the direction of the stress. ˙ is called the stress tensor. The force due to stress is defned as 

the quantity of the stress tensor times the area of the face. For faces with normals in the 

x-direction, then the forces in the x-direction are 

� � 
@˙xx−˙xx�y�z and ˙xx + �x �y�z (3.2.17) 
@x 
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Their sum is 
@˙xx 

�x�y�z (3.2.18) 
@x 

The sum for faces with normals in the y and z directions are 

@˙yx @˙zx 
�x�y�z and �x�y�z (3.2.19) 

@y @z 

Summing for all faces gives 

� � 
@˙xx @˙yx @˙zx + + �x�y�z (3.2.20) 
@x @y @z 

The term ˙xx includes the force due to pressure, but it is directed inward and so it must be 

negated. So the above equation becomes 

� � 
@p @˙xx @˙yx @˙zx − + + �x�y�z (3.2.21) 
@t @x @y @z 

The stress tensor is defned as 

� � � � 
@u @v @u @w @u 

˙xx = 2µ ˙yx = µ + ˙zx = µ + (3.2.22) 
@x @x @y @x @z 

After combining all six faces and performing several steps of algebraic manipulation the result 

can be expressed as equation (3.0.1) [2]. 
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Chapter 4 

FINITE DIFFERENCE APPROACHES 

One approach to solving the Navier-Stokes equations is through the use of the fnite-

di�erencing technique. This technique was utilized by [12] and [5] while a modifed version 

was utilized by [11]. 

4.1 Chen and Lobo 

4.1.1 Governing Equations 

In [5], Chen and Lobo approach the problem of fuid simulation by solving the Navier-Stokes 

equations in two dimensions and then scaling the resulting pressure feld to derive the height 

of the surface above the ground. 

The equation for conservation of momentum that is used by [5] is written slightly di�erently 

than equation (3.0.1). The authors write the equation as 

@u @u @u 1 2+ u + v +rp = r u (4.1.1) 
@t @x @y Re 

where u and p are defned the same as equation (3.0.1) and Re is the Reynolds number. The 

ˆsLReynolds number is the ratio of inertial forces to viscous forces and is defned as Re = where µ 

ˆ is the density, s is the characteristic velocity and L is the characteristic length of the fuid. 

Adjusting the Reynolds number will adjust whether or not the fow is laminar or turbulent. 

Flows with a small Reynolds numbers (Re < 2100) are considered laminar where as fows with a 

large Reynolds number (Re > 4000) are considered turbulent [30]. In true physics, the Reynolds 

number is a constant that is defned for di�erent fows, however during simulation Chen and 

Lobo alter the Reynolds number to increase numerical stability or to achieve a desired e�ect. 

In [5] the authors write the continuity equation as 

�p +r · u = 0 (4.1.2) 

12 



and note that it has been proven [27] that solving equations (4.1.1) and (4.1.2) together will 

tend toward the solution of equations (3.0.1) and (3.0.2) as � ! 0. 

4.1.2 Discretization Technique 

The computational domain is divided into a 2-dimensional grid where the pressure is defned 

at the center of each grid point and the velocities are defned at the center of the grid edges. 

This structure is known as the staggered marker-and-cell mesh and is illustrated in Figure 4.1. 

Figure 4.1: Staggered marker-and-cell mesh 

Using this grid, the velocity and the pressure are updated each frame using the following 

set of equations: 

1n+1 n n n 2 n u = u + (−a −�1 
xp + rhu )dt (4.1.3) i+1/2,j i+1/2,j i+1/2,j i+1/2,j i+1/2,jRe 

1n+1 n n 2 n v = v + (−bn −�1 p + rhv )dt (4.1.4) i,j+1/2 i,j+1/2 i,j+1/2 y i,j+1/2 i,j+1/2Re 

n+1 n+1�1u + �1v 
n+1 x i,j y i,j

pi,j = − (4.1.5) 
e 

where i, j indicate the coordinates of a point in the computational grid, n represents the current 

time step and n + 1 represents the values after time �t. 

�1 
x, �y 

1 and r2 
h are di�erence operators that are defned as 

1
�1 

xfl,m = (fl+1/2,m − fl−1/2,m) (4.1.6) 
�x 

1
�1fl,m = (fl,m+1/2 − fl,m−1/2) (4.1.7) y �x 
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2 rhfl,m = �xxfl,m + �yyfl,m (4.1.8) 

fl+1,m − 2fl,m + fl−1,m�xxfl,m = (4.1.9) 
�x2 

fl,m+1 − 2fl,m + fl,m−1�yyfl,m = (4.1.10) 
2�y

2�1 
x and �1 

y together compute the divergence of the pressure feld (rp from equation 4.1.1). rh 

represents the standard discretization of the Laplacian operator ( r2u from equation 4.1.1). 

nThe last two symbols a and bn are defned as i+1/2,j i,j+1/2 

n n n n n a u �0 u + V �0 u (4.1.11)i+1/2,j = i+1/2,j x i+1/2,j i+1/2,j y i+1/2,j 

n n nbn = Un �0 v + v �0 v (4.1.12) i,j+1/2 i,j+1/2 x i,j+1/2 i,j+1/2 y i,j+1/2 

1 
Ui,j+1/2 = 

4
(ui+1/2,j + ui+1/2,j−1 + ui−1/2,j+1 + ui−1/2,j) (4.1.13) 

Vi+1/2,j = 
1
4
(vi+1,j+1/2 + vi,j+1/2 + vi,j−1/2 + vi+1,j−1/2) (4.1.14) 

�0 
xfl,m = 

1
(fl+1,m − fl−1,m) (4.1.15)

2�x 

�0fl,m = 
2�

1 
y 
(fl,m+1 − fl,m−1) (4.1.16)y

After updating the velocities and pressure using equations (4.1.3) through (4.1.5) then the 

velocity at each grid point can be computed as the average of its two neighbors. Namely, 

ui+1/2;j + ui−1/2;j 
ui;j = (4.1.17) 

2 

vi;j+1/2 + vi;j−1/2 
vi;j = (4.1.18) 

2 

4.1.3 Boundary Conditions 

Boundary conditions specify the velocity of the fuid at certain “special” locations within in 

the grid. As the name implies, boundary conditions are used to indicate the velocity along 

the boundary of the computational domain. In [5] Chen and Lobo defne these as external 

boundary conditions. Examples of external boundaries include the banks of a river or the walls 

of a pipe. In addition to external boundaries, Chen and Lobo defne internal boundaries as 
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boundary conditions that exist within the interior of the computational domain. These might 

include things such as bridges, posts or even boats. 

In addition to fxed boundaries such as the banks of a river, the authors describe a method 

to make use of moving boundary conditions such as a boat traveling through water. Typically, 

during a simulation step all boundary conditions are applied and directly set the velocity of 

grid points lying along the boundary before the update of computational grid takes place. In 

the case of a moving internal boundary such as a boat, the velocity of the grid point (i, j) that 

lies within the boat can be set as 

= WakeSpeed ui+1/2,j 

ui−1/2,j+1 = WakeSpeed 

= WakeSpeed ui−1/2,j−1 

where WakeSpeed is a predetermined value to represent the speed of the boat. 

4.1.4 Floating Objects 

In [5] the authors discuss the concept of streaklines and use them to describe the motion of 

objects in the fow. A streakline is defned as a collection of fuid particles that have all passed 

through a given point in the fow feld [7]. Streaklines can be generated by releasing particles 

from a given point in the fow feld and then tracking their position over time. Each particle is 

moved using the velocity of the fow feld at its current location. The authors suggest treating 

foating objects just like streakline particles. Thus objects would be massless entities that 

simply assume the velocity of the fow feld at any given position. 

Clearly this is an extremely simple approach to objects interacting with fuid. The technique 

does not describe any way in which the object can a�ect the fuid, such as displacement or drag. 

Additionally, it does not account for any kind of rotational motion to be applied to the object. 

For these reasons it is clear that a more sophisticated approach to modeling the interaction 

between objects and fuid should be employed. 
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4.1.5 Stability 

In [5] the authors do not provide a rigorous mathematical analysis of the stability of their model. 

They simply state that the simulation can diverge. In order to help prevent the simulation from 

diverging they recommend using smaller values for dt and Re and larger values for �, dx, and 

dy. One of the advantages of simulating fuid motion in computer graphics is that one does 

not always need to strictly follow the laws of physics so long as the results appear correct. 

Therefore, in order to maintain stability a person can adjust the values of dt, dx, dy, � and Re 

while the simulation is in progress in order to maintain stability. 

Another possible method to help maintain stability would be use to Runge-Kutta (RK) 

integration rather than Euler integration. The obvious downside to using a more advanced 

integration method is the extra computation required. However, the model presented in [5] was 

able to achieve “interactive-rates” on hardware in 1994. Therefore, the extra computational 

overhead should not pose a signifcant problem on today’s hardware. 

4.1.6 Results and Shortcomings 

The authors of [5] claim to have achieved “interactive-rates” running on a Silicon Graphics 

Indigo. They do not provide a defnition of the term “interactive-rate” but the context implies 

that the simulation is able to run near real-time. Theses results were achieved using the following 

set of values: dt = 0.001s, Re = 300, dx = 1m and dy = 1m. 

Although the model is able to run quickly and is fairly easy to implement, it does have it’s 

shortcomings. Given the 2D nature of the simulation it is unable to deal with objects whose 

cross-sectional area vary with depth. For example, the hull of a boat is curved and displaces 

more water as it gets deeper. The author’s fuid model simply assumes that the hull of the boat 

is fat along on the bottom. Additionally, since the height of the fuid is obtained by simply 

scaling the pressure values, it is unable to simulate overturning water. Lastly, the authors are 

unable to describe the exact conditions under which the simulation will remain stable. 
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4.2 Foster and Metaxas 

4.2.1 Governing Equations of Motion 

Recall that equation (3.0.1) is the general form of the Navier-Stokes equation for the 

conservation of momentum. The expansion of equation (3.0.1) for the u-component is 

@u @u @u @u @p @2u @2u @2u 
+ u + v + w = − + gx + d( + + ) (4.2.1)

@t @x @y @z @x @x2 @y2 r@z2

However, in [12] the authors have defned the u-component as 

@u @u2 @uv @uw @p @2u @2u @2u 
+ + + = − + gx + d( + + ) (4.2.2)

@t @x @y @z @x @x2 @y2 @z2 

Examining equations (4.2.1) and (4.2.2) we see that the right-hand side of each equation is 

identical, but the left-hand sides vary. Specifcally, the question is 

@u @u2 @uv @uw @u @u @u @u 
+ + + � + u + v + w 

@t @x @y @z @t @x @y @z 

From a mathematical standpoint it is clear that equation (4.2.1) is not equal to equation 

(4.2.2). However, it will be shown later that the authors’ change of notation will ultimately 

lead to a calculation that is similar to that presented in section 4.1.2. The equations for the v 

and w-components are included here for completeness. 

@v @vu @v2 @vw @p @2v @2v @2v 
+ + + = − + gy + d( + + )

@t @x @y @z @y @x2 @y2 @z2

@w @wu @wv @w2 @p @2w @2w @2w 
+ + + = − + gz + d( + + )

@t @x @y @z @y @x2 @y2 @z2 

4.2.2 Discretization Technique 

Conservation of Momentum 

The discretization technique used in [12] is very similar to the technique used by [5] that was 

presented in section 4.1.2. The key di�erence is that Foster and Metaxas use a 3D grid instead 

of the 2D grid used in [5]. The pressure is defned at the center of the cell and the velocities 

are defned at the center of the cell faces (see Figure 4.2). 
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Figure 4.2: Staggered marker-and-cell grid cell. Image taken directly from [12] 

The equations used to update the u-component of the velocity feld are presented below. 

The equations for the v and w can be obtained by the obvious extension of these equations. 

@u n+1 n u = u + dt (4.2.3) i+1/2,j,k i+1/2,j,k @t 

This equation takes the simulation through one full step of Euler integration. 

@u @u2 @uv @uw @p @2u @2u @2u 
= − − − − + gx + d( + + ) (4.2.4)

@t @x @y @z @x @x2 @y2 @z2 

This equation is just a reorganization of the terms in equation (4.2.2) to explicitly show how 

to obtain the value of @u . The equations @t

@u2 1 − = ((ui,j,k)2 − (ui+1,j,k)2) , (4.2.5)
@x dx

@uv 1 − = ((uv)i+1/2,j−1/2,k − (uv)i+1/2,j+1/2,k) (4.2.6) 
@y dy

and 
@uw 1 − = ((uw)i+1/2,j,k−1/2 − (uw)i+1/2,j,k+1/2) (4.2.7)
@z dz 

are simple fnite-di�erence equations to solve for the frst three terms in equation (4.2.4). The 
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fourth term of equation (4.2.4) is expressed as: 

@p 1 − = (pi,j,k − pi+1,j,k) (4.2.8) 
@x dx

This too is a simple fnite-di�erence equation to calculate the gradient of the pressure, rp. The 

last three equations, 

d
@2u 

= 
d 

(ui+1/2,j,k+1 − 2ui+1/2,j,k + ui−1/2,j,k−1) (4.2.9)
@z2 dy2

@2u d 
d = (ui+1/2,j+1,k − 2ui+1/2,j,k + ui−1/2,j−1,k) (4.2.10)
@y2 dy2

and 

d
@2u 

= 
d 

(ui+3/2,j,k − 2ui+1/2,j,k + ui−1/2,j,k) (4.2.11) 
@x2 dx2

are a standard discretization of the Laplacian operator. For a derivation of this discretization 

see [?]. 

When calculating the value of @u in equation (4.2.3) it is possible that value of the velcoity @t 

feld will be required at a point somewhere other than a face of grid cell. In order to remedy 

this situation, the average value of the nearest neighbors are used. This statment is what has 

allowed the authors to rewrite equation (4.2.1) as (4.2.2). As an example, assume that equation 

(4.2.6) is being evaluated for grid cell i, j. Figure 4.3 shows the grid points that are used to 

calculate the analagous term v@u/@y using the method presented in section 4.1.2. Figure 4.4 

shows the grid points that are used to calculate equation (4.2.6) using the method proposed 

by Foster and Metaxas. It is clear that many of the same grid points are utilized, however the 

method used by Foster and Metaxas explicity makes use of the value at ui+1/2,j where as the 

method used by Chen and Lobo does not. 

Conservation of Mass 

After updating the velocity feld using equation (4.2.3) it is possible that the resulting velocity 

feld is not divergence-free and thus does not satisfy equation (3.0.2). Foster and Metaxas 

resolve this problem by adjusting the pressure and velocity of the cells in the computational 
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Figure 4.3: Representation of the grid points used by Chen and Lobo, [5] when calculating the 
term v@u/@y. 

Figure 4.4: Representation of the grid points used by Foster and Metaxas when calculating the 
@uv term @y 

grid using a relaxation technique [3]. First, defne the divergence, D, at cell i, j, k as 

Di,j,k = (4.2.12) 

1 −((
dx

)(ui+1/2,j,k − ui−1/2,j,k) + 

1
( )(vi,j+1/2,k − vi,j−1/2,k) + 
dy

(
dz 

1 
)(wi,j,k+1/2 − wi,j,k−1/2)) 
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Equation (4.2.12) is a central di�erence approximation of the divergence at cell i, j, k. Next, 

defne the change in pressure, �p, as 

Di,j,k�0
�p = (4.2.13) 12dt( + 1 + 1 )

dx2 dy2 dz2 

where �0 is the relaxation coeÿcient such that 1 < �0 < 2. Next, �p is used to update the 

pressure of cell (i, j, k) and velocities defned on faces of cell (i, j, k). 

ui+1/2,j,k = ui+1/2,j,k + (�t/�x)�p ui−1/2,j,k = ui−1/2,j,k − (�t/�x)�p 

vi,j+1/2,k = vi,j+1/2,k + (�t/�y)�p vi,j−1/2,k = vi,j−1/2,k − (�t/�y)�p 

wi,j,k+1/2 = wi,j,k+1/2 + (�t/�z)�p wi,j,k−1/2 = wi,j,k−1/2 − (�t/�z)�p 

pi,j,k = pi,j,k + �p 

After one application of the relaxation step, cell (i, j, k) will be divergence-free but changing the 

velocities on the cell faces may have caused neighboring cells to become divergent. Therefore, the 

relaxation technique must be applied to each cell many times until all cells become divergence-

free. Using � = 1.7 and � = 0.0001 the grid was found to converge within 3 to 6 applications of 

the relaxation step. 

4.2.3 Boundary Conditions 

The model proposed by Foster and Metaxas only updates pressures and velocities to satisfy 

boundary conditions at the beginning of each iteration. No special calculation is used on 

boundary cells when updating the velocity feld. 

Three di�erent types of boundary conditions are considered. The frst are boundaries with 

stationary objects. It is assumed that faces of the objects lie on the boundary of a computational 

cell. Using this assumption, it becomes very easy to properly set pressure and velocity values. 

If an obstacle is non-permeable then the component of the velocity that is normal to the face 

of the obstacle is set to zero (u0 = 0). This will prevent water from penetrating the face. If 

the no-slip boundary condition, where the obstacle creates a drag on the fuid, is desired then 

the component of the velocity feld that is tangential to the face of the object is set to zero 

as well. However, since the face of an obstacle can not lie on a cell boundary (see Figure 4.5) 

where both u and v are defned, then the tangential velocity is indirectly set to zero by setting 

the velocity on the edge inside of the cell equal to the opposite of the velocity outside of the 
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obstacle (v0 = −v1). Lastly, the pressure inside of the cell containing the obstacle is set to the 

pressure of the neighboring cell outside of the obstacle (p0 = p1). If a free-slip boundary is 

desired then the velocities and pressures are set the same way as for a no-slip boundary except 

that the tangential velocity inside the obstacle is set equal to the tangential velocity outside of 

the obstacle (v0 = v1). This will prevent any acceleration across the boundary. 

Figure 4.5: An obstacle in the computational grid. The obstacle is denoted by the thick black 
lines. 

Infow and outfow boundaries are the second type of boundary condition to consider. Infow 

boundaries allow water to enter into the system and are implemented by setting the face 

velocities of an infow cell equal to a predetermined value and then holding it fxed for the 

entire duration of the simulation. Outfow cells have their inital velocity set to that of their 

neighbors. Then during the iterative relaxation technique used to update pressure values, the 

velocities are allowed to change without constraint. 

The third and fnal boundary condition to consider is the boundary at the surface between 

the water and the air. Each cell in the mesh is marked as either Full, Surface or Empty using 

one of the surface tracking techniques described in section 4.2.4. For any cell that has been 

marked as Surface the velocity at the faces opposite of a Full cell are set so that the divergence 

of the Surface is zero. The pressure in the Surface cell is set to the atmospheric pressure. 
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4.2.4 Surface Tracking 

Three di�erent surface tracking techniques are introduced and each is applicable to di�erent 

requirements. The frst technique utilizes marker particles. Marker particles are massless and 

are introduced at infow boundaries. The particles are updated by sampling the value of the 

fuid velocity feld at the particles position, xp and then multiplying by the current timestep. 

Cells in the computational mesh are then labeled in the following fashion: 

• A cell devoid of particles is marked as Empty 

• A cell that contains at least one particle and is next to a cell that has been labled as 

Empty is labeled as Surface. 

• A cell that has at least one particle and is not labeled as a Surface cell is then labeled as 

Full. 

Marker partilces are useful in situations where the water is likely to exhibit violent phenomena. 

For example, Figure 4.6 shows water that has been poured into a tank and turned over on itself. 

Figure 4.6: Frames from a 2D animation that utilizes marker particles. Image is reproduced 
from [12]. 
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The second method used to track the surface makes use of Free Surface Particles. These 

too are massless particles that are advected with the fuid. The di�erence is that instead of 

moving throughout the entire fuid volume, these particles are located only at the boundaries 

between fuid and obstacles or air. If two particles are too close together, then they are deleted 

and their neighbors connected together. If two particles become too far apart, a new particle 

is introduced on the link between the two. For each iteration of the simulation the cells are 

labeled as Full, Surface and Empty using a region-growing algorithm as follows: 

• Change current Surface cells into Full cells. 

• Start from a cell that is known to be Empty for the duration of the simulation and grow 

a region of Empty cells until a Full cell is encountered. 

• Grow a region of Full cells until either a boundary or Empty cell is encountered. 

• Grow Empty cells again and repeat alternating Empty and Full whenever a boundary is 

encountered. 

• Set all original Surface cells back to Surface 

The third and fnal surface tracking method uses a heightfeld approach. Instead of just 

scaling the pressure at each grid cell as done by Chen and Lobo in [5] the underlying fuid 

velocities are considered. The height of the surface above the terrain is defned along the y axis 

passing through each vertical column of cells. The general formula used to update the surface 

height, h, is: 
@h 

@t 
= 

@h 
w − u( )−

@t

@h 
v( )

@y
(4.2.14) 

Equation (4.2.14) is discretized as: 

ht+�t t+�t = i,j hi,j
t + �t(wi,j,k 

(ht − ht )i−1,j i+1,j+
4�x 

(ht − ht )i−1,j i+1,j+
4�y 

t+�t t+�t (u + u )i+1/2,j,k i−1/2,j,k

t+�t t+�t (v + u ))i,j+1/2,k i,j−1/2,k
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Once the height of each column has been determined, then the process of labeling cells is trivial. 

Any cell above the heightfeld is labeled as Empty, cells below the heightfeld are marked as 

Full and cells that intersect the heightfeld are labeled as Surface. 

4.2.5 Rigid Bodies 

The authors describe a model that can be used to simulate the forces exerted on a rigid body 

by the fuid. They do not however, describe a method to simulate the forces that a rigid body 

exerts on the fuid. A rigid body, B is divided into a set of n nodes. For each node within the 

fuid the force acting upon it can be calculated as: 

fni = −rpidVi + mig (4.2.15) 

where dVi is the volume of the submerged node. The term, rpi, is the gradient of the pressure 

and is defned as: 
pni − pni,xj(rpi)xj = (4.2.16) 

�x 

where pni is the pressure in the cell containing ni and pni,xj is the pressure in the previous cell 

in the x direction [12]. g is acceleration due to gravity and mi is the mass of node i. The total 

force acting on the object is the sum of the force acting on each node. 

4.2.6 Results 

All results were obtained on a Silicon Graphics Crimson R4000 running at either 100MHz or 

150MHz [15]. An animation entitled Moonlight Cove was generated on a 50x15x40 mesh. The 

simulation completed 20,000 iterations in two and half hours. Total time includes rendering 

that was done using RenderMan. This equates to roughly two iterations per second. Another 

example was computed on a 40x12x40 grid. This was able to complete 8,000 iterations in one 

hour. In this example rendering was done using “standard Silicon Graphics hardware routines” 

[12]. This also equates to roughly 2 iterations per second. 
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Chapter 5 

STABLE METHODS 

Stable methods consist of solving the Navier-Stokes equations in a form that permits an 

arbitrarily large time step to be taken without the risk of the simulation becoming unstable. 

Jos Stam’s seminal paper entitled simply “Stable Fluids” will act as the foundation of the two 

implicit methods described herein. The other method by Song et al is a direct extension to 

Stam’s method which is intended to overcome some of the known limitations of Stam’s model. 

5.1 Stable Fluids by Jos Stam 

5.1.1 Governing Equations of Motion 

The equations of motion used by this model are the same as equations (3.0.1) and (3.0.2). They 

are reproduced here for convenience: 

@u 1 2= −(u · r)u − (rp) + �r u + f (5.1.1) 
@t ˆ

r · u = 0 (5.1.2) 

Stam makes use of the Helmholtz-Hodge Decomposition from linear algebra to connect equations 

(5.1.1) and (5.1.2) into one equation. 

5.1.2 Helmholtz-Hodge Decomposition 

The Helmholtz-Hodge decomposition theorem states that any vector feld, w, can be 

decomposed into two parts, such that: 

w = u +rp (5.1.3) 

where r · u = 0 and p is a scalar feld. In English, this means that any vector feld w can be 

decomposed into the sum of a divergence-free vector feld, u, and the gradient of a scalar feld, 
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rp. It can also be shown that u = w − rp. From this defnition we defne an operator, P, 

that will project any vector feld onto its divergence free component, u = Pw. Applying the 

projection operator, P to both sides of equation (5.1.3) yields: 

Pw = P(u) + P(rp) 

u + P(rp) Divergence-free part of u is u 

Since we know that the divergence-free part of w is u then P(w) = u and therefore P(rp) = 0 

must be true. 

Applying the projection operator P to both sides of equation (5.1.1) we get a single equation 

that be can be used to update the velocity feld and then project it onto its divergence-free 

part. 
@u 1 2P( ) = P(−(u · r)u − (rp) + �r u + f) (5.1.4) 
@t ˆ

Since u is already divergence-free then: 

@u 1 2= P(−(u · r)u − (rp) + �r u + f) (5.1.5) 
@t ˆ

Lastly, since P(rp) = 0 then the fnal equation is: 

@u 2= P(−(u · r)u − �r u + f) (5.1.6)
@t 

The following sections will discuss the step-by-step process used to solve each term on the 

right-hand side of equation (5.1.6) and then how to project the resultant velocity feld onto its 

divergence-free component in order to satisfy equation (5.1.2). 

5.1.3 Four-Step Fluid Solver 

The solver proceeds in four-steps. The resultant vector feld after the application of the current 

step will become the input to the next step. It is important to note that the grid used by 

Stam defnes the both the pressure and the velocity at the center of each computational cell. 

The fnite-di�erence approaches discussed above only defned the pressure at the center and the 

27 



velocities were defned on the cell faces. 

add force advect di�use w3(x)
project

w0(x) ! w1(x) ! w2(x) ! ! w4(x) 

External Forces 

add forcew0(x) ! w1(x) 

The easiest step to update is the addition of external forces. In this case: 

w1(x) = w0(x) + �tf(x, t) (5.1.7) 

where �t is the time step and f(x, t) is the vector feld representing the external forces. 

Advection 

add force advectw0(x) ! w1(x) ! w2(x) 

The advection term of the Navier-Stokes equation, ((u ·r)u), is solved using a technique known 

as the Method of Characteristics. The method of characteristics can be used to solve advection 

equations of the type 
@u @u 

a + = 0 . (5.1.8) 
@x @t 

Using the method of characteristics our goal is to rewrite the partial di�erential equation in the 

form of an ordinary di�erential equation over some characteristic curve parameterized by s. 

x(s), t(s) (5.1.9) 

is the characteristic curve. Using the chain rule of di�erentiation shows that: 

d dx @u dt @u 
u(x(s), t(s)) = + . (5.1.10) 

ds ds @x ds @t 

dtNotice that if we set dx = u and = 1 then we get: ds ds 

d @u @u 
u(x(s), t(s)) = u + (5.1.11) 

ds @x @t 
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which are the frst two terms of equation (4.2.1) and are in the same form as equation (5.1.8) 

with a = u. From this we can write: 

d @u @u 
u(x(s), t(s)) = u + = 0 (5.1.12)

ds @x @t 

Now we have three seperate ODEs to solve. 

dt 
= 1 

ds 

With the initial condition that t(0) = 0 then we know that t = s. 

dx 
= u 

ds 

with the initial condition that x(0) = x0 we know that x = us + x0 = ut + x0. 

du 
= 0 (5.1.13) 

ds 

with the initial condition u(0) = f(x0) then u(t) = u(x0). Therefore 

u(x, t) = u(x − ut) (5.1.14) 

In English, equation (5.1.14) states that for our situation, the velocity at point x is equal to 

the velocity at position x − u�t. 

When solving the advection portion of the Navier-Stokes equation we will examine each 

point in the computational grid. Using the velocity at that point we will trace the point 

backwards through the fow feld to the point that it was at during the last iteration. Since the 

backtraced point will rarely land directly on a computational point, then the velocity values 

are linearly interpolated from the nearest neighbors. The velocity at the current update point 

is then set to the interpolated value at the backtraced point. See fgure 5.1 for an overview of 

the solver up to this point. 

This technique is sometimes also referred to as a semi-Lagrangian technique. It is this step 

of the solver that allows it to become unconditionally stable. No matter how large the time step 
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Figure 5.1: (a) The original velocity feld. The integer pair represents the velocity in the x and 
y directions respectively. The feld is shown in 2D and only specifc cells are explicitly defned 
simply for ease of representation. (b) The velocity feld after the application of external forces. 
(c) The resultant velocity feld after the update due to advection. It’s important to note that 
the value in red is the value of w2, not w1, thus not a�ecting the last explicitly cell until the 
next iteration of the solver. 

the values of the velcoity feld will never be smaller or larger than they were in the previous 

time step unless external forces have acted upon them. 

Di�usion 

add force advect di�usew0(x) ! w1(x) ! w2(x) ! w3(x) (5.1.15) 

Fick’s second law of di�usion states [28] 

@w2 2= �r w2 (5.1.16) 
@t 

where � is the kinematic viscosity. We could use an explicit formulation to derive the velocity 

feld w3 from w2 by writing 

2w3 = w2 + (�r w2)�t (5.1.17) 

however, this could cause the simulation to become unstable if the viscosity is large ([26]). 

Instead, an implicit formulation is used 

(I − ��tr 2)w3 = w2 (5.1.18) 

where I is the identity. This is a Poisson equation that can be solved using a number of di�erent 

techniques. We are going to use the Gauss-Seidel Relaxation technique. The same relaxation 

technique is used by the projection step. See section 5.1.3 for a description. 
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Projection 

add force advect di�use w3(x)
project

w0(x) ! w1(x) ! w2(x) ! ! w4(x) 

We know that the vector feld w3 can be decomposed into the sum of a divergence-free vector 

feld and the gradient of a scalar feld 

w3 = u +rp . (5.1.19) 

Applying the divergence operator to both sides of equation (5.1.19) yields 

r · w3 = r · u +r · rp (5.1.20) 

2 r p (since u is divergence-free then r · u = 0). (5.1.21) 

This is another Poisson equation that is similar in form to equation (5.1.18). When 

implementing the projection step we will solve equation (5.1.20) for p and then subtract its 

gradient to obtain the divergence-free feld. 

w4 = w3 −rp (5.1.22) 

Solving Poisson equations 

The Laplacian operator is defned in two dimensions as 

@2p @2p2 r p = + . (5.1.23) 
@x2 @y2 

When discretized, each term above becomes 

@2p 1 
= (pi−1,j + pi+1,j − 2pi,j) (5.1.24) 

@x2 @x2

@2p 1 
= (pi,j−1 + pi,j+1 − 2pi,j) (5.1.25)

@y2 @y2
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where �x and �y represent the grid spacing in the x and y directions respectively. If we assume 

that �x = �y then the equations simplify to 

2 1 r p = (pi−1,j + pi+1,j + pi,j−1 + pi,j+1 − 4pi,j) . (5.1.26) 
�x2

As an example, let’s solve the Poisson equaton, (5.1.18), from section 5.1.3. 

w2 = (I − ��tr 2)w3 

2= −��tr w3 + Iw3 Distribute w3 

w3i−1,j + w3i+1,j + w3i,j−1 + w3i,j+1 − 4w3i,j 2= −��t( ) + w3i,j Discretize r
�x2 

w3i−1,j + w3i+1,j + w3i,j−1 + w3i,j+1 − 4w3i,j �x2/− ��t 
= ( ) + w3i,j�x2/− ��t �x2/− ��t 

w3i−1,j + w3i+1,j + w3i,j−1 + w3i,j+1 − 4w3i,j + w3i,j(�x2/− ��t)
= ( )

�x2/− ��t 

w2(�x2/− ��t) = w3i−1,j + w3i+1,j + w3i,j−1 + w3i,j+1 −w3i,j(4− (�x2/− ��t)) (5.1.27) 

Here we have a linear system of equations that can be represented by the equation Ax = b 

where b = w2(�x2/ − ��t) is the known vector feld, x = w3 is the unknown vector feld and 

A is a sparse matrix whose diagonal elements are (4 − (�x2/ − ��t)) and whose o�-diagonal 

elements represent the neighbors of grid cell (i, j) and are set to one. This sparse linear system 

can be solved many di�erent ways. We will choose to solve it using Gauss-Seidel Relaxation. 

The derivation for the Poisson equation in the pressure projection step follows a very similar 

and simpler sequence as the one presented here. 

Gauss-Seidel Relaxation 

Gauss-Seidel Relaxation (GSR) is an iterative technique intended to solve systems of linear 

equations of the form Ax = b where A is a matrix, x is a vector of unknown values and b is a 

vector of known values. The formula for GSR is [1] 

1 i−1 NX X 
k k k−1xi = [bi − ai,jxj − ai,jxj ] (5.1.28) 

ai,i j=1 j=i+1 
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where xk is the value of x at the kth iteration. Using the values of A, x, and b described at 

the end of section 5.1.3 we obtain the fnal equation for the velocity feld w3 as 

k 1 
w3 = [w2i,j(�x2/− ��t)−w3i−1,j −w3i,j−1 −w3i+1,j −w3i,j+1] (5.1.29) i,j 4− (�x2/− ��t)

The fnal equation for the kth iteration of the pressure feld is included here for completeness 

k 1 k k k−1 k−1 pi = [r · w3i,j (�x
2)− pi−1,j − pi,j−1 − pi+1,j − pi,j+1] . (5.1.30) 

4

5.2 Song, Shin and Ko 

The model developed by Song et al in [25] is directly derived from the model developed by 

Stam in [26] and discussed in section 5.1. The primary contributions made by Song et. al 

are the introduction of the level set method to track the surface of the water, the use of the 

Constrained Interpolation Profle method during the semi-Lagrangian advection, description of 

modeling air bubbles and water droplets and a method to simulate the interaction between the 

water and rigid bodies. 

5.2.1 Level Set Methods 

Level set methods were introduced by Sethian and are applicable to a wide variety of problems. 

In fuid simulation they are frequently used to track the free-surface between two fuids. In this 

case, it is the surface between water and air. For a good introduction to level sets see [24]. 

To track the free surface between the water and the air we use a signed distance function, °. 

The value of the function is defned to be positive at all points inside of the water and negative 

outside of the water and is tracked at the center of each computational grid cell. The position 

of the free-surface is defned at all points where ° = 0. When the simulation begins each grid 

cell is initialized with its distance from the surface. As the simulation progresses the distance 

is updated using the level set equation [16] 

@° 
+ u · r° = 0 (5.2.1) 

@t 

The level set equation looks very similar to the advection portion of the Navier-Stokes equation 
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(3.0.1) and the same technique can be used to compute both values. 

5.2.2 The Constrained Interpolation Profle Method 

One of the problems with the Stable Fluids model developed by Stam [26] is that the model can 

lead to a dissapation of mass. Song et al propose a solution based on the use of the Constrained 

Interpolation Profle (CIP) method. 

In Stam’s model, when solving for the advection portion of the Navier-Stokes equation a 

semi-Lagrangian technique is used. See section 5.1.3 for a description. In Stam’s method after 

the particle has been backtraced then linear interpolation is used to compute the velocity based 

on nearest neighbors. Song et. al instead use a cubic interpolation method that can help recover 

sub-cell features that might be lost by using simple linear interpolation. 

The CIP method makes use of the value at neighboring grid cells as well as the spatial 

derivatives of those values. The derivative of the values can be obtained by directly 

di�erentiating the original advection equation. In the case of the level set equation 

@°˘ + u · r° ˘ = −u˘ · r° (5.2.2) 
@t 

@° @uwhere ° ̆  = @˘ , u˘ = @˘ and ˘ is one of the spatial variables. 

In one dimension the CIP equation is written as 

aX3 + bX2 + ´ �(X) = ° iX + ° i (5.2.3) 

where X = x − xi for x 2 [xi,xi+1] and 

´ ´ ° i + ° i+1 2�° 
a = − (5.2.4) 

�x2 �x3 

´ ´ 3�° 2° i + ° i+1
b = − (5.2.5) 

�x2 �x 

�° = ° i+1 − ° i (5.2.6) 

�x = xi+1 − xi (5.2.7) 

As an example, suppose that xj is a one dimensional point and it has been backtraced to 

´ ´ xr 2 [xi, xi+1]. See fgure 5.2. Then Xr = xr − xi+1, ° j = �(Xr) and ° = �(Xr). 
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Figure 5.2: A one-dimensional example of the CIP method 

5.2.3 Air Bubbles and Water Droplets 

The process of simulating bubbles and droplets can be divided into four parts. The frst is 

identifying when and where bubbles and droplets should be created. Once the location has 

been identifed then the volume represented by the droplet/bubble needs to be determined. 

The third is moving the bubbles or droplets. The last is merging bubbles or droplets back into 

the main fuid simulation. 

Identifying Bubbles and Droplets 

Song et. al describe three methods that can be used to identify air bubbles and water droplets. 

The frst method involves examining the sign of the level set function. If cell with a positive 

level set value is surrounded by cells with a negative level set value then a droplet is introduced. 

If the signs were reversed then a bubble is created. See Figure 5.3. 

Figure 5.3: The frst method to identify water droplets. In this scenario a water droplet would 
be created at the position of the blue cell. 

Sometimes, simply examining the signs of the level set function is not enough. Consider the 

case where the values inside a of small grid have a small negative value and are surrounded by 

cells with a large negative value. The small negative values indicate that water is nearby so a 

water droplet should be introduced into the blue region in fgure 5.4. 
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Figure 5.4: The second method to identify water droplets. The blue cells contain a small 
negative level set value while the surrounding cells contain a large negative level set value. 

Lastly, the semi-Lagrangian technique used in the advection step of the solver may not 

always refer to every cell in the grid. The mass in the unreferred cells may be lost. To 

counteract this problem those cells are converted into droplets/bubbles. 

Calculating the Volume of Droplets and Bubbles 

Once the position of droplets and bubbles has been identifed then the volume of fuid to be 

represented by the droplet/bubble needs to be determined. The authors use the following 

equation XZ 
Vf = H(°(x))dx ˇ H�(°(xc))�x�y�z (5.2.8) 

c c 

where c represents the droplet (circular region), c is the index over the cells in the shaded 

region of fgure 5.5 and H is the smeared Heaviside function given by [25] 

8 >>>>< >>>>: 
0 if ° < −� 

H�(°) = 1 ° + + 1 sin(°ˇ ) if |°| � � (5.2.9) 
2 2� 2ˇ � 

1 if ° > � 
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Figure 5.5: The shaded cells are used to determine the volume of the droplet. 

Motion of Droplets and Bubbles 

Bubbles and droplets can be thought of as simply particles. As the particle moves it experiences 

forces due to gravity, drag and pressure from the surrounding fuid. The authors summarize 

the force as 

f = mfg + �dr 
2(b − vp)|b − vp| − Vfrp (5.2.10) 

where mf is the mass, Vf is the volume, �d is the drag coeÿcient, r is the radius of the particle, 

vp is the current velocity of the particle and b is the interpolated velocity of the grid-based 

fuid measured at the center of the particle. The last two terms of the equation represent the 

force of the fuid acting on the particle and must be accompanied by an opposite force acting 

on the fuid. 

Merging Droplets/Bubbles Back Into the Fluid 

Particles are merged back into the fuid when one of the two following conditions are met: 

1. The volume of the particle becomes more than twice as large as a single cell. 

2. The particle hits the surface or moves into portion of the fuid of the same phase (droplet 

moves into water or bubble moves into air). 

In the frst case, the velocity at the grid points is set to the velocity of the particle and the 

level set value is updated according to 

°(xi) = sp(rp − |xi − xp|) (5.2.11) 

37 



where sp = 1 for a droplet and sp = −1 for a bubble, rp is the radius of the particle, xp is the 

center of the particle and xi is the grid point being updated. 

In the second case where the particle moves back into the fuid of the same phase, then the 

velocity at the grid point is set to the average of the current velocity and the particle’s velocity. 

The level set values are updated using the inverse of the procedure that was used to determine 

the volume of the particle. This procedure has the e�ect of forming small ripples. When the 

droplet hits the surface it creates a small downward force creating a hollow. At later time steps 

the region is pushed back up and creates a small bump. 

5.2.4 Interacting with Rigid Bodies 

When a rigid object enters the water, the cells whose centers are contained within the object 

are marked. For each marked cell, s, the component of the velocity feld that is normal to 

the object must be constrained to be positive or else water will be fowing into the object. 

Therefore, the velocity of the cell is modifed so that 

us · ns � 0 . (5.2.12) 

To ensure this equality holds, the normal component of u is removed and the tangential 

component stays the same. The linear and angular forces on the object can be described 

as: 

X 
F = Mg + (−rps · ns)ns�S (5.2.13) X s 

T = (rs − rc)× (−rps · ns)ns�S (5.2.14) 
s 

Where F is the total linear force, T is total torque, M is the mass of the object, s is the index 

ranging over the marked cells, ps is the fuid pressure of the cell, rs is the position of the cell, rc 

is the position of the object’s center of mass and �S is the area of the object surface subsumed 

in the cell. 
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5.2.5 Results 

Using a 3.2 GHz Intel Pentium 4 with 1 GB of memory the authors were able to achieve real-

time results ( 30-40 fps) in 2D. Simulation times in 3D ranged from 34.0 to 51.7 seconds per 

frame on an 80x80x80 grid. 

Figure 5.6: A 3D simulation of a cup being drowned in water using the fuid simulation model 
developed by Song et. al. Image taken directly from [25] 
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Chapter 6 

HYBRID APPROACHES 

The fnite-di�erence approaches have the advantage that they are easy to comprehend, easy 

to implement and in the case of [5] run in real-time. The downside is that they can easily 

become unstable. The implicit methods on the other hand have the advantage that they are 

guaranteed to remain stable, but may not always conserve mass or run in real-time. Some 

have tried to combine the best of both approaches in an attempt to overcome each of their 

limitations. 

6.1 Foster and Fedkiw 

The approach used by Foster and Fedkiw in [11] is a combination of the semi-Lagrangian 

approach used by Stam [26] that is discussed in section 5.1 and the fnite-di�erence approach 

used by Foster and Metaxas [12] and discussed in section 4.2. The discretization technique 

follows the Marker-and-Cell approach used by Foster and Metaxas. However, their biggest 

contribution is the method used to track the free-surface between the water and the air. 

Additionally, they describe a simple mechanism to handle objects that move through the liquid. 

6.1.1 Tracking the Free Surface 

Foster and Fedkiw use a combination of marker particles and a level set method to track the 

free surface of the water. Both the particles and the level set are updated during each iteration. 

The values are then compared and combined to yield the fnal surface for each frame of the 

simulation. 

Marker Particles 

The marker particles are assumed to be massless and are distributed throughout the entire 

fuid volume during initialization. During the simulation, particles are introduced at infow 

boundaries. During each iteration the position of each particle is updated using simple 
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kinematics. 

xp = xp + uxp ��t (6.1.1) 

where xp is the position of the particle and uxp is the velocity of the fuid at xp. The value of 

uxp is obtained using trilinear fltering. While this approach is computationally eÿcient and 

easy to implement, it is unclear how the particles should be connected in order to retrieve the 

surface. 

An alternative is to use the particles to locate an isocontour of an implicit function. The 

implicit function is defned on a high-resolution grid that is placed inside of the Navier-Stokes 

grid. Each particle represents the center of an implicitly defned surface with radius r, 

q
° p(x) = (xi − xpi)2 + (xj − xpj)2 + (xk − xpk)2 − r (6.1.2) 

where xp is the position of the particle. The surface of the particle is defned as the points 

where ° p(x) = 0. An implicit function °(x) can then be defned using all particles by taking 

the value of ° p(x) from the particle closest to x. If °(x) is sampled at each point in the high 

resolution grid, then the Marching Cubes algorithm can be used to tesselate the isocontour 

where °(x) = 0 (see Figure 6.1). 

Figure 6.1: The high-resolution grid and the corresponding sign of the function °. Figure 
directly adapted from [11] 

Now that the surface has been found the authors smooth it to yield a less bumpy appearance. 

The frst step in the smoothing process is to normalize the value of |°(x)| so that it represents 
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the distance to surface. The sign of ° will be set so that it is negative inside the fuid and 

positive on the outside. The normalization is done using a technique called the Fast Marching 

Method. The Fast Marching Method will be discussed in the next section. 

After °(x) has been normalized then the next step in the smoothing process is to smooth 

out any unnatural folds or corners. The authors use the following smoothing equation 

° � = −S(°�=0)(kr°k − 1) (6.1.3) 

to update the values of ° close to the °(x) = 0 isocontour. Where 

° 
S(°) = p (6.1.4) 

°2 + �˝2 

and �˝ is the grid spacing (assuming that �˝ is the same for all directions). The smoothing 

function is applied for a few relaxation steps in fctitous time �. The smoothed surface is still 

not perfect. It requires a large number of particles near the �(x) = 0 isocontour. It also requires 

particles to be present in the entire fuid volume even when they clearly do not contribute to the 

surface. The solution is to use the particles to create ° one time and then track its movement 

through the same velocity feld as that used to move the particles. This is known as a level set. 

The level set is discussed in section 6.1.1. 

Fast Marching Method 

Fast Marching Methods are used to solve Eikonal equations that come in the form: 

kru(x, y, z)k = F (x, y, z) in (6.1.5) 

where F (x, y, z) > 0 is a known input and is a domain in R2 or R3. Lastly, u = g(x) where 

g(x) is a known function on a given curve or surface on . The Fast Marching algorithm is 

defned as follows. 

1. Label initial known values as Alive. 

2. Label all points that are one grid space away from an Alive point as Close. 
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3. Label all remaining points as Far. 

4. Begin Loop 

5. Identify the point in Close with the smallest value of u and label this point as Trial. 

6. Label all neighbors of Trial that are not Alive as Close. If one of these points was in Far, 

then remove it from Far. 

7. Recompute the values of u at all Close neighbors of Trial. 

8. Add Trial to the Alive set and remove it from the Close set. 

9. End Loop 

In the context of the fuid simulation, the initial Alive set would be all points for which ° > 0. 

The level set 

Recall the level set equation 
@° 

+ u · r° = 0 . (6.1.6)
@t 

This is an advection equation similar to the advection term in the Navier-Stokes equation, 

(u · r)u. The authors solve this equation using the technique presented in [9]. This is a 

multi-step process. 

1. We need to calculate °+ and °− which represents the partial derivative of ° with respect x x 

to x in forward and reverse directions respectively. 

2. For °− let:x 

° i−2−° i−3 ° i−1−° i−1v1 = , v2 = �x �x 

° i−° i−1 ° i+1−° iv3 = , v4 = �x �x 

° i+2−° i+1v5 = �x 

3. For °+ let:x 
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° i+3−° i+2 ° i+2−° i+1v1 = , v2 = �x �x 

° i+1−° i ° i−° i−1v3 = , v4 = �x �x 

° i−1−° i−2v5 = �x 

4. Next we defne: 

13 1 
S1 = (v1 − 2v2 + v3)2 + (v1 − 4v2 + 3v3)2 (6.1.7) 

12 4
13 1 

S2 = (v2 − 2v3 + v4)2 + (v2 − v4)2 (6.1.8) 
12 4
13 1 

S3 = (v3 − 2v4 + v5)2 + (3v3 − 4v4 + v5)2 (6.1.9) 
12 4

5. Next we defne: 

1 1 a1a1 = w1 = 10 (�+S1)2 , a1+a2+a3 

6 1 a2a2 = w2 = 10 (�+S2)2 , a1+a2+a3 

3 1 a3a3 = w3 = 10 (�+S3)2 , a1+a2+a3 

6. Lastly, 

v1 7v2 11v3 −v2 5v3 v4 v3 5v4 v5(°±)i0 = w1( − + ) + w2( + + ) + w3( − − )x 3 6 6 6 6 3 3 6 6 

°− °+7. When solving the advection equation, if ui0 > 0 then use . If ui0 < 0, then use . If x x 

ui0 = 0, then neither is required. 

8. Derivations for y and z are an obvious extension of what was presented here. 

Combining the Particles and the level set 

After updating both the particles and the level set then the value of the level set is used to 

determine how to interpret the particles. If a particle is inside and more than a few grid cells 

away from the surface than it is deleted. This saves computational e�ort since the particle can 

not contribute to the surface, then there is no reason to keep it around. Particles are introduced 

into cells that are close to the °(x) = 0 isocontour that contain relatively few particles. This 
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will help to maintain defnition in these cells. For each particle that is close to the surface, the 

curvature of the interface is calculated as: 

k = r · (r°/kr°k) (6.1.10) 

Areas with a small value of k have low curvature and are smooth. In these areas particles 

are ignored and the level set is used to determine the surface of the liquid. In areas of high 

curvature the particle values are used to modify the value of ° obtained from the level set. If 

the implicit function for a particle at a grid point would give a smaller value of ° than the level 

set, then the smaller value is used to replace the value obtained from the level set. Despite our 

best e�orts, some particles will escape from the liquid. These can be used to indicate mist or 

spray. 

6.1.2 Updating the Velocity Field 

Foster and Fedkiw use a combination of the semi-Lagrangian approach that was used by Jos 

Stam and the fnite-di�erence approach used by Foster and Metaxas. The advection portion of 

the Navier-Stokes equation is updated using the semi-Lagrangian approach and the di�usion 

is handled using fnite-di�erences. The semi-Lagrangian approach allows for a large time step, 

but tracking the fuid surface requires a small time step. The velocity feld is updated using a 

large time step and then the surface is repeatedly updated using a series of small time steps 

that sum to the value of the large time step. Conservation of mass is enforced using a technique 

very similar to that used by Jos Stam in [26] except that a Preconditioned Conjugate Gradient 

method is used rather than a Gauss-Seidel Overrelaxation Method. 

6.1.3 Moving Objects 

Foster and Fedkiw present a fairly straightforward method for the liquid to respond to moving 

objects. 

1. At the beginning of the frame, set the velocity of any cell within an object equal to the 

velocity of that object. 

2. Update the velocity feld as usual. Make no special considerations for cells with objects. 
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3. The velocities of every cell that intersects a surface has its velocities modifed so that the 

component in the direction of the surface normal is equal to zero. That is u · ns = 0. 

4. The velocity at cells within the object are set equal to the velocity of the object. 

5. When performing the mass conservation step, the velocity is held fxed at any cell that 

intersects an object. 

Although straightforward, the method does have some drawbacks. First, it can only accomodate 

one polygon per cell. This can be overcome by the averaging the normals for all faces within 

a cell. Second, the method only models the liquid’s response to the object and not the forces 

that the liquid applies to the object. 

6.1.4 Results 

All results were obtained on a 500MHz PentiumII and the times indicated include only 

simulation time, not rendering time. A grid of 250x75x90 cells took about 7 minutes per 

frame. A grid of 150x75x90 cells took about 4 minutes per frame. A grid of 150x200x150 cells 

took about 3 minutes per frame. 

Figure 6.2: An example of an animation created using the technique discussed in section 6.1. 
The environment consisted of 150x75x90 cells and simulation took approximately four minutes 
per frame. Image taken directly from [11]. 
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Chapter 7 

COLUMN-BASED APPROACHES 

The model developed by Holmberg and Wünsche in [14] abandons the Navier-Stokes 

equations all together. Theirs is a column-based approach that is based on the science of 

hydrostatics. 

7.1 Holmberg and Wünsche 

The model proposed by Holmberg and Wünsche in [14] to simulate water can be broken down 

into two pieces: the volume model and the spray model. The volume model is used to describe 

the main volume of water while the spray model is used to describe water that has broken free 

from the main volume. 

7.1.1 Volume Model 

The simulation area is divided into a 2D grid of columns with equally sized squares as their 

base. The height of each column is initialized to a user-defned value and represents the depth 

of the water. Each column is then divided into cells. Virtual pipes are then connected between 

each of the cells. Figure 7.1 shows a 2D cross-section of the initial set up. 

Figure 7.1: A 2D cross-section of the initial column set up used in [14]. Here arrows represent 
virutal pipes and the solid colored blocks represent terrain. 
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The amount of liquid that fows through each pipe is dependent on the pressure di�erential 

along the pipe. The pressure, Q, of each column is derived from Bernoulli’s equation [13] and 

can be written as 
1 

Q = hˆg + ˆv2 + (p0 + E) (7.1.1) 
2

where Q is the total pressure, h is the height of the column, g is the acceleration due to gravity, ˆ 

is the fuid density, v is the velocity of the fow, p0 is the air pressure and E is the pressure from 

external forces. The rate of fow through the pipe can then be determined based on Poiseuille’s 

equation [13] � � 
Qhead −Qtail v = fv0 + �t (7.1.2) 

ˆl 

where l is the pipe length (or grid size), f is the friction coeÿcient and v0 is the velocity 

from the previous time step. Once the fow velocity is calculated, the volume of water passing 

through the pipe is simply 

V = �tvC (7.1.3) 

where C is the cross sectional area of the pipe defned as 

C = (htop − hbottom) � d (7.1.4) 

htop = min(a1, a2) 

hbottom = max(b1, b2) 

where d is the grid spacing, ai is the top of two cells and bi is the bottom of two cells. This 

can be thought of as the overlap of two cells. This area is shown in red in Figure 7.2. Since the 

fuid is assumed to be incompressible then the volume fowing into one column must be equal 

to the volume fowing out the column on the other end of the pipe. In the cases where a column 

may be left with a negative volume, then the fow quantities need to be adjusted to avoid this 

situation. 
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Figure 7.2: The area in red indicates the area calculated by equation (7.1.4). 

7.1.2 Spray Model 

Generating Particles 

The spray model is intended to simulate water that has broken free from the main volume of 

water. In previous work, such as [6], spray was introduced when the vertical velocity of a column 

exceeded a pre-determined threshold. This approach has little to no physical justifcation. 

Instead, Holmberg and Wünsche use research from the study of waves. It has been shown that 

a wave becomes unstable when the wave height is 0.78 of the water depth. This same fact is 

used to determine when particles should be released from the main volume. 

Once the need for particles has been identifed then the amount of volume that the particles 

represent needs to be determined. The authors use an adaptation of the Kindsvater-Carter 

equation [20] which is used to measure the fow rate through a weir. A weir is a device that is 

placed into a channel or river and is used to measure the fow of water [10]. The fow rate of 

water through a weir is defned as 
2 3 p

� = BH 2 2g (7.1.5) 
3

where B is the base length, H is the height of the water above the base and g is the force due 

to gravity. Since � is the rate of fow then the total volume represented is given by V = ��t. 

The volume of each individual particle is determined prior to simulation. Therefore, the total 

number of particles to be created is given by 

nparticles = V/vparticle (7.1.6) 
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where vparticle is the volume of each individual particle. One additional particle may be created 

to account for any additional volume left out in the above equation. 

Now that the number of particles has been determined then their initial velocities needs to 

be determined. The authors state 

To do this the di�erence in total height between the column for which particles are 

being generated and the column behind is used in the classic formula 

2 v = u 2 + 2as 

Where v is the current velocity, u is the initial velocity, a the acceleration, in this 

case gravity, and s the distance covered. 

However, it is unclear to which column they are refering to by “... and the column behind”. 

Secondly, they do not provide a reference or derivation for their “classic” formula. 

Particle Movement and Reabsorption 

Once particles are created they are moved using simple kinematics. The only force acting on 

particles is gravity. 

When a particle hits a column of water, then it exerts a force on the water. The force can 

be described as 

F = vµ + V ˆg (7.1.7) 

Where v is the velocity of the particle, µ is the viscosity, V is the volume of water displaced, ˆ 

is the density of the fuid and g is gravity. Pressure is defned as P = F/Area. Therefore, it is 

easy to calcuate the pressure increase at the column where the impact occurred. 

7.1.3 Results 

On a 1.4GHz PC an un-optimized simulation using 13,000 columns, 4 cells per column and 

about 3700 particles was able to run at about 15 seconds per frame. 
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Figure 7.3: Frame from animation using the model described in [14]. Image taken directly from 
[14]. 
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Chapter 8 

SMOOTHED PARTICLE HYDRODYNAMICS 

8.1 Introduction 

The previous approaches that have been discussed all fall under the category of Eulerian 

approaches. They have utilized a fxed grid located in space and evaluated the properties 

of the fuid as it moves past each grid point. An alternative approach is to describe the motion 

of the fuid using particles that are moving with the fow. This is called a Lagrangian approach. 

Smoothed particle hydrodynamics (SPH) works in this fashion. 

The SPH approach estimates the properties of the fuid at any given point by a weighted 

average of the property over the nearby fuid volume [21]. Mathematically this can expressed 

as Z ˝ 

A(~r) = A(~s)W (|~s − ~r|)d3 s (8.1.1) 
0 

where A is some property of the fuid and W is the weighting function. Rather than computing 

the given integral, the SPH approach approximates it by using a fnite set of particles. Thus 

the above equation becomes 

NX 
A(~r) ˇ AjW (r − rj , h)�Vi (8.1.2) 

j 

Here j iterates over all particles and h is the “core radius” of W . The core radius of the 

smoothing kernel can be thought of as the maximum distance from j for which W 6= 0. Using 

mithe fact that �Vi = ˆi 
then equation (8.1.2) becomes 

NX Aj
AS(r) = mj W (r − rj , h) (8.1.3) 

j 
ˆj 

where ˆj is the density of particle j, and mj is the mass of particle j. This equation is known 

as the general SPH equation. 

Every particle in the SPH simulation carries mass, position and velocity. Since density is 
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not one of the quantities carried by each particle it is obtained using the SPH equation by 

setting A = ˆ. 

ˆS(r) = 

= 

X ˆj
mj W (r − rj , h)

ˆjjX 
mjW (r − rj , h) 

j 

Some terms of the Navier-Stokes equations rely on the gradient and Lapalacian of feld 

values. Using SPH the gradient and Laplacian of quantity A is defned as the gradient and 

Laplacian of W X AjrAS(r) = mj rW (r − rj , h) (8.1.4) 
j 

ˆj 

X Ajr 2AS(r) = mj r 2W (r − rj , h) (8.1.5) 
j 

ˆj 

To show this we will follow the derivation given in [17]. In a system with two particles, i and 

j, the partial derivative of (8.1.3) with respect to x is 

0 1 
@ @ X Aj@ AAS(ri) = mj W (ri − rj , h) (8.1.6) 
@x @x ˆjj 

Using the product rule of di�erentiation we get 

� � � � 
@ 

@x 

mj
Aj W (ri − rj , h)

ˆj 
= 

@ 

@x 

mj
Aj 

ˆj 

mj
W (ri − rj , h) + Aj 

ˆj 

@ 
W (ri − rj , h)(8.1.7)

@x 

= 
mj0 · W (ri − rj , h) + Aj 
ˆj 

@ 
W (ri − rj , h)

@x 
(8.1.8) 

= 
mj

Aj 
ˆj 

@ 
W (ri − rj , h)

@x 
(8.1.9) 

� � 
mjAssuming that the value of A is constant throughout particle j then @ Aj = 0. The @x ˆj 

parital derivative with respect to y and z follow a similar derivation thus allowing the gradient 

of A to be written as equation (8.1.6). A similar derivation can be taken for the Laplacian of 

A. 
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8.1.1 Lagrangian Approach to Solving the Navier-Stokes Equations 

Recall equation (3.0.2) is the continuity equation and states that for an incompressible fow, 

mass must be conserved. Since each particle in the system represents a distinct mass quantity 

then mass is guaranteed to always be conserved. Therefore equation (3.0.2) can be disregarded 

completely. 

When discussing the Lagrangian approach to solving the Navier-Stokes conservation of 

momentum equation it is convenient to rewrite equation (3.0.1) as [23] 

� � 
@u 2ˆ + (u · r)u = −rp + ˆg + µr u . (8.1.10) 
@t 

Once again, the choice of particles as fuid representation can simplify equation (8.1.10). The 

advection term (u ·r)u is used to describe how the velocity fows with itself. Since the particles 

both defne the velocity and move with it, then the advection term has already been satisfed 

and does not need to be explicity calculated. This reduces equation (8.1.10) to 

� � 
@u 2ˆ = −rp + ˆg + µr u . (8.1.11) 
@t 

The right hand side of equation (8.1.11) represents the sum of the forces acting on each particle, 

Fi. Using Newton’s equation which states that F = ma we can derive the acceleration for each 

particle, i, as 
Fi ai = . (8.1.12)
ˆi 

Once the accleration of particle i has been determined, then its position and velocity can be 

updated using any numerical integration scheme that one prefers. 

8.1.2 Calculating Forces 

Each force on the right-hand side of equation (8.1.11) can be calculated using equation (8.1.3). 

However, in some cases the results will not be very accurate and some modifcations can be 

made to overcome these shortcomings. 
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Pressure 

The force due to pressure, fpressure is represented in the Navier-Stokes equation as −rp.i 

Plugging pressure into equation (8.1.4) gives 

X 
fpressure pj= mj rW (ri − rj , h) (8.1.13) i 

j 
ˆj 

This equation presents two issues. The frst is that in order to calculate the pressure force at 

position ri we need to know the value of the pressure at position rj . The second is that the 

resulting pressure force is likely not going to be symmetric. The frst issue is resolved using the 

ideal gas law [17] 

pV = nRT (8.1.14) 

1where p is pressure, V = is the volume per unit mass, n is the number of molecules in a mol, ˆ 

R is the universal gas constant and T is the temperature. In the case of an isothermal fuid 

with a constant mass then the right hand side can be reduced to a single scalar k. Thus, the 

pressure can be written as 

pV = k 

1 
p = k 
ˆ 

p = kˆ (8.1.15) 

To understand the second issue with equation (8.1.13) consider a system with only two 

particles, a and b. Particle a will only use the pressure of particle b to compute its pressure 

force and vice versa. The only way that the force can be symmetric is if particles a and b had 

the same pressure. In general this will not be the case. In [23] Müller et. al resolved this issue 

by simply using the arithmetic mean of the two pressures. Thus the resulting equation for the 

force due to pressure is defned as 

X 
fpressure pj + pi = mj rW (ri − rj , h) . (8.1.16)i 

j 
2ˆj 

There exists one last issue with calculating the pressure force using equations (8.1.15) and 
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(8.1.16). The resulting force will always result in repulsive forces [17]. While this may be true 

for a gas which is always expanding, it is not valid for a liquid that should exhibit internal 

cohesion and have a constant mass-density when at rest. The solution discussed in [17] is to 

introduce an additional rest pressure, p0, such that 

(p + p0)V = k 

(p + kˆ0)V = k 

1
(p + kˆ0) = k 

ˆ 

p + kˆ0 = kˆ 

p = k(ˆ− ˆ0) (8.1.17) 

Using the pressure given by equation (8.1.17) in equation (8.1.16) will result in a pressure force 

that will act to keep the fuid at its rest density. 

Viscosity 

Applying the SPH equation to viscosity yields 

X 
fviscosity 2 uj= µr u(ri) = µ mj r 2W (ri − rj , h) (8.1.18)i 

j 
ˆj 

This again yields an asymmetric force. The solution proposed in [23] is a keen observation 

that the viscosity of the fuid only depends on the relative velocity between particles. Thus the 

equation becomes X 
fviscosity mj 

uj − ui = µ r 2W (ri − rj , h) (8.1.19)i ˆjj 

8.1.3 Determining Surface Location 

The free surface between the fuid and the air is obtained using an additional feld that the 

literature calls the color feld. The color feld, cj , is defned to be 1 at particle locations and 0 
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everywhere else. Plugging the color feld into the general SPH equation (8.1.3) yields 

X cj
cS(r) = W (r − rj , h)mj

ˆjj X 1 
W (r − rj , h) Using the fact that cj is always 1 = 

j 

mj
ˆj 

The normal to the surface, n is defned as the gradient of the color feld 

n = rcS(r) (8.1.20) 

The fnal location of the surface is defned at points where |n| > l where l is a pre-determined 

threshold value. Once the surface has been determined then Müller et. al suggest in [23] that 

it can be rendered using either point splatting or the Marching Cubes algorithm. They note 

that Marching Cubes produces a better nicer result but takes much longer. 

8.2 Müller, Charypar and Gross 

The major contributions made by Müller et. al in [23] are smoothing kernels for various portions 

of the SPH simulation, the description of an addtional force due to surface tension and the 

description of results they have obtained using the SPH approach. 

8.2.1 Smoothing Kernels 

In [23], Müller et. al use the following smoothing kernel for all but two calculations 

8 >< >: (h
2 − |r|2)3 , if 0 � |r| � h315 

Wdefault(r, h) (8.2.1) = 
64ˇh9 

0, otherwise 

The value of this kernel, its gradient and Laplacian is shown in Figure 8.1. One nice feature 

of this kernel is that it does not involve computing the magnitude of r which avoids a 

computationally expensive square root calculation. 

The kernel given by equation 8.2.1 can not be used to calculate the force due to pressure. 

The problem is that the gradient goes to zero as the two particles get close together. This would 

erase any repulsive forces between the two particles. In [23], Müller et. al solve this problem 
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using the so called “spiky” kernel given by 

15 
Wspiky (r, h) = 

ˇh6 

8 >< >: (h− |r|)3 , if 0 � |r| � h 
(8.2.2) 

0, otherwise 

The value of this kernel, its gradient and Laplacian is shown in Figure 8.1. 

The last kernel introduced by Müller et. al in [23] is used to compute the force due to 

viscosity. The kernel used to compute the viscosity force must have a Laplacian that is always 

positive. To understand this recall that viscosity is a force that is created by friction and 

decreases a fuids kinetic energy by converting it into heat. If the smoothing kernel were ever 

allowed to be negative then it could end up increasing the relative velocity between particles. 

The kernel proposed in [23] is defned as 

8 >< >:
|r|3 

+ |r|
2 

+ h−
2h3 h2 2|r| − 1, if 0 � |r| � h15 

Wviscosity(r, h) = 
2ˇh3 

(8.2.3) 
0, otherwise 

The value of this kernel, its gradient and Laplacian is shown in Figure 8.1. 

Figure 8.1: The three kernels , Wdefault, Wspiky and Wviscosity (from left to right) proposed by 
Müller et. al in [23]. The thick lines show the kernels, the thin lines their gradients and the 
dashed lines the Laplacian. Image taken directly from [23]. 

8.2.2 Surface Tension 

In [23], Müller et. al introduce an additional force not found in the Navier-Stokes equation. 

This is the force due to surface tension. Fluid molecules are constantly subject to attractive 
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forces from nearby molecules. Inside the fuid all of these attraction forces balance each other. 

However, on the surface the force is unbalanced. 

The surface tension force is directly related to the curvature of the surface. The curvature 

is defned as the divergence of the normal, n, as defned in section 8.1.3. 

2n r cS(r)
� = r · = − (8.2.4) 

|n| |n| 

where cS is the color feld as discussed in section 8.1.3. The fnal equation given for surface 

tension in [23] is 

f surface 2 n 
= ˙�n = −˙r cS (8.2.5) 

|n| 

where ˙ is a tension coeÿcient that depends on the two interacting fuids. 

8.2.3 Results 

Results obtained on a 1.8GHz Pentium 4 with a GeForce 4 graphics card. Times include 

simulation and rendering. A system with 2200 particles rendered using point splatting was able 

to achieve 20 fps. Another system that included 1300 particles and allowed for interaction with 

user-supplied forces was able to achieve 25 fps. A third system rendered using the Marching 

Cubes algorithm and containing 3000 particles was able to achieve 5 fps. 

8.3 Kipfer and Westerman 

In [18] the authors Kipfer and Westerman strive to simulate rivers using SPH and sparse 

particle sets. One of the major contributions made by Kipfer and Westerman in [18] is a 

spatial data structure to easily locate the nearest neighbor of each particle when evaluating the 

SPH equations and when determining collision between particles. Additionally, they present a 

technique to extract the surface of the water for rendering. The technique can be implemented 

either on the CPU or entirely on the GPU. Lastly, they discuss joining the two techniques 

together. 

8.3.1 Spatial Data Structure 

In [18], Kipfer and Westerman propose the use of a staggered grid data structure that can be 

used to determine potential collisions between particles. Additionally, the data structure can 
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be used to determine a particle’s nearest neighbors, useful when evaluating the SPH equation 

(8.1.3). The computational domain is divided into a grid of three-dimensional cells with each 

side of length 2r where r is the maximum radius of a particle. This structure is similar to the 

leaf-level of an octree. Each particle’s position is then used to determine the indices, (ix, iy, iz) 

of the cell in which the particle currently resides. The indices are combined into a single 64-bit 

identifer, (id = 0|iy|iz|ix). Note that ix has been placed at the end. This will be explored 

shortly. The particles are then placed into a list and sorted by their identifer in descending 

order. The list is then linearly traversed starting from the left-most entry and progressing to 

the right checking for collision with each particle until a particle identifer is found such that 

idparticle � (idself − 2). Since ix was placed as the least-signifcant bits of the identifer then 

this collision detection is only valid for the x-dimension. Therefore, two additional lists need to 

be created and sorted, one for the y-dimension and one for the z-dimension. Once a collision 

is resolved, then the leading bit of the particles’ identifer is set to 1 so that the collision 

is processed by subsequent list traversals. As shown in fgure 8.2, Kipfer and Westerman 

demonstrated signifcant speed improvements using this data structure compared to a more 

traditional octree. 

Figure 8.2: A graph demonstrating the speed increase of the staggered grid data structure over 
a more traditional octree implementation. Image taken directly from [18] 

60 



8.3.2 Surface Extraction - The Carpet Method 

In [18], Kipfer and Westerman propose a technique called the “carpet method” to extract and 

animate the surface of water. They provide two forms of implementation, one that runs on the 

CPU and a second that runs on the GPU. In a scene with 20,000 particles, they reported a 

speed up of almost four times when using the GPU method as opposed to the CPU method. 

The goal of the surface extraction method is to quickly build a closed surface that encompasses 

all particles. 

CPU-Based Surface Extraction 

A quadtree is laid over the computational domain. Each leaf-node of the quadtree is initialized 

with the maximum height value all of particles inside the leaf, the minimum height value of 

the terrain inside the leaf and a velocity value of zero. Both the he maximum particle height 

value and the minimum terrain height value are then propogated up the tree. The carpet can 

then be eÿciently rendered by traversing the tree and examining the two height values. If at 

any point the maximum particle height is less than the terrain height then the recursion can 

stop. If a leaf node is reached then the corresponding quad is rendered. After the quadtree 

is traveresed and rendered then each quad is accelerated downward by gravity. If the particle 

that was supplying the maximum height value has left the quad, then the quad will slowly fade 

down below the terrain. If not, then the quad will be rendered again during the next frame. 

GPU-Based Surface Extraction 

The GPU-Based method for constructing the carpet utilizes two vertex bu�ers. The vertices of 

the frst bu�er are accelerated downward according to gravity as they are drawn into the second 

bu�er. The height is stored as the z-value. This step is analogous to the gravity acceleration 

performed in the CPU construction. The particles are then splatted into the new carpet vertex 

bu�er with z-testing turned on. This will have the e�ect of raising the carpet vertices at points 

where the particles are above the lowered carpet. Lastly, the newly created bu�er is drawn as 

an array of triangle strips and the original two vertex bu�ers are swapped for the next iteration. 

Splatting, sometimes called surface splatting or point splatting, is a technique that is used to 

render an image of an object whose color and normal are defned at specifc unconnected points. 
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A complete discussion of point splatting is beyond the scope of this paper. The interested reader 

is referred to [32]. 

8.3.3 Joining the Spatial Data Structure and Carpet Method 

Using the CPU-based method to render the carpet as described in section 8.3.2 would require 

a very high resolution quadtree. This would require a great deal of memory and traversal times 

would become unacceptable. Instead, the quadtree is defned to contain a set of the spatial bins 

used for the data structure described in section 8.3.1. When rendering the carpet using the 

CPU method, the topology of each quad will depend on which spatial bins contain particles. 

Additionally, if a particle is in a bin far from its neighbors then it could be used to represent 

spray and perhaps be rendered with a di�erent texture. 

When using the GPU-based carpet approach one is not able to arbitrarily choose rendering 

primitives. Additionally, there is no need to join the spatial data structure to the GPU-based 

carpet method as the whole carpet must be rendered everytime regardless. 

8.3.4 Results 

Results were obtained on a 2.2 GHz AMD Athlon64 with an nVIDIA GeForce 6800 GT graphics 

card with 256 MB of video memory. A simulation containing 3000 particles was able to run at 

68 fps. Another simulation using 8000 particles was able to achieve 26 fps and a third using 

20,000 particles was able to run at 12.7 fps using the CPU-based carpet method. All times 

include simulation and rendering. 

62 



Chapter 9 

SUMMARY 

Many di�erent approaches to simulating the motion of fuids and particularly water have 

been presented. This section provides a brief comparison of the di�erent techniques based on 

their realism, speed, storage requirements and stability. 

9.1 Realism 

The heightfeld approach discussed in section 4.1 solves the Navier-Stokes equations in 2D and 

then scales the pressure at each grid point to determine the height of the surface above the 

terrain. This is clearly just an approximation technique that neglects the activity of the fuid 

at any point other than the surface. Additionally, since the height above the terrain is defned 

as a single scalar value, this approach does not allow for overturning waves. The column-based 

approach presented in section 7 su�ers a similar fate. Additionally, the column-based approach 

is based on the science of hydrostatics and therefore ignores many of the important properties 

of a fuid in motion. 

The grid-based approach discussed in section 4.2 simulates the full 3D Navier-Stokes 

equations and presents several di�erent possible techniques to track the surface of the fuid. One 

of the surface tracking techniques involves tracking the position of massless marker particles as 

they move through the fuid. The surface tracking technique developed by Foster and Fedkiw 

and discussed in section 6.1.1 can be seen as an extension of this technique. Instead of relying 

solely on the particles, the authors additionally use a level set technique to extract the surface 

and then use the particles to modify the level set values. This presents an extremely realistic 

e�ect (see Figure 6.2). 

The stable method discussed in section 5.1 also solves the full 3D Navier-Stokes equations 

but the semi-Lagrangian technique used in the advection step tends to lead to unacceptable 

dissapation of mass. This problem is corrected by Song et. al and is discussed in section 5.2. 

The level set technique used to extract the surface combined with their approach to simulate 
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air bubbles in the water also presents extremely realistic results, see fgure 5.6. 

Lastly, the smoothed particle hydrodynaimcs approach discussed in section 8 uses a 

Lagrangian approach to solve the full 3D Navier-Stokes equations. The accuracy of the approach 

depends largely on the smoothing kernels that are chosen. The technique can be shown to have 

second order accuracy, [19], if the kernels meet the three following conditions. The frst condition 

is the normalization condition which states 

Z 
W (x − x0, h)dx = 1 (9.1.1) 

The second condition is called the Delta function property and it states 

lim W (x − x0, h) = �(x − x0) (9.1.2) 
h!0 

where 

�(x − x0) = 

8 >< >: 1 if x = x0 

0 if 6 x0x = 
(9.1.3) 

The third and fnal condition is known as the compact condition and states 

W (x − x0, h) = 0 when |x − x0| > �h (9.1.4) 

where � is a constant that defnes the e�ective area of the smoothing function at x. 

9.2 Speed 

The Stable Fluids method developed by Stam and discussed in section 5.1 is the only fully 3D 

Eulerian approach discussed in this paper that is capable of producing real-time results. The 

problem is that the semi-Lagrangian approach used to calculate the advection portion of the 

Navier-Stokes equations leads to an unacceptable amount of mass dissapation. The technique 

presented by Song et. and discussed in section 5.2 overcomes the mass dissapation but the 

extra computational complexity prevents the simulation from producing 3D results running in 

real-time. 

The 2D heightfeld approach developed by Chen and Lobo (section 4.1) is able to achieve 

real-time results but at the expense of neglecting the motion of the fuid any where other than 
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at the surface. The particle-based approach presented by Müller et. al and discussed in section 

8.2 is a Lagrangian approach that manages to simulate the full 3D Navier-Stokes equations and 

run in real-time. The downside to the particle method is that it is generally prohibitive to use 

for large bodies of water because it requires a very large number of particles. 

The model developed by Foster and Fedkiw that is presented in section 6.1 o�ers speeds 

around 3 minutes per frame. While clearly not capable of real-time results, for an o�-line 

renderer the results are very promising. 

9.3 Storage Requirements 

The Marker-and-Cell discretization technique used by Chen and Lobo and discussed in section 

4.1 stores the pressure values of the grid at the cell centers and the velocities on the cell faces. 

For a square grid of size w x h there are {(h + 1)(w) + (h)(w + 1)} unique locations where the 

velocity is stored. The pressure is defned at w � h locations and each requires the storage of a 

single scalar value. 

For a square grid of w x h x d, the 3D Marker-and-Cell method used by Foster and Metaxas 

(section 4.2) and Foster and Fedkiw (section 6.1) stores the velocity at {(d + 1)[(h + 1)(w) + 

(h)(w + 1)] + (h + 1)(w − 1)(d − 1)} unique locations. The pressure is defned at w � h � d 

locations and each requires the storage of a single scalar value. 

Using a level set technique as proposed by Song et. al [25] or Foster and Fedkiw [11] requires 

the additional storage space for a single scalar representing the signed distance to the surface 

at each grid point. The use of marker particles as discussed in sections 4.2.4 and 6.1 requires 

storing an extra 3D vector represnting position for each particle in the simulation. 

The particle-based approach discussed in section 8 requires storing the position, mass and 

velocity for each particle in the simulation. Since velocity and position are both 3-tuples, then 

each particle requires storage of seven scalar values. Additionally, during the simulation the 

density at each particle location needs to be calculated and stored for use in future computations. 

This increases the number of scalars to eight per particle. 

The column-based approach discussed in section 7 requires storing the pressure and velocity 

for each column as well as two pointers for each of the virtual pipes used in the simulation. 
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9.4 Stability 

The only two techniques discussed in this paper that are guaranteed to be stable are the two 

that are discussed in section 5. These methods are considered unconditionally stable because 

the simulation is guaranteed to never diverge regardless of how large a timestep is used. The 

Eulerian methods that use an explicit discretization such as those discussed in sections 4.1, 

4.2, 6.1, and 7 are not guaranteed to be stable but stability can be aided by abiding by the 

Courant-Friedrichs-Levy (CFL) Condition. 

The CFL condition states that the time step used in a numerical simulation should be 

smaller than the amount of time for “something signifcant to happen.” In the case of Eulerian 

fuid simulation this is typically defned as the amount of time for a discrete fuid element to 

travel from one grid point to another. In [11], Foster and Fedkiw suggest a CFL condition such 

that �t = �˝/|u| where �t is the time step, �˝ is the grid spacing and u is the velocity. 

The stability of the particle-based approach discussed in section 8 is largely dependent on the 

numerical integration technique used to update velocities and positions based on forces. While 

simple Euler integration will suÿce, stability can be increased using higher-order integration 

techniques such as RK (Runge-Kutta) 2 or RK-4, [31]. 
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Chapter 10 

IMPLEMENTATION AND RESULTS 

The two following algorithms were implemented: the Chen and Lobo heightfeld technique 

discussed in section 4.1 and the Stable Fluids technique discussed in section 5.1. They were both 

implemented on the same hardware consisting of a Pentium D processor running at 3.2GHz 

with 1 gigabyte of RAM and an NVidia GeForce 6800. The simulations were implemented in 

C++ using Microsoft Visual Studio .NET and run on the Microsoft Windows XP Professional 

operating system. The DirectX 9.0c API was used for rendering. 

10.1 Chen and Lobo 

Using a grid of size 80x80, a serial implementation of the Chen and Lobo heightfeld technique 

is able to update the water simulation at an average of rate of 76 times per second. The 

implementation is able to simulate the motion of the water and render the surface with refection 

mapping, refraction mapping and high dynamic range to low dynamic range tonemapping at 

an average rate of 40 frames per second. A single frame of the simulation is shown below. 

Figure 10.1: A single frame of the Chen and Lobo simulation. The simulation includes refection 
and refraction mapping as well as high dynamic range rendering. 
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10.2 Stable Fluids 

While the Chen and Lobo technique was used to simulate water, the Stable Fluids technique was 

used to simulate smoke. This algorithm was implemented both as a CPU-based simulation and 

as a GPU-based simulation. Both simulations use a 128x128. The CPU-based implementation 

is single threaded and is able to update the simulation and render the results at a rate of 

approximately 25 frames per second. The GPU-based implementation is able to update the 

simulation and render the results at approximately 50 frames per second. A single frame of the 

simulation is shown below. 

Figure 10.2: A single frame of the Stable Fluids simulation. The simulation allows the user to 
paint ‘virutal smoke’ on the screen and then disturb the velocity feld and observe the result. 
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Chapter 11 

FUTURE WORK 

11.1 Parallel Approach 

It has been shown that both algorithms are able to produce to very realistic looking results in 

real-time. However, Eulerian fuid simulations such as these contain a great deal of inherent 

parallelism. Typically each grid point can be updated individually and only requires knowledge 

of its nearest neighbors. This fact combined with the increasing popularity of multi-core 

processors provides potential for extremely fast simulations. A simple approach to parallelizing 

the problem would be to divide all of the grid points into n sets, where n is the number of 

processors available on the system. All of the processors could then be working on their own 

sets simultaneously. 

Another approach to parallelizing the Chen and Lobo technique would be to implement it on 

the GPU, such as was done with the Stable Fluids method. Given the relative simplicity of the 

Chen and Lobo technique, it is reasonable to assume that an experienced GPU-developer could 

implement the algorithm with ease. Additionally, the project may prove extremely worthwhile 

as a learning exercise for a novice GPU-developer. 

11.2 Particle and Heightfeld Hybrid Approach 

Both the smoothed particle hydrodynamics and the 2D heightfeld approaches are able to be 

used to create real-time simulations. However, each has its own problem. The biggest problem 

with the heightfeld approach is that the scalar-valued height of the surface above the terrain 

does not allow for overturning water. Additionally, their does not exist a physically justifed 

way to introduce spray. However, it is very eÿcient when used to simulate large bodies of water 

where the focus of interest is on the surface. The particle-based approach is very capable of 

simulating over-turning water and spray is automatically modeled by particles that have strayed 

from their neighbors. The problem with the particle based approach is that the number of 

particles required to simulate very large bodies of water can become computationally prohibitive 
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because particles are required throughout the entire fuid domain. 

A hybrid approach can take advantage of the strengths of each technique will working to 

remove their respective weaknesses. The proposed hybird model simulates the main volume of 

the water using a 2D heightfeld approach analogous to that used by Chen and Lobo in [5] and 

discussed in section 4.1. As the simulation progresses particles can be introduced at “points of 

interest”. “Points of interest” may include locations such as the boundary between the water 

and static or dynamic objects in the scene. A process must be developed that allows interaction 

between the two di�erent simulation techniques. The main considerations involve developing 

a physically-justifed method of advancing the simulation, determining how to convert water 

from the heightfeld into particles and how to merge particles back into the heightfeld when 

necessary. 

During every iteration of the simulation the 2D heightfeld is updated using the technique 

discussed in section 4.1.2. After the heightfeld has been updated, each of the particles is 

updated using the smoothed particle hydrodynamics approach discussed in section 8. The 

particles interact with each other exactly as described in the above section and treat the water 

simulated by the heightfeld as simply a very dense collection of particles. 

Imagine the scenario depicted in fgure 11.1. The fgure shows a cross-section of the 

heightfeld and particles resting on the surface. Recall the generic SPH equation presented 

in section 8. 

Figure 11.1: A 2D cross-section of an example frame from the proposed technique. 

X Aj
AS(r) = mj W (r − rj , h) (11.2.1) 

ˆjj 

Here A is any scalar-valued quantity of the fuid. When updating each particle three forces 
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need to be calculated as described in section 8, these are pressure, viscosity and external forces. 

The inclusion of external forces is trivial and the others will be discussed below. 

11.2.1 Columns and Volume 

A “column” in the heightfeld is defned as three grid points that lie on the vertices of a 

triangular region such as those shown in Figure 11.2. The height of the column, hc, is defned 

as the average pressure at each grid point times the user-defned height scale value, s, plus the 

user-defned base height of the surface, h. Let the pressure at the three grid points for a given 

column be defned as p1, p2 and p3. The height of the column can be defned as 

hc = h + s(pc) (11.2.2) 

p1 + p2 + p3 
pc = (11.2.3) 

3 

Here the variable h is used to indicate the height of the surface above the terrain when the 

pressure at each of the grid points is zero. 

Figure 11.2: (a) A top-down view of the 2D computational grid. The red and green triangles 
each represent a single triangular column. (b) A 2D side view of the column defnition. The 
region in green defnes a single column in the heightfeld simulation. 

Using the defnition of the height of a column given by equation (11.2.2) then the volume in 

a given column, vc, is defned as simply the height of the column times the area of its triangular 

base (the green area shown in Figure 11.2. 

hc ��x ��y 
vc = (11.2.4) 

2 
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11.2.2 Calculating Pressure Force 

Recall the SPH equation used for calculating the force due to pressure 

X 
fpressure pj + pi = mj rW (ri − rj , h) . (11.2.5)i 

j 
2ˆj 

In the hybrid technique, when updating an SPH particle, i, equation (11.2.5) would be used 

directly when calculating the pressure force due to other nearby SPH particles. However, the 

particle is also infuenced by the the main volume of water being simulated by the heightfeld 

technique. To include these forces the volume of fuid that is contained within the core radius 

around each particle needs to be considered. This is the red area in Figure 11.3. Assuming that 

the area in red inside of each column is completely flled with other SPH particles, then the 

total contribution from the heightfeld to the pressure term for the single red particle would be 

ZX pc + pi 
pS(x) = mc rW (r) · d3r (11.2.6) 

2ˆc c Vc 

where c iterates over all of the columns in i’s core radius and Vc is the volume in column c 

inside of i’s core radius. Since it can assumed that the pseudo-particles inside of the column are 

packed tight enough for their density to be constant and using the fact that volume equals mass 

mover density, V = , and since the heightfeld approach assumes that the pressure is constant ˆ 

along the entire column, then equation (11.2.6) can be written as 

ZX pc + pi 
pS(x) = Vc rW (r) · d3r (11.2.7) 

2 
c Vc 

Using the Green-Gauss theorem from calculus, equation (11.2.7) can be rewritten as the 

following surface integral [4] 

ZX pc + pi 
pS(x) = Vc W (r)nda (11.2.8) 

2 
c Sc 

where n is the outward pointing surface normal. Depending on the smoothing kernel this 

integral can either be computed analytically or computed using a numerical integration 

technique such as Gaussian Quadrature [31]. Alternatively, one could consider the volume 
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in the column to represent one very large particle and the total contribution to the pressure 

force from all of the columns would simplify to 

pS(x) = 
X pc

Vc 
+ pi rW (r)
2 

(11.2.9) 
c 

where r is the vector from the SPH particle to the center of the red area in each column as 

shown in Figure 11.3. 

Figure 11.3: A 2D cross section of the proposed technique. Here the red particle is the particle 
currently under consideration. The circle represents the core radius around the particle. The 
area colored in red represents the volume of water from the heightfeld simulation that needs 
to be considered when updating the red particle. Note that the volume in each of the three 
columns needs to be considered seperately and then summed to achieve the fnal result. 

11.2.3 Determining Pressure 

The previous section assumes that pressure is defned at all particle locations. Recall from 

section 8.1.2 that the equation for pressure at each particle is 

p = k(ˆ− ˆ0) (11.2.10) 

which requires the calculation of the density at the particle location. Additionally recall the 

equation for density presented in section 8 

X 
ˆS(r) = mjW (r − rj , h) 

j 
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When determining the density of the fuid for a particle, i, the SPH equation above can be used 

directly when considering other nearby SPH particles. However, just as in the previous section, 

the particle also needs to consider the main volume of fuid. Referring to fgure 11.3, the total 

contribution of the main fuid volume to particle i is 

ZX 
ˆi = mc W (r, h) (11.2.11) 

c Vc 

Using equation (9.1.1) and the fact that the density of water is one and thus, mc = Vc, then 

the above equation simplifes to X 
ˆi = Vc (11.2.12) 

c 

11.2.4 Viscous Force 

Recall the SPH equation for calculating the force due to viscosity 

fviscosity 
i = 

X uj − ui 
µ mj r 2W (ri − rj , h)

ˆjj 

(11.2.13) 

When updating the SPH particles in the proposed technique, equation (11.2.13) can be applied 

directly to all of the particles in the simulation. However, the SPH particles also need to take 

into consideration the main volume of water. Using a procedure similar to that described in 

section 11.2.2, the volume in each column that lies within the particle’s core radius contributes 

to the viscous forces that it experiences. Thus, the total contribution to the viscous force for 

all columns can be computed as 

ZX 
fviscosity = Vcµ(uc − uparticle) r 2W (r, h)d3r (11.2.14) i 

c Vc 

Using the divergence theorem, equation (11.2.14) can be rewritten as 

ZX 
fviscosity 
i = Vcµ(uc − uparticle) rW (r, h)da (11.2.15) 

c Sc 

Depending on the smoothing kernel, W , this integral can either be computed analytically or 

using a numerical integration technique such as Gaussian Quadrature [31]. Alternatively, one 

could consider the volume in the column to represent one very large particle and the total 
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contribution to the force due to viscosity from the main volume of water would simplify to 

X 
fviscosity = Vcµ(uc − uparticle)r 2W (r, h) (11.2.16)i 

c 

where r would be defned as the vector from the SPH particle to the center of the red area in 

each column as shown in fgure 11.3. 

11.2.5 Determining Volume Inside of Core Radius 

When calculating the force due to pressure and the force due to viscosity, it is necessary to 

determine the amount of water represented by the heightfeld that lies within the core radius 

of a given SPH particle. This section presents the algorithm used to solve this problem. It is 

important to note that in consideration of speed and ease of implementation, this algorithm 

only attempts to compute an approximation to this volume. 

The SPH particle can be modeled as a sphere whose radius is equal to the core radius of 

the particle. The top of each column is modeled as a triangle, as described in section 11.2.1. 

The frst step of the algorithm is to determine which triangular columns the particle is near. 

This is done by frst dividing the x and y components of the particle’s position by �x and �y 

respectively. This will indicate which set of grid points the particle resides between. 

The next step is to project the sphere onto the plane of the heightfeld simulation. Let’s 

assume that the 2D heightfeld grid is on the x-y plane. The projection is accomplished by 

simply setting the z-component of the particle’s position to zero. The frst part of the problem 

has now been reduced to determining which triangles in the heightfeld simulation. This can be 

accomplished with a simple circle-triangle collision test. For an example see [8]. Now that the 

list of interacting columns has been determined the next step is to determine what quantity of 

volume lies within each column and the sphere representing the particle. 

Each column of the heightfeld simulation can be visualized as a triangular prism. The prism 

can be divided into an octree by recursively placing a new vertex mid-way along each edge, 

see Figure 11.4. The process of estimating the volume inside of the column and the particle 

becomes simply summing the volumes of the largest prisms in the octree whose vertices all lie 

within the core radius of the particle’s center. 
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Figure 11.4: 2D visualization of the octree building process. In 2D the result is a quadtree. The 
extension to 3D is straightforward. The black triangle represents the base of the heightfeld 
column. The red triangle represents the frst level of the quadtree. The blue triangle represents 
a node at the next level. 

11.2.6 Surface Extraction 

The extraction of the surface will follow the color feld approach discussed in section 8.1.3. 

While the color feld is valid for the SPH particles it would ignore the surface given by the 

heightfeld. Therefore, during the surface extraction process additional static particles will be 

introduced along the surface of each column as shown by the green particles in fgure 11.5. This 

approach should be suÿcient to capture the e�ect of overturning water. 

One of the other desired e�ects of the proposed technique is to provide a physical justifcation 

for the generation of spray. The technique would able to handle this quite easily. Any time that 

the main volume of water is no longer within an SPH particle’s core radius then the volume 

of water will no longer have an e�ect on the particle’s motion and thus the particle can be 

thought of as spray. Once a spray particle has been identifed then it will be subject to simple 

kinematics until it moves back within its core radius of the main water volume. 

11.2.7 Interaction with Rigid Bodies 

Including interaction with rigid bodies is also easily accomdated by this technique. When a 

rigid body makes contact with the surface of the water then its geometry will be projected along 

the object’s velocity direction onto the water surface. Water from the height feld simulation 

will be converted into SPH particles that will be uniformly distributed throughout the projected 

area. When the object contacts the particles the collision response can be handled in the same 
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Figure 11.5: A 2D cross section of the proposed surface extraction technique. Here the black 
particles are the typical SPH particles and the green particles have been introduced along 
surface of the heightfeld columns in order to account for the surface of the heightfeld. 

manner as any other collision between an object and a sphere. 

If the density of the object is greater than that of the water then it will continue to sink. 

In this scenario then the above procedure can be repeated each time that the object contacts 

the surface of the height feld. Once the object reaches the bottom of the simulation domain 

then the pressure in the columns containing the object will likely have reached zero. However, 

since the e�ect of the object on the surface will be negligible then it can be ignored and water 

is allowed to fow back into the columns either from neighboring columns or from SPH particles 

entering the column. 

If the density of the object is less than that of the water then it should eventually come 

to rest on the surface. The particle-based collision response technique discussed above can be 

used to slow the object. Once the object’s vertical velocity has fallen below a pre-determined 

threshold value, ˛, then it can be treated as a simple particle that moves with the fow. 

11.2.8 Converting Particles To and From the Heightfeld Simulation 

From Heightfeld To Particles 

As discussed in section 11.2.7, when a dynamic object comes near the surface of the heightfeld 

then a thin layer along the surface of the water column needs to be converted from the heightfeld 

simulation into particles. Let i and j be predetermined constants that describe the number of 

particles to introduce per unit width of the 2D grid and the number of particles to introduce 

per unit length of the 2D grid, respectively. When converting water from the heightfeld into 
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Figure 11.6: A 2D cross section of the proposed rigid body interaction technique. Part (a) 
represents the object coming into contact with the water surface. The red arrow is the object’s 
velocity. Part (b) represents the projection of the object onto the water’s surface. Part (c) 
shows the reduction of the volume in the columns being converted into particles inside of the 
object’s projected area. 

particles then the number of particles to be created, n, is equal to 

n = (i ��x)(j ��y) (11.2.17) 

where �x is the grid spacing in the x-direction and �y is the grid spacing the in y-direction. 

The particles are evenly distributed throughout the area on the surface of the column. The 

velocity of each particle is taken as the average of the velocities at each of the three points 

comprising the column. Lastly, the mass of each particle needs to be determined. 

Let the user-defned constant, �v, represent the amount of volume to be converted into 

particles. This value of �v is used any time that a thin layer of water along the top of the 

heightfeld needs to be converted into particles. If the volume in a given column is less than v 

then let v = vc where vc is the volume of the column. Using n and �v then the mass of each 

of the particles is simply 
�v 

mp = (11.2.18) 
n 

When water is converted into particles, then the volume in the column needs to be reduced. 

The change in pressure at each grid point, �pc, can be obtained by taking the derivative of 

equation (11.2.4) � �
1 1 −�v = s � (�p1 + �p2 + �p3) �x�y (11.2.19) 
2 3 
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If we enforce the constraint that the change in pressure be equal at each grid point, that is 

�p1 = �p2 = �p3 = �pi, then (11.2.19) becomes 

−�v = s � 1 
2 

� �
1 

(�pi + �pi + �pi) �x�y
3 

−�v = s � 1 
6

(�pi + �pi + �pi) �x�y 

−�v = s � 1 
�pi�x�y

2
−2�v 

s�x�y 
= �pi 

(11.2.20) 

here �v is negative because it represents volume being removed from the column. 

From Particles To Heightfeld 

Collision between a particle and the heightfeld can easily be determined by checking the height 

of the water surface at the point where the particle resides. If the particle’s height is less than or 

equal to the height of the surface, then it is colliding with the water. If the particle is colliding 

with the surface and the distance from the particle to any static or dynamic object is greater 

than a predetermined threshold, d, then the particle will be converted back into the heightfeld 

simulation. Otherwise, the particle will remain in its current position and be updated with the 

simulation. 

Once the need to convert a particle into the heightfeld has been determined, then the 

volume represented by the particle is added into the column on which it resides. If a particle 

resides on the boundary between one or more columns, then its volume is spread evenly across 

all columns. The change in pressure for a column that is absorbing a particle is the same 

as equation (11.2.19) except that a positive value of �v is used. If a particle resides over n 

columns, then the volume added to each column is simply �v = vp/n where vp is the volume 

of water represented by the particle. 
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