
c
Copyright 2007 DigiPen Institute of Technology and DigiPen (USA) Corporation. All rights

reserved.

Physically-Based Fluid Simulation for Computer Graphics

BY
Brian Trevethan

Bachelor of Science, Computer Science
Colorado State University

May, 2004

Submitted in partial fulfllment of the requirements
for the degree of Master of Science
in the graduate studies program

of DigiPen Institute Of Technology
Redmond, Washington

United States of America

Fall
2007

Thesis Advisor: Dr. Xin Li

DIGIPEN INSTITUTE OF TECHNOLOGY

GRADUATE STUDY PROGRAM

DEFENSE OF THESIS

THE UNDERSIGNED VERIFY THAT THE FINAL ORAL DEFENSE OF THE

MASTER OF SCIENCE THESIS OF Brian Trevethan

HAS BEEN SUCCESSFULLY COMPLETED ON

TITLE OF THESIS: Physically-Based Fluid Simulation for Computer Graphics

MAJOR FIELD OF STUDY: COMPUTER SCIENCE

COMMITTEE:

Dr. Xin Li, Chair Dr. Martin Weinless

Charles Duba

APPROVED:

Matt Klassen Date Date

Graduate Program Director Associate Dean

Dr. Xin Li Date Date

Department of Computer Science Dean

The material presented within this document does not necessarily refect the opinion of the
Committee, the Graduate Study Program, or DigiPen Institute Of Technology.

INSTITUTE OF DIGIPEN INSTITUTE OF TECHNOLOGY

PROGRAM OF MASTER’S DEGREE

THESIS APPROVAL

DATE:

BASED ON THE CANDIDATE’S SUCCESSFUL ORAL DEFENSE, IT IS RECOMMENDED

THAT THE THESIS PREPARED BY

Brian Trevethan

ENTITLED

Physically-Based Fluid Simulation for Computer Graphics

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF COMPUTER SCIENCE FROM THE PROGRAM OF MASTER’S

DEGREE AT DIGIPEN INSTITUTE OF TECHNOLOGY.

Dr. Xin Li
Thesis Advisory Committee Chair

Matt Klassen
Director of Graduate Study Program

Associate Dean

Dean of Faculty

The material presented within this document does not necessarily refect the opinion of the
Committee, the Graduate Study Program, or DigiPen Institute Of Technology.

TABLE OF CONTENTS

Page

Chapter 1: Introduction . 1

Chapter 2: Vector Calculus Review . 2
2.1 Scalar Fields and Vector Fields . 2
2.2 Gradient . 2
2.3 Flux . 3
2.4 Divergence . 4
2.5 Divergence Theorem . 5

Chapter 3: Equations of Motion - The Navier Stokes Equations 7
3.1 Conservation of Mass Equation . 7
3.2 Conservation of Momentum Equation . 9

Chapter 4: Finite Di�erence Approaches . 12
4.1 Chen and Lobo . 12

4.1.1 Governing Equations . 12
4.1.2 Discretization Technique . 13
4.1.3 Boundary Conditions . 14
4.1.4 Floating Objects . 15
4.1.5 Stability . 16
4.1.6 Results and Shortcomings . 16

4.2 Foster and Metaxas . 17
4.2.1 Governing Equations of Motion . 17
4.2.2 Discretization Technique . 17
4.2.3 Boundary Conditions . 21
4.2.4 Surface Tracking . 23
4.2.5 Rigid Bodies . 25
4.2.6 Results . 25

Chapter 5: Stable Methods . 26
5.1 Stable Fluids by Jos Stam . 26

5.1.1 Governing Equations of Motion . 26
5.1.2 Helmholtz-Hodge Decomposition . 26
5.1.3 Four-Step Fluid Solver . 27

5.2 Song, Shin and Ko . 33
5.2.1 Level Set Methods . 33

i

5.2.2 The Constrained Interpolation Profle Method 34

5.2.3 Air Bubbles and Water Droplets . 35

5.2.4 Interacting with Rigid Bodies . 38

5.2.5 Results . 39

Chapter 6: Hybrid Approaches . 40

6.1 Foster and Fedkiw . 40

6.1.1 Tracking the Free Surface . 40

6.1.2 Updating the Velocity Field . 45

6.1.3 Moving Objects . 45

6.1.4 Results . 46

Chapter 7: Column-Based Approaches . 47

7.1 Holmberg and W nsche . 47ü

7.1.1 Volume Model . 47

7.1.2 Spray Model . 49

7.1.3 Results . 50

Chapter 8: Smoothed Particle Hydrodynamics . 52

8.1 Introduction . 52

8.1.1 Lagrangian Approach to Solving the Navier-Stokes Equations 54

8.1.2 Calculating Forces . 54

8.1.3 Determining Surface Location . 56

8.2 M ller, Charypar and Gross . 57ü

8.2.1 Smoothing Kernels . 57

8.2.2 Surface Tension . 58

8.2.3 Results . 59

8.3 Kipfer and Westerman . 59

8.3.1 Spatial Data Structure . 59

8.3.2 Surface Extraction - The Carpet Method 61

8.3.3 Joining the Spatial Data Structure and Carpet Method 62

8.3.4 Results . 62

Chapter 9: Summary . 63

9.1 Realism . 63

9.2 Speed . 64

9.3 Storage Requirements . 65

9.4 Stability . 66

Chapter 10: Implementation and Results . 67

10.1 Chen and Lobo . 67

10.2 Stable Fluids . 68

ii

Chapter 11: Future Work . 69
11.1 Parallel Approach . 69
11.2 Particle and Heightfeld Hybrid Approach . 69

11.2.1 Columns and Volume . 71
11.2.2 Calculating Pressure Force . 72
11.2.3 Determining Pressure . 73
11.2.4 Viscous Force . 74
11.2.5 Determining Volume Inside of Core Radius 75
11.2.6 Surface Extraction . 76
11.2.7 Interaction with Rigid Bodies . 76
11.2.8 Converting Particles To and From the Heightfeld Simulation 77

Bibliography . 80

iii

Chapter 1

INTRODUCTION

Fluids are present in many parts of our daily lives. From the milk in our cereal bowls to

the wind blowing in our face when we ride our bikes, fuids are everywhere. It should come

as no surprise then that there has been a great deal of interest in using computers to model

this complex and interesting phenomenon. Luckily, engineers in the feld of Computational

Fluid Dynamics (CFD) have devised extremely accurate methods to model fuid motion. The

drawback is that many of these methods are not computationally eÿcient enough for a computer

graphics application where the major concern is to quickly produce fuid motion that appears

to be realistic as opposed to motion that is truly realistic.

This paper presents a number of techniques that have been developed by the computer

graphics community to physically simulate the motion of fuids. Although the methods are

generally applicable to all fuids, particular attention will be directed toward simulating the

motion of water, as that is the primary concern of this researcher.

1

Chapter 2

VECTOR CALCULUS REVIEW

This section is intended for readers that may not deal with vector calculus on a day-to-day

basis. It will introduce basic concepts and principles. The discussion is intended for those with

a mathematical background that have either never had a reason to deal with vector calculus or

those that haven’t had to use their knowledge of this feld for a long time. It is not intended to

be a comprehensive review, but should give enough to help understand the basic concepts that

are going to be discussed in the following sections.

2.1 Scalar Fields and Vector Fields

A scalar feld is defned as a scalar valued function of position. For example, t(x, y, z) might be

used to represent the temperature in a room. Temperature is a scalar value and it is defned at

every point in the room, so temperature is a scalar feld. In another example, p = P (r) where

r = (x, y, z) might be used to represent the pressure in a fuid.

A vector feld is very similar to a scalar feld, except that it is a vector-valued function of

position. In this paper u =< u, v, w > where u, v and w are all functions of x, y and z such

that u = u(x, y, z), v = v(x, y, z) and w = w(x, y, z). u will commonly be used to represent the

velocity of a fuid at any given point.

2.2 Gradient

The gradient of scalar feld s is denoted as, rs where the symbol r is known as “nabla” or

“del”. The gradient of a scalar feld is defned as

ˆ ˙
@s @s @s rs = , ,
@x @y @z

. In English, the gradient of a scalar feld is the vector of partial derivatives with respect to

each of the coordinate axes. From a physical perspective, the gradient represents the direction

in which the scalar feld is increasing. The magnitude of the gradient vector is equal to the rate

2

http:basis.It

of change. As a concrete example, let s(r) = xy + z2 + yz3. Then the gradient of s, rs, is:

3 rs = (y, x + z , 2z + 3yz 2) (2.2.1)

The gradient operator can also be applied to a vector feld. The gradient of an n-dimensional

vector feld is an nxn matrix of partial derivatives. The gradient of vector feld, u =< u, v, w >,

is 10 BBBB@
@u
@x

@u
@y

@u
@z

@v
@x

@v
@y

@v
@z

@w
@x

@w
@y

@w
@z

CCCCA = ru

2.3 Flux

Flux is defned as the total volume of fuid passing through a surface per unit time [22]. Given

a surface, S, that has a normal, n, located inside of a vector feld u let �S represent a small

subsurface of S. Let the area of �S be defned as �x�y = A. First assume that u is parallel to

n and |u| = c where c is a constant. In time t a “block” of fuid of size ctA moves through S.

Therefore, the fux, Q, is Q = cA.

Now suppose that u is not parallel to n and |u| is no longer constant. See fgure 2.1. Since

Figure 2.1: u represents the vector feld. The shaded region, �S represents a sub-section of the
larger surface S. n reperesents the outward pointing normal to S.

u is no longer parallel to n then the only portion of u contributing to the fux is the portion

that is in the direction of n. This is simply u · n. Summing the contribution of the fux of each

small �S over the entire surface S yields the defnition of fux

ZZ
Q =
 u · n�x�y (2.3.1)

S

3

2.4 Divergence

The concept of divergence is closely related to that of the gradient. While the gradient acts on

a scalar feld and results in a vector feld, the divergence acts on a vector feld and results in a

scalar feld. The divergence of vector feld v = (v1, v2, v3) is denoted as r · v and is defned as:

ˆ ˙
@v1 @v2 @v3 @ @ @ r · v = + + = , , · (v1, v2, v3) (2.4.1)
@x @y @z @x @y @z

. From the last term in equation (2.4.1) it is shown that the divergence of a vector feld can be

thought of as the dot product of the “nabla” operator and the vector feld.

2 2As a simple example, let the vector feld v be defned as v = (x2+2z, y z3−6x+4, x yz4−2x).

The divergence of v is

2 3 r · v = 2x + 2yz 3 + 4x yz (2.4.2)

The divergence of u is equal to the fux through the surface of a small volume, �V , surrounding

Figure 2.2: A sub-volume, �Vi.

any point in the feld divided by the volume of �V . Mathematically this can expressed as

ZZ
1 r · u = lim
 u · n�S (2.4.3)

�V!0 �V �S

where �V is a small volume surrounding a point P with surface �S and n is the outward pointing

normal of �S. Assume that �V is a small rectangular box with sides �x, �y and �z. See fgure

2.2. Since the box has six faces then the integral around the entire box is the sum of the six

4

face integrals. Starting with the surface labeled S1 in fgure 2.2, n1 = (1, 0, 0), �S = �y � �z.

Let u = (u, v, w).

Therefore, u · n = u. The point at the center of the surface is c1 = (Px + �x/2, y, z). Since

the area of surface S1 is assumed to be very small then the surface integral can be given by

ZZ

 u · n�x�y ˇ u1(Px + �x/2, y, z) . (2.4.4)

S1

A similar argument can be made for the surface S2.

ZZ

 u · n�x�y ˇ −u1(Px − �x/2, y, z) . (2.4.5)

S2

Adding both integrals together and reducing gives

ZZ

S1+S2

u · n�x�y ˇ @u
�V

@x
(2.4.6)

Since divergence is defned as �V ! 0 then equation (2.4.6) is the true divergence with respect

to the surface whose normals are parallel to the x-axis. The same procedure can be repeated

for y and z.

2.5 Divergence Theorem

The divergence theorem states that the total amount of expansion of u within the volume V is

equal to the fux out of the surface S. Mathematically this can be expressed as

ZZZ ZZ
r · udV =
 u · ndS (2.5.1)

V S

To prove this theorem assume that volume V is divided into a bunch of very small sub-

volumes, �Vi each with surface �Si. In each �Vi the divergence is

ZZ
1 r · u = lim
 u · n�S (2.5.2)

�V!0 �V �S

5

Multiplying both sides by �Vi and summing for �Vi yields

ZZ X X
r · u�V ˇ
 u · ndS (2.5.3)

i i RRR
Taking the limit as �Vi ! 0 makes the left-hand side equal to the volume integral, r· udV .V

For the right-hand side, consider two adjacent sub-volumes as shown in fgure 2.3. Note that

Figure 2.3: A 2D representation of two sub-volumes

u · n1 +u · n2 = 0. This is because the normals are equal and opposite. Thus all interior surfaces

will cancel each other leaving only the exterior edges. Therefore,

ZZZ ZZ
r · udV =
 u · ndS (2.5.4)

V S

6

Chapter 3

EQUATIONS OF MOTION - THE NAVIER STOKES EQUATIONS

In this section the Navier-Stokes equations that are used to describe the conservation of

momentum and mass for a fuid are presented. The presentation is followed by a derivation of

each equation.

In the 19th century, two mathematicians, Claude-Louis Navier and George Gabriel

Stokes developed the Navier-Stokes equations that describe the motion of a fuid [29]. For

incompressible fows there are two equations

@u 1 2= −(u · r)u − (rp) + �r u + g (3.0.1)
@t ˆ

r · u = 0 (3.0.2)

where u = (u, v, w) represents the velocity of the fow, ˆ is the density of the fuid, p is the

pressure, � is the kinematic viscosity and g is the acceleration due to any external forces.

Equation (3.0.2) indicates a conservation of mass and equation (3.0.1) describes how the rate

of change of the velocity of a fow is related to the process of advection, the acceleration due to

pressure, the acceleration due to viscosity and acceleration resulting from external forces such

as gravity. It is important for the reader to understand that equation (3.0.1) is a vector-valued

equation that actually represents three equations. Equation (3.0.2) is sometimes referred to as

the continuity equation.

3.1 Conservation of Mass Equation

Consider a fuid with density given by the scalar feld ˆ(x, t) and velocity given by the vector

feld u(x, t). Let V be an arbitrary stationary volume with surface S and outward pointing

normal n. The total mass of the fuid inside of V is defnied as

ZZZ
M = ˆdV (3.1.1)

V

7

The rate at which mass enters the volume, r, is defned as the fux through the surface and can

be expressed as ZZ
r = −
 ˆu · ndS (3.1.2)

The minus sign is used because n is assumed to point outward. The rate of change of mass in

the volume must be equal to the rate of mass fow into or out of Vi. Thus, we get

ZZZ ZZ
d

dt V
ˆdV = −
 ˆu · ndS (3.1.3)

The surface integral on the right-hand side can be written as a volume integral using the

divergence theorem, also the order of the derivative and the integral on the left-hand side can

be interchanged thus yielding

ZZZ ZZZ
@ˆ

dV = − r · (ˆu)dV (3.1.4)
V @t V

Since the integrals are over the same volume then we can add the right-hand side to the left-hand

side and place both integrands under the same integral

ZZZ
@ˆ

+r · (ˆu)dV = 0 (3.1.5)
@t

If the chosen volume, V , is small enough then the value of the integrand can be considered

constant throughout the volume so the integral can be dropped and we’re left with

@ˆ
+r · (ˆu) = 0 (3.1.6)

@t

Since the density is defned to be constant, then it can moved outside of the di�erentiation,

giving
@ˆ @ˆ

+r · (ˆu) = + ˆr · (u) = 0 (3.1.7)
@t @t

Again using the fact that density is constant with respect to both time and space then the

above equation reduces further giving

0 + ˆr · (u) = 0 (3.1.8)

8

Therefore, r · u = 0 must be true.

3.2 Conservation of Momentum Equation

The conservation of momentum says that the rate of change of momentum through a fxed

volume must equal the fux through the surface plus any external forces, F. Assume a

rectangular volume, dV of dimensions �x, �y and �z. The rate of change of momentum can be

defned as
@ˆu

dV (3.2.1)
@t

where u = (u, v, w). The fux of momentum in the x-direction through the face whose normal

is (−1, 0, 0) is

ˆ(u · n)Au = −ˆu � u �A = −ˆu � u � �y�z (3.2.2)

where A is the area of the surface. The fux through the face whose normal is (1, 0, 0) is

� �
@ˆu � u

ˆu � u + �x �y�z (3.2.3)
@y

The fux in the x-direction of the face whose normal is (0,−1, 0) is

−ˆv � u � �x�z . (3.2.4)

The fux through the opposite face whose normal is (0, 1, 0) is

� �
@ˆv � u

ˆv � u + �y �x�z (3.2.5)
@x

The fux in the x-direction of the face whose normal is (0, 0,−1) is

−ˆw � u � �x�z . (3.2.6)

The fux through the opposite face whose normal is (0, 0, 1) is

� �
@ˆw � u

ˆw � u + �y �x�z (3.2.7)
@x

9

Summing all six faces gives

� �
@ˆu � u

Qx = −ˆu � u � �y�z + ˆu � u + �x �y�z (3.2.8)
@x � �

@ˆv � u −ˆv � u � �x�z + ˆv � u + �y �x�z (3.2.9)
@y � �

@ˆw � u −ˆw � u � �x�z + ˆw � u + �y �x�z (3.2.10)
@z

@ˆu � u @ˆv � u @ˆw � u
= �x�y�z + �y�x�z + �y�x�z (3.2.11)

@x @y @z

(3.2.12)

Including the time derivative yields the fnal equation for the total fux in the x-direction as

� �X @ˆu @ˆu � u @ˆv � u @w � u
Fx = + + + �x�y�z (3.2.13)

@t @x @y @z

Simplifying and extending the same concept for y and z yields

� �X @u @u @u @u
Fx = ˆ + u + v + w �X�Y �Z (3.2.14)

@t @x @y @z

� �X @v @v @v @v
Fy = ˆ + u + v + w �X�Y �Z (3.2.15)

@t @x @y @z � �X @w @w @w @w
Fz = ˆ + u + v + w �X�Y �Z (3.2.16)

@t @x @y @z

The rate of change of momentum is equal to the total force acting on the fuid. Fluids are

subject to two di�erent forces. These forces are surface forces and body forces such as gravity.

Body forces will not be discussed here, but their inclusion into the system are trivial.

Surface forces occur due to pressure and viscosity. They can be described by ˙i,j where

subscript i indicates the normal direction of the face on which the force is acting and j indicates

the direction of the stress. ˙ is called the stress tensor. The force due to stress is defned as

the quantity of the stress tensor times the area of the face. For faces with normals in the

x-direction, then the forces in the x-direction are

� �
@˙xx−˙xx�y�z and ˙xx + �x �y�z (3.2.17)
@x

10

Their sum is
@˙xx

�x�y�z (3.2.18)
@x

The sum for faces with normals in the y and z directions are

@˙yx @˙zx
�x�y�z and �x�y�z (3.2.19)

@y @z

Summing for all faces gives

� �
@˙xx @˙yx @˙zx + + �x�y�z (3.2.20)
@x @y @z

The term ˙xx includes the force due to pressure, but it is directed inward and so it must be

negated. So the above equation becomes

� �
@p @˙xx @˙yx @˙zx − + + �x�y�z (3.2.21)
@t @x @y @z

The stress tensor is defned as

� � � �
@u @v @u @w @u

˙xx = 2µ ˙yx = µ + ˙zx = µ + (3.2.22)
@x @x @y @x @z

After combining all six faces and performing several steps of algebraic manipulation the result

can be expressed as equation (3.0.1) [2].

11

Chapter 4

FINITE DIFFERENCE APPROACHES

One approach to solving the Navier-Stokes equations is through the use of the fnite-

di�erencing technique. This technique was utilized by [12] and [5] while a modifed version

was utilized by [11].

4.1 Chen and Lobo

4.1.1 Governing Equations

In [5], Chen and Lobo approach the problem of fuid simulation by solving the Navier-Stokes

equations in two dimensions and then scaling the resulting pressure feld to derive the height

of the surface above the ground.

The equation for conservation of momentum that is used by [5] is written slightly di�erently

than equation (3.0.1). The authors write the equation as

@u @u @u 1 2+ u + v +rp = r u (4.1.1)
@t @x @y Re

where u and p are defned the same as equation (3.0.1) and Re is the Reynolds number. The

ˆsLReynolds number is the ratio of inertial forces to viscous forces and is defned as Re = where µ

ˆ is the density, s is the characteristic velocity and L is the characteristic length of the fuid.

Adjusting the Reynolds number will adjust whether or not the fow is laminar or turbulent.

Flows with a small Reynolds numbers (Re < 2100) are considered laminar where as fows with a

large Reynolds number (Re > 4000) are considered turbulent [30]. In true physics, the Reynolds

number is a constant that is defned for di�erent fows, however during simulation Chen and

Lobo alter the Reynolds number to increase numerical stability or to achieve a desired e�ect.

In [5] the authors write the continuity equation as

�p +r · u = 0 (4.1.2)

12

and note that it has been proven [27] that solving equations (4.1.1) and (4.1.2) together will

tend toward the solution of equations (3.0.1) and (3.0.2) as � ! 0.

4.1.2 Discretization Technique

The computational domain is divided into a 2-dimensional grid where the pressure is defned

at the center of each grid point and the velocities are defned at the center of the grid edges.

This structure is known as the staggered marker-and-cell mesh and is illustrated in Figure 4.1.

Figure 4.1: Staggered marker-and-cell mesh

Using this grid, the velocity and the pressure are updated each frame using the following

set of equations:

1n+1 n n n 2 n u = u + (−a −�1
xp + rhu)dt (4.1.3) i+1/2,j i+1/2,j i+1/2,j i+1/2,j i+1/2,jRe

1n+1 n n 2 n v = v + (−bn −�1 p + rhv)dt (4.1.4) i,j+1/2 i,j+1/2 i,j+1/2 y i,j+1/2 i,j+1/2Re

n+1 n+1�1u + �1v
n+1 x i,j y i,j

pi,j = − (4.1.5)
e

where i, j indicate the coordinates of a point in the computational grid, n represents the current

time step and n + 1 represents the values after time �t.

�1
x, �y

1 and r2
h are di�erence operators that are defned as

1
�1

xfl,m = (fl+1/2,m − fl−1/2,m) (4.1.6)
�x

1
�1fl,m = (fl,m+1/2 − fl,m−1/2) (4.1.7) y �x

13

2 rhfl,m = �xxfl,m + �yyfl,m (4.1.8)

fl+1,m − 2fl,m + fl−1,m�xxfl,m = (4.1.9)
�x2

fl,m+1 − 2fl,m + fl,m−1�yyfl,m = (4.1.10)
2�y

2�1
x and �1

y together compute the divergence of the pressure feld (rp from equation 4.1.1). rh

represents the standard discretization of the Laplacian operator (r2u from equation 4.1.1).

nThe last two symbols a and bn are defned as i+1/2,j i,j+1/2

n n n n n a u �0 u + V �0 u (4.1.11)i+1/2,j = i+1/2,j x i+1/2,j i+1/2,j y i+1/2,j

n n nbn = Un �0 v + v �0 v (4.1.12) i,j+1/2 i,j+1/2 x i,j+1/2 i,j+1/2 y i,j+1/2

1
Ui,j+1/2 =

4
(ui+1/2,j + ui+1/2,j−1 + ui−1/2,j+1 + ui−1/2,j) (4.1.13)

Vi+1/2,j =
1
4
(vi+1,j+1/2 + vi,j+1/2 + vi,j−1/2 + vi+1,j−1/2) (4.1.14)

�0
xfl,m =

1
(fl+1,m − fl−1,m) (4.1.15)

2�x

�0fl,m =
2�

1
y
(fl,m+1 − fl,m−1) (4.1.16)y

After updating the velocities and pressure using equations (4.1.3) through (4.1.5) then the

velocity at each grid point can be computed as the average of its two neighbors. Namely,

ui+1/2;j + ui−1/2;j
ui;j = (4.1.17)

2

vi;j+1/2 + vi;j−1/2
vi;j = (4.1.18)

2

4.1.3 Boundary Conditions

Boundary conditions specify the velocity of the fuid at certain “special” locations within in

the grid. As the name implies, boundary conditions are used to indicate the velocity along

the boundary of the computational domain. In [5] Chen and Lobo defne these as external

boundary conditions. Examples of external boundaries include the banks of a river or the walls

of a pipe. In addition to external boundaries, Chen and Lobo defne internal boundaries as

14

boundary conditions that exist within the interior of the computational domain. These might

include things such as bridges, posts or even boats.

In addition to fxed boundaries such as the banks of a river, the authors describe a method

to make use of moving boundary conditions such as a boat traveling through water. Typically,

during a simulation step all boundary conditions are applied and directly set the velocity of

grid points lying along the boundary before the update of computational grid takes place. In

the case of a moving internal boundary such as a boat, the velocity of the grid point (i, j) that

lies within the boat can be set as

= WakeSpeed ui+1/2,j

ui−1/2,j+1 = WakeSpeed

= WakeSpeed ui−1/2,j−1

where WakeSpeed is a predetermined value to represent the speed of the boat.

4.1.4 Floating Objects

In [5] the authors discuss the concept of streaklines and use them to describe the motion of

objects in the fow. A streakline is defned as a collection of fuid particles that have all passed

through a given point in the fow feld [7]. Streaklines can be generated by releasing particles

from a given point in the fow feld and then tracking their position over time. Each particle is

moved using the velocity of the fow feld at its current location. The authors suggest treating

foating objects just like streakline particles. Thus objects would be massless entities that

simply assume the velocity of the fow feld at any given position.

Clearly this is an extremely simple approach to objects interacting with fuid. The technique

does not describe any way in which the object can a�ect the fuid, such as displacement or drag.

Additionally, it does not account for any kind of rotational motion to be applied to the object.

For these reasons it is clear that a more sophisticated approach to modeling the interaction

between objects and fuid should be employed.

15

4.1.5 Stability

In [5] the authors do not provide a rigorous mathematical analysis of the stability of their model.

They simply state that the simulation can diverge. In order to help prevent the simulation from

diverging they recommend using smaller values for dt and Re and larger values for �, dx, and

dy. One of the advantages of simulating fuid motion in computer graphics is that one does

not always need to strictly follow the laws of physics so long as the results appear correct.

Therefore, in order to maintain stability a person can adjust the values of dt, dx, dy, � and Re

while the simulation is in progress in order to maintain stability.

Another possible method to help maintain stability would be use to Runge-Kutta (RK)

integration rather than Euler integration. The obvious downside to using a more advanced

integration method is the extra computation required. However, the model presented in [5] was

able to achieve “interactive-rates” on hardware in 1994. Therefore, the extra computational

overhead should not pose a signifcant problem on today’s hardware.

4.1.6 Results and Shortcomings

The authors of [5] claim to have achieved “interactive-rates” running on a Silicon Graphics

Indigo. They do not provide a defnition of the term “interactive-rate” but the context implies

that the simulation is able to run near real-time. Theses results were achieved using the following

set of values: dt = 0.001s, Re = 300, dx = 1m and dy = 1m.

Although the model is able to run quickly and is fairly easy to implement, it does have it’s

shortcomings. Given the 2D nature of the simulation it is unable to deal with objects whose

cross-sectional area vary with depth. For example, the hull of a boat is curved and displaces

more water as it gets deeper. The author’s fuid model simply assumes that the hull of the boat

is fat along on the bottom. Additionally, since the height of the fuid is obtained by simply

scaling the pressure values, it is unable to simulate overturning water. Lastly, the authors are

unable to describe the exact conditions under which the simulation will remain stable.

16

4.2 Foster and Metaxas

4.2.1 Governing Equations of Motion

Recall that equation (3.0.1) is the general form of the Navier-Stokes equation for the

conservation of momentum. The expansion of equation (3.0.1) for the u-component is

@u @u @u @u @p @2u @2u @2u
+ u + v + w = − + gx + d(+ +) (4.2.1)

@t @x @y @z @x @x2 @y2 r@z2

However, in [12] the authors have defned the u-component as

@u @u2 @uv @uw @p @2u @2u @2u
+ + + = − + gx + d(+ +) (4.2.2)

@t @x @y @z @x @x2 @y2 @z2

Examining equations (4.2.1) and (4.2.2) we see that the right-hand side of each equation is

identical, but the left-hand sides vary. Specifcally, the question is

@u @u2 @uv @uw @u @u @u @u
+ + + � + u + v + w

@t @x @y @z @t @x @y @z

From a mathematical standpoint it is clear that equation (4.2.1) is not equal to equation

(4.2.2). However, it will be shown later that the authors’ change of notation will ultimately

lead to a calculation that is similar to that presented in section 4.1.2. The equations for the v

and w-components are included here for completeness.

@v @vu @v2 @vw @p @2v @2v @2v
+ + + = − + gy + d(+ +)

@t @x @y @z @y @x2 @y2 @z2

@w @wu @wv @w2 @p @2w @2w @2w
+ + + = − + gz + d(+ +)

@t @x @y @z @y @x2 @y2 @z2

4.2.2 Discretization Technique

Conservation of Momentum

The discretization technique used in [12] is very similar to the technique used by [5] that was

presented in section 4.1.2. The key di�erence is that Foster and Metaxas use a 3D grid instead

of the 2D grid used in [5]. The pressure is defned at the center of the cell and the velocities

are defned at the center of the cell faces (see Figure 4.2).

17

Figure 4.2: Staggered marker-and-cell grid cell. Image taken directly from [12]

The equations used to update the u-component of the velocity feld are presented below.

The equations for the v and w can be obtained by the obvious extension of these equations.

@u n+1 n u = u + dt (4.2.3) i+1/2,j,k i+1/2,j,k @t

This equation takes the simulation through one full step of Euler integration.

@u @u2 @uv @uw @p @2u @2u @2u
= − − − − + gx + d(+ +) (4.2.4)

@t @x @y @z @x @x2 @y2 @z2

This equation is just a reorganization of the terms in equation (4.2.2) to explicitly show how

to obtain the value of @u . The equations @t

@u2 1 − = ((ui,j,k)2 − (ui+1,j,k)2) , (4.2.5)
@x dx

@uv 1 − = ((uv)i+1/2,j−1/2,k − (uv)i+1/2,j+1/2,k) (4.2.6)
@y dy

and
@uw 1 − = ((uw)i+1/2,j,k−1/2 − (uw)i+1/2,j,k+1/2) (4.2.7)
@z dz

are simple fnite-di�erence equations to solve for the frst three terms in equation (4.2.4). The

18

fourth term of equation (4.2.4) is expressed as:

@p 1 − = (pi,j,k − pi+1,j,k) (4.2.8)
@x dx

This too is a simple fnite-di�erence equation to calculate the gradient of the pressure, rp. The

last three equations,

d
@2u

=
d

(ui+1/2,j,k+1 − 2ui+1/2,j,k + ui−1/2,j,k−1) (4.2.9)
@z2 dy2

@2u d
d = (ui+1/2,j+1,k − 2ui+1/2,j,k + ui−1/2,j−1,k) (4.2.10)
@y2 dy2

and

d
@2u

=
d

(ui+3/2,j,k − 2ui+1/2,j,k + ui−1/2,j,k) (4.2.11)
@x2 dx2

are a standard discretization of the Laplacian operator. For a derivation of this discretization

see [?].

When calculating the value of @u in equation (4.2.3) it is possible that value of the velcoity @t

feld will be required at a point somewhere other than a face of grid cell. In order to remedy

this situation, the average value of the nearest neighbors are used. This statment is what has

allowed the authors to rewrite equation (4.2.1) as (4.2.2). As an example, assume that equation

(4.2.6) is being evaluated for grid cell i, j. Figure 4.3 shows the grid points that are used to

calculate the analagous term v@u/@y using the method presented in section 4.1.2. Figure 4.4

shows the grid points that are used to calculate equation (4.2.6) using the method proposed

by Foster and Metaxas. It is clear that many of the same grid points are utilized, however the

method used by Foster and Metaxas explicity makes use of the value at ui+1/2,j where as the

method used by Chen and Lobo does not.

Conservation of Mass

After updating the velocity feld using equation (4.2.3) it is possible that the resulting velocity

feld is not divergence-free and thus does not satisfy equation (3.0.2). Foster and Metaxas

resolve this problem by adjusting the pressure and velocity of the cells in the computational

19

Figure 4.3: Representation of the grid points used by Chen and Lobo, [5] when calculating the
term v@u/@y.

Figure 4.4: Representation of the grid points used by Foster and Metaxas when calculating the
@uv term @y

grid using a relaxation technique [3]. First, defne the divergence, D, at cell i, j, k as

Di,j,k = (4.2.12)

1 −((
dx

)(ui+1/2,j,k − ui−1/2,j,k) +

1
()(vi,j+1/2,k − vi,j−1/2,k) +
dy

(
dz

1
)(wi,j,k+1/2 − wi,j,k−1/2))

20

Equation (4.2.12) is a central di�erence approximation of the divergence at cell i, j, k. Next,

defne the change in pressure, �p, as

Di,j,k�0
�p = (4.2.13) 12dt(+ 1 + 1)

dx2 dy2 dz2

where �0 is the relaxation coeÿcient such that 1 < �0 < 2. Next, �p is used to update the

pressure of cell (i, j, k) and velocities defned on faces of cell (i, j, k).

ui+1/2,j,k = ui+1/2,j,k + (�t/�x)�p ui−1/2,j,k = ui−1/2,j,k − (�t/�x)�p

vi,j+1/2,k = vi,j+1/2,k + (�t/�y)�p vi,j−1/2,k = vi,j−1/2,k − (�t/�y)�p

wi,j,k+1/2 = wi,j,k+1/2 + (�t/�z)�p wi,j,k−1/2 = wi,j,k−1/2 − (�t/�z)�p

pi,j,k = pi,j,k + �p

After one application of the relaxation step, cell (i, j, k) will be divergence-free but changing the

velocities on the cell faces may have caused neighboring cells to become divergent. Therefore, the

relaxation technique must be applied to each cell many times until all cells become divergence-

free. Using � = 1.7 and � = 0.0001 the grid was found to converge within 3 to 6 applications of

the relaxation step.

4.2.3 Boundary Conditions

The model proposed by Foster and Metaxas only updates pressures and velocities to satisfy

boundary conditions at the beginning of each iteration. No special calculation is used on

boundary cells when updating the velocity feld.

Three di�erent types of boundary conditions are considered. The frst are boundaries with

stationary objects. It is assumed that faces of the objects lie on the boundary of a computational

cell. Using this assumption, it becomes very easy to properly set pressure and velocity values.

If an obstacle is non-permeable then the component of the velocity that is normal to the face

of the obstacle is set to zero (u0 = 0). This will prevent water from penetrating the face. If

the no-slip boundary condition, where the obstacle creates a drag on the fuid, is desired then

the component of the velocity feld that is tangential to the face of the object is set to zero

as well. However, since the face of an obstacle can not lie on a cell boundary (see Figure 4.5)

where both u and v are defned, then the tangential velocity is indirectly set to zero by setting

the velocity on the edge inside of the cell equal to the opposite of the velocity outside of the

21

obstacle (v0 = −v1). Lastly, the pressure inside of the cell containing the obstacle is set to the

pressure of the neighboring cell outside of the obstacle (p0 = p1). If a free-slip boundary is

desired then the velocities and pressures are set the same way as for a no-slip boundary except

that the tangential velocity inside the obstacle is set equal to the tangential velocity outside of

the obstacle (v0 = v1). This will prevent any acceleration across the boundary.

Figure 4.5: An obstacle in the computational grid. The obstacle is denoted by the thick black
lines.

Infow and outfow boundaries are the second type of boundary condition to consider. Infow

boundaries allow water to enter into the system and are implemented by setting the face

velocities of an infow cell equal to a predetermined value and then holding it fxed for the

entire duration of the simulation. Outfow cells have their inital velocity set to that of their

neighbors. Then during the iterative relaxation technique used to update pressure values, the

velocities are allowed to change without constraint.

The third and fnal boundary condition to consider is the boundary at the surface between

the water and the air. Each cell in the mesh is marked as either Full, Surface or Empty using

one of the surface tracking techniques described in section 4.2.4. For any cell that has been

marked as Surface the velocity at the faces opposite of a Full cell are set so that the divergence

of the Surface is zero. The pressure in the Surface cell is set to the atmospheric pressure.

22

4.2.4 Surface Tracking

Three di�erent surface tracking techniques are introduced and each is applicable to di�erent

requirements. The frst technique utilizes marker particles. Marker particles are massless and

are introduced at infow boundaries. The particles are updated by sampling the value of the

fuid velocity feld at the particles position, xp and then multiplying by the current timestep.

Cells in the computational mesh are then labeled in the following fashion:

• A cell devoid of particles is marked as Empty

• A cell that contains at least one particle and is next to a cell that has been labled as

Empty is labeled as Surface.

• A cell that has at least one particle and is not labeled as a Surface cell is then labeled as

Full.

Marker partilces are useful in situations where the water is likely to exhibit violent phenomena.

For example, Figure 4.6 shows water that has been poured into a tank and turned over on itself.

Figure 4.6: Frames from a 2D animation that utilizes marker particles. Image is reproduced
from [12].

23

The second method used to track the surface makes use of Free Surface Particles. These

too are massless particles that are advected with the fuid. The di�erence is that instead of

moving throughout the entire fuid volume, these particles are located only at the boundaries

between fuid and obstacles or air. If two particles are too close together, then they are deleted

and their neighbors connected together. If two particles become too far apart, a new particle

is introduced on the link between the two. For each iteration of the simulation the cells are

labeled as Full, Surface and Empty using a region-growing algorithm as follows:

• Change current Surface cells into Full cells.

• Start from a cell that is known to be Empty for the duration of the simulation and grow

a region of Empty cells until a Full cell is encountered.

• Grow a region of Full cells until either a boundary or Empty cell is encountered.

• Grow Empty cells again and repeat alternating Empty and Full whenever a boundary is

encountered.

• Set all original Surface cells back to Surface

The third and fnal surface tracking method uses a heightfeld approach. Instead of just

scaling the pressure at each grid cell as done by Chen and Lobo in [5] the underlying fuid

velocities are considered. The height of the surface above the terrain is defned along the y axis

passing through each vertical column of cells. The general formula used to update the surface

height, h, is:
@h

@t
=

@h
w − u()−

@t

@h
v()

@y
(4.2.14)

Equation (4.2.14) is discretized as:

ht+�t t+�t = i,j hi,j
t + �t(wi,j,k

(ht − ht)i−1,j i+1,j+
4�x

(ht − ht)i−1,j i+1,j+
4�y

t+�t t+�t (u + u)i+1/2,j,k i−1/2,j,k

t+�t t+�t (v + u))i,j+1/2,k i,j−1/2,k

24

Once the height of each column has been determined, then the process of labeling cells is trivial.

Any cell above the heightfeld is labeled as Empty, cells below the heightfeld are marked as

Full and cells that intersect the heightfeld are labeled as Surface.

4.2.5 Rigid Bodies

The authors describe a model that can be used to simulate the forces exerted on a rigid body

by the fuid. They do not however, describe a method to simulate the forces that a rigid body

exerts on the fuid. A rigid body, B is divided into a set of n nodes. For each node within the

fuid the force acting upon it can be calculated as:

fni = −rpidVi + mig (4.2.15)

where dVi is the volume of the submerged node. The term, rpi, is the gradient of the pressure

and is defned as:
pni − pni,xj(rpi)xj = (4.2.16)

�x

where pni is the pressure in the cell containing ni and pni,xj is the pressure in the previous cell

in the x direction [12]. g is acceleration due to gravity and mi is the mass of node i. The total

force acting on the object is the sum of the force acting on each node.

4.2.6 Results

All results were obtained on a Silicon Graphics Crimson R4000 running at either 100MHz or

150MHz [15]. An animation entitled Moonlight Cove was generated on a 50x15x40 mesh. The

simulation completed 20,000 iterations in two and half hours. Total time includes rendering

that was done using RenderMan. This equates to roughly two iterations per second. Another

example was computed on a 40x12x40 grid. This was able to complete 8,000 iterations in one

hour. In this example rendering was done using “standard Silicon Graphics hardware routines”

[12]. This also equates to roughly 2 iterations per second.

25

Chapter 5

STABLE METHODS

Stable methods consist of solving the Navier-Stokes equations in a form that permits an

arbitrarily large time step to be taken without the risk of the simulation becoming unstable.

Jos Stam’s seminal paper entitled simply “Stable Fluids” will act as the foundation of the two

implicit methods described herein. The other method by Song et al is a direct extension to

Stam’s method which is intended to overcome some of the known limitations of Stam’s model.

5.1 Stable Fluids by Jos Stam

5.1.1 Governing Equations of Motion

The equations of motion used by this model are the same as equations (3.0.1) and (3.0.2). They

are reproduced here for convenience:

@u 1 2= −(u · r)u − (rp) + �r u + f (5.1.1)
@t ˆ

r · u = 0 (5.1.2)

Stam makes use of the Helmholtz-Hodge Decomposition from linear algebra to connect equations

(5.1.1) and (5.1.2) into one equation.

5.1.2 Helmholtz-Hodge Decomposition

The Helmholtz-Hodge decomposition theorem states that any vector feld, w, can be

decomposed into two parts, such that:

w = u +rp (5.1.3)

where r · u = 0 and p is a scalar feld. In English, this means that any vector feld w can be

decomposed into the sum of a divergence-free vector feld, u, and the gradient of a scalar feld,

26

rp. It can also be shown that u = w − rp. From this defnition we defne an operator, P,

that will project any vector feld onto its divergence free component, u = Pw. Applying the

projection operator, P to both sides of equation (5.1.3) yields:

Pw = P(u) + P(rp)

u + P(rp) Divergence-free part of u is u

Since we know that the divergence-free part of w is u then P(w) = u and therefore P(rp) = 0

must be true.

Applying the projection operator P to both sides of equation (5.1.1) we get a single equation

that be can be used to update the velocity feld and then project it onto its divergence-free

part.
@u 1 2P() = P(−(u · r)u − (rp) + �r u + f) (5.1.4)
@t ˆ

Since u is already divergence-free then:

@u 1 2= P(−(u · r)u − (rp) + �r u + f) (5.1.5)
@t ˆ

Lastly, since P(rp) = 0 then the fnal equation is:

@u 2= P(−(u · r)u − �r u + f) (5.1.6)
@t

The following sections will discuss the step-by-step process used to solve each term on the

right-hand side of equation (5.1.6) and then how to project the resultant velocity feld onto its

divergence-free component in order to satisfy equation (5.1.2).

5.1.3 Four-Step Fluid Solver

The solver proceeds in four-steps. The resultant vector feld after the application of the current

step will become the input to the next step. It is important to note that the grid used by

Stam defnes the both the pressure and the velocity at the center of each computational cell.

The fnite-di�erence approaches discussed above only defned the pressure at the center and the

27

velocities were defned on the cell faces.

add force advect di�use w3(x)
project

w0(x) ! w1(x) ! w2(x) ! ! w4(x)

External Forces

add forcew0(x) ! w1(x)

The easiest step to update is the addition of external forces. In this case:

w1(x) = w0(x) + �tf(x, t) (5.1.7)

where �t is the time step and f(x, t) is the vector feld representing the external forces.

Advection

add force advectw0(x) ! w1(x) ! w2(x)

The advection term of the Navier-Stokes equation, ((u ·r)u), is solved using a technique known

as the Method of Characteristics. The method of characteristics can be used to solve advection

equations of the type
@u @u

a + = 0 . (5.1.8)
@x @t

Using the method of characteristics our goal is to rewrite the partial di�erential equation in the

form of an ordinary di�erential equation over some characteristic curve parameterized by s.

x(s), t(s) (5.1.9)

is the characteristic curve. Using the chain rule of di�erentiation shows that:

d dx @u dt @u
u(x(s), t(s)) = + . (5.1.10)

ds ds @x ds @t

dtNotice that if we set dx = u and = 1 then we get: ds ds

d @u @u
u(x(s), t(s)) = u + (5.1.11)

ds @x @t

28

http:externalforces.In

which are the frst two terms of equation (4.2.1) and are in the same form as equation (5.1.8)

with a = u. From this we can write:

d @u @u
u(x(s), t(s)) = u + = 0 (5.1.12)

ds @x @t

Now we have three seperate ODEs to solve.

dt
= 1

ds

With the initial condition that t(0) = 0 then we know that t = s.

dx
= u

ds

with the initial condition that x(0) = x0 we know that x = us + x0 = ut + x0.

du
= 0 (5.1.13)

ds

with the initial condition u(0) = f(x0) then u(t) = u(x0). Therefore

u(x, t) = u(x − ut) (5.1.14)

In English, equation (5.1.14) states that for our situation, the velocity at point x is equal to

the velocity at position x − u�t.

When solving the advection portion of the Navier-Stokes equation we will examine each

point in the computational grid. Using the velocity at that point we will trace the point

backwards through the fow feld to the point that it was at during the last iteration. Since the

backtraced point will rarely land directly on a computational point, then the velocity values

are linearly interpolated from the nearest neighbors. The velocity at the current update point

is then set to the interpolated value at the backtraced point. See fgure 5.1 for an overview of

the solver up to this point.

This technique is sometimes also referred to as a semi-Lagrangian technique. It is this step

of the solver that allows it to become unconditionally stable. No matter how large the time step

29

http:ofthesolverthatallowsittobecomeunconditionallystable.No

Figure 5.1: (a) The original velocity feld. The integer pair represents the velocity in the x and
y directions respectively. The feld is shown in 2D and only specifc cells are explicitly defned
simply for ease of representation. (b) The velocity feld after the application of external forces.
(c) The resultant velocity feld after the update due to advection. It’s important to note that
the value in red is the value of w2, not w1, thus not a�ecting the last explicitly cell until the
next iteration of the solver.

the values of the velcoity feld will never be smaller or larger than they were in the previous

time step unless external forces have acted upon them.

Di�usion

add force advect di�usew0(x) ! w1(x) ! w2(x) ! w3(x) (5.1.15)

Fick’s second law of di�usion states [28]

@w2 2= �r w2 (5.1.16)
@t

where � is the kinematic viscosity. We could use an explicit formulation to derive the velocity

feld w3 from w2 by writing

2w3 = w2 + (�r w2)�t (5.1.17)

however, this could cause the simulation to become unstable if the viscosity is large ([26]).

Instead, an implicit formulation is used

(I − ��tr 2)w3 = w2 (5.1.18)

where I is the identity. This is a Poisson equation that can be solved using a number of di�erent

techniques. We are going to use the Gauss-Seidel Relaxation technique. The same relaxation

technique is used by the projection step. See section 5.1.3 for a description.

30

Projection

add force advect di�use w3(x)
project

w0(x) ! w1(x) ! w2(x) ! ! w4(x)

We know that the vector feld w3 can be decomposed into the sum of a divergence-free vector

feld and the gradient of a scalar feld

w3 = u +rp . (5.1.19)

Applying the divergence operator to both sides of equation (5.1.19) yields

r · w3 = r · u +r · rp (5.1.20)

2 r p (since u is divergence-free then r · u = 0). (5.1.21)

This is another Poisson equation that is similar in form to equation (5.1.18). When

implementing the projection step we will solve equation (5.1.20) for p and then subtract its

gradient to obtain the divergence-free feld.

w4 = w3 −rp (5.1.22)

Solving Poisson equations

The Laplacian operator is defned in two dimensions as

@2p @2p2 r p = + . (5.1.23)
@x2 @y2

When discretized, each term above becomes

@2p 1
= (pi−1,j + pi+1,j − 2pi,j) (5.1.24)

@x2 @x2

@2p 1
= (pi,j−1 + pi,j+1 − 2pi,j) (5.1.25)

@y2 @y2

31

where �x and �y represent the grid spacing in the x and y directions respectively. If we assume

that �x = �y then the equations simplify to

2 1 r p = (pi−1,j + pi+1,j + pi,j−1 + pi,j+1 − 4pi,j) . (5.1.26)
�x2

As an example, let’s solve the Poisson equaton, (5.1.18), from section 5.1.3.

w2 = (I − ��tr 2)w3

2= −��tr w3 + Iw3 Distribute w3

w3i−1,j + w3i+1,j + w3i,j−1 + w3i,j+1 − 4w3i,j 2= −��t() + w3i,j Discretize r
�x2

w3i−1,j + w3i+1,j + w3i,j−1 + w3i,j+1 − 4w3i,j �x2/− ��t
= () + w3i,j�x2/− ��t �x2/− ��t

w3i−1,j + w3i+1,j + w3i,j−1 + w3i,j+1 − 4w3i,j + w3i,j(�x2/− ��t)
= ()

�x2/− ��t

w2(�x2/− ��t) = w3i−1,j + w3i+1,j + w3i,j−1 + w3i,j+1 −w3i,j(4− (�x2/− ��t)) (5.1.27)

Here we have a linear system of equations that can be represented by the equation Ax = b

where b = w2(�x2/ − ��t) is the known vector feld, x = w3 is the unknown vector feld and

A is a sparse matrix whose diagonal elements are (4 − (�x2/ − ��t)) and whose o�-diagonal

elements represent the neighbors of grid cell (i, j) and are set to one. This sparse linear system

can be solved many di�erent ways. We will choose to solve it using Gauss-Seidel Relaxation.

The derivation for the Poisson equation in the pressure projection step follows a very similar

and simpler sequence as the one presented here.

Gauss-Seidel Relaxation

Gauss-Seidel Relaxation (GSR) is an iterative technique intended to solve systems of linear

equations of the form Ax = b where A is a matrix, x is a vector of unknown values and b is a

vector of known values. The formula for GSR is [1]

1 i−1 NX X
k k k−1xi = [bi − ai,jxj − ai,jxj] (5.1.28)

ai,i j=1 j=i+1

32

where xk is the value of x at the kth iteration. Using the values of A, x, and b described at

the end of section 5.1.3 we obtain the fnal equation for the velocity feld w3 as

k 1
w3 = [w2i,j(�x2/− ��t)−w3i−1,j −w3i,j−1 −w3i+1,j −w3i,j+1] (5.1.29) i,j 4− (�x2/− ��t)

The fnal equation for the kth iteration of the pressure feld is included here for completeness

k 1 k k k−1 k−1 pi = [r · w3i,j (�x
2)− pi−1,j − pi,j−1 − pi+1,j − pi,j+1] . (5.1.30)

4

5.2 Song, Shin and Ko

The model developed by Song et al in [25] is directly derived from the model developed by

Stam in [26] and discussed in section 5.1. The primary contributions made by Song et. al

are the introduction of the level set method to track the surface of the water, the use of the

Constrained Interpolation Profle method during the semi-Lagrangian advection, description of

modeling air bubbles and water droplets and a method to simulate the interaction between the

water and rigid bodies.

5.2.1 Level Set Methods

Level set methods were introduced by Sethian and are applicable to a wide variety of problems.

In fuid simulation they are frequently used to track the free-surface between two fuids. In this

case, it is the surface between water and air. For a good introduction to level sets see [24].

To track the free surface between the water and the air we use a signed distance function, °.

The value of the function is defned to be positive at all points inside of the water and negative

outside of the water and is tracked at the center of each computational grid cell. The position

of the free-surface is defned at all points where ° = 0. When the simulation begins each grid

cell is initialized with its distance from the surface. As the simulation progresses the distance

is updated using the level set equation [16]

@°
+ u · r° = 0 (5.2.1)

@t

The level set equation looks very similar to the advection portion of the Navier-Stokes equation

33

(3.0.1) and the same technique can be used to compute both values.

5.2.2 The Constrained Interpolation Profle Method

One of the problems with the Stable Fluids model developed by Stam [26] is that the model can

lead to a dissapation of mass. Song et al propose a solution based on the use of the Constrained

Interpolation Profle (CIP) method.

In Stam’s model, when solving for the advection portion of the Navier-Stokes equation a

semi-Lagrangian technique is used. See section 5.1.3 for a description. In Stam’s method after

the particle has been backtraced then linear interpolation is used to compute the velocity based

on nearest neighbors. Song et. al instead use a cubic interpolation method that can help recover

sub-cell features that might be lost by using simple linear interpolation.

The CIP method makes use of the value at neighboring grid cells as well as the spatial

derivatives of those values. The derivative of the values can be obtained by directly

di�erentiating the original advection equation. In the case of the level set equation

@°˘ + u · r° ˘ = −u˘ · r° (5.2.2)
@t

@° @uwhere ° ̆ = @˘ , u˘ = @˘ and ˘ is one of the spatial variables.

In one dimension the CIP equation is written as

aX3 + bX2 + ´ �(X) = ° iX + ° i (5.2.3)

where X = x − xi for x 2 [xi,xi+1] and

´ ´ ° i + ° i+1 2�°
a = − (5.2.4)

�x2 �x3

´ ´ 3�° 2° i + ° i+1
b = − (5.2.5)

�x2 �x

�° = ° i+1 − ° i (5.2.6)

�x = xi+1 − xi (5.2.7)

As an example, suppose that xj is a one dimensional point and it has been backtraced to

´ ´ xr 2 [xi, xi+1]. See fgure 5.2. Then Xr = xr − xi+1, ° j = �(Xr) and ° = �(Xr).

34

Figure 5.2: A one-dimensional example of the CIP method

5.2.3 Air Bubbles and Water Droplets

The process of simulating bubbles and droplets can be divided into four parts. The frst is

identifying when and where bubbles and droplets should be created. Once the location has

been identifed then the volume represented by the droplet/bubble needs to be determined.

The third is moving the bubbles or droplets. The last is merging bubbles or droplets back into

the main fuid simulation.

Identifying Bubbles and Droplets

Song et. al describe three methods that can be used to identify air bubbles and water droplets.

The frst method involves examining the sign of the level set function. If cell with a positive

level set value is surrounded by cells with a negative level set value then a droplet is introduced.

If the signs were reversed then a bubble is created. See Figure 5.3.

Figure 5.3: The frst method to identify water droplets. In this scenario a water droplet would
be created at the position of the blue cell.

Sometimes, simply examining the signs of the level set function is not enough. Consider the

case where the values inside a of small grid have a small negative value and are surrounded by

cells with a large negative value. The small negative values indicate that water is nearby so a

water droplet should be introduced into the blue region in fgure 5.4.

35

http:toidentifywaterdroplets.In

Figure 5.4: The second method to identify water droplets. The blue cells contain a small
negative level set value while the surrounding cells contain a large negative level set value.

Lastly, the semi-Lagrangian technique used in the advection step of the solver may not

always refer to every cell in the grid. The mass in the unreferred cells may be lost. To

counteract this problem those cells are converted into droplets/bubbles.

Calculating the Volume of Droplets and Bubbles

Once the position of droplets and bubbles has been identifed then the volume of fuid to be

represented by the droplet/bubble needs to be determined. The authors use the following

equation XZ
Vf = H(°(x))dx ˇ H�(°(xc))�x�y�z (5.2.8)

c c

where c represents the droplet (circular region), c is the index over the cells in the shaded

region of fgure 5.5 and H is the smeared Heaviside function given by [25]

8 >>>>< >>>>:
0 if ° < −�

H�(°) = 1 ° + + 1 sin(°ˇ) if |°| � � (5.2.9)
2 2� 2ˇ �

1 if ° > �

36

Figure 5.5: The shaded cells are used to determine the volume of the droplet.

Motion of Droplets and Bubbles

Bubbles and droplets can be thought of as simply particles. As the particle moves it experiences

forces due to gravity, drag and pressure from the surrounding fuid. The authors summarize

the force as

f = mfg + �dr
2(b − vp)|b − vp| − Vfrp (5.2.10)

where mf is the mass, Vf is the volume, �d is the drag coeÿcient, r is the radius of the particle,

vp is the current velocity of the particle and b is the interpolated velocity of the grid-based

fuid measured at the center of the particle. The last two terms of the equation represent the

force of the fuid acting on the particle and must be accompanied by an opposite force acting

on the fuid.

Merging Droplets/Bubbles Back Into the Fluid

Particles are merged back into the fuid when one of the two following conditions are met:

1. The volume of the particle becomes more than twice as large as a single cell.

2. The particle hits the surface or moves into portion of the fuid of the same phase (droplet

moves into water or bubble moves into air).

In the frst case, the velocity at the grid points is set to the velocity of the particle and the

level set value is updated according to

°(xi) = sp(rp − |xi − xp|) (5.2.11)

37

where sp = 1 for a droplet and sp = −1 for a bubble, rp is the radius of the particle, xp is the

center of the particle and xi is the grid point being updated.

In the second case where the particle moves back into the fuid of the same phase, then the

velocity at the grid point is set to the average of the current velocity and the particle’s velocity.

The level set values are updated using the inverse of the procedure that was used to determine

the volume of the particle. This procedure has the e�ect of forming small ripples. When the

droplet hits the surface it creates a small downward force creating a hollow. At later time steps

the region is pushed back up and creates a small bump.

5.2.4 Interacting with Rigid Bodies

When a rigid object enters the water, the cells whose centers are contained within the object

are marked. For each marked cell, s, the component of the velocity feld that is normal to

the object must be constrained to be positive or else water will be fowing into the object.

Therefore, the velocity of the cell is modifed so that

us · ns � 0 . (5.2.12)

To ensure this equality holds, the normal component of u is removed and the tangential

component stays the same. The linear and angular forces on the object can be described

as:

X
F = Mg + (−rps · ns)ns�S (5.2.13) X s

T = (rs − rc)× (−rps · ns)ns�S (5.2.14)
s

Where F is the total linear force, T is total torque, M is the mass of the object, s is the index

ranging over the marked cells, ps is the fuid pressure of the cell, rs is the position of the cell, rc

is the position of the object’s center of mass and �S is the area of the object surface subsumed

in the cell.

38

5.2.5 Results

Using a 3.2 GHz Intel Pentium 4 with 1 GB of memory the authors were able to achieve real-

time results (30-40 fps) in 2D. Simulation times in 3D ranged from 34.0 to 51.7 seconds per

frame on an 80x80x80 grid.

Figure 5.6: A 3D simulation of a cup being drowned in water using the fuid simulation model
developed by Song et. al. Image taken directly from [25]

39

Chapter 6

HYBRID APPROACHES

The fnite-di�erence approaches have the advantage that they are easy to comprehend, easy

to implement and in the case of [5] run in real-time. The downside is that they can easily

become unstable. The implicit methods on the other hand have the advantage that they are

guaranteed to remain stable, but may not always conserve mass or run in real-time. Some

have tried to combine the best of both approaches in an attempt to overcome each of their

limitations.

6.1 Foster and Fedkiw

The approach used by Foster and Fedkiw in [11] is a combination of the semi-Lagrangian

approach used by Stam [26] that is discussed in section 5.1 and the fnite-di�erence approach

used by Foster and Metaxas [12] and discussed in section 4.2. The discretization technique

follows the Marker-and-Cell approach used by Foster and Metaxas. However, their biggest

contribution is the method used to track the free-surface between the water and the air.

Additionally, they describe a simple mechanism to handle objects that move through the liquid.

6.1.1 Tracking the Free Surface

Foster and Fedkiw use a combination of marker particles and a level set method to track the

free surface of the water. Both the particles and the level set are updated during each iteration.

The values are then compared and combined to yield the fnal surface for each frame of the

simulation.

Marker Particles

The marker particles are assumed to be massless and are distributed throughout the entire

fuid volume during initialization. During the simulation, particles are introduced at infow

boundaries. During each iteration the position of each particle is updated using simple

40

kinematics.

xp = xp + uxp ��t (6.1.1)

where xp is the position of the particle and uxp is the velocity of the fuid at xp. The value of

uxp is obtained using trilinear fltering. While this approach is computationally eÿcient and

easy to implement, it is unclear how the particles should be connected in order to retrieve the

surface.

An alternative is to use the particles to locate an isocontour of an implicit function. The

implicit function is defned on a high-resolution grid that is placed inside of the Navier-Stokes

grid. Each particle represents the center of an implicitly defned surface with radius r,

q
° p(x) = (xi − xpi)2 + (xj − xpj)2 + (xk − xpk)2 − r (6.1.2)

where xp is the position of the particle. The surface of the particle is defned as the points

where ° p(x) = 0. An implicit function °(x) can then be defned using all particles by taking

the value of ° p(x) from the particle closest to x. If °(x) is sampled at each point in the high

resolution grid, then the Marching Cubes algorithm can be used to tesselate the isocontour

where °(x) = 0 (see Figure 6.1).

Figure 6.1: The high-resolution grid and the corresponding sign of the function °. Figure
directly adapted from [11]

Now that the surface has been found the authors smooth it to yield a less bumpy appearance.

The frst step in the smoothing process is to normalize the value of |°(x)| so that it represents

41

the distance to surface. The sign of ° will be set so that it is negative inside the fuid and

positive on the outside. The normalization is done using a technique called the Fast Marching

Method. The Fast Marching Method will be discussed in the next section.

After °(x) has been normalized then the next step in the smoothing process is to smooth

out any unnatural folds or corners. The authors use the following smoothing equation

° � = −S(°�=0)(kr°k − 1) (6.1.3)

to update the values of ° close to the °(x) = 0 isocontour. Where

°
S(°) = p (6.1.4)

°2 + �˝2

and �˝ is the grid spacing (assuming that �˝ is the same for all directions). The smoothing

function is applied for a few relaxation steps in fctitous time �. The smoothed surface is still

not perfect. It requires a large number of particles near the �(x) = 0 isocontour. It also requires

particles to be present in the entire fuid volume even when they clearly do not contribute to the

surface. The solution is to use the particles to create ° one time and then track its movement

through the same velocity feld as that used to move the particles. This is known as a level set.

The level set is discussed in section 6.1.1.

Fast Marching Method

Fast Marching Methods are used to solve Eikonal equations that come in the form:

kru(x, y, z)k = F (x, y, z) in (6.1.5)

where F (x, y, z) > 0 is a known input and is a domain in R2 or R3. Lastly, u = g(x) where

g(x) is a known function on a given curve or surface on . The Fast Marching algorithm is

defned as follows.

1. Label initial known values as Alive.

2. Label all points that are one grid space away from an Alive point as Close.

42

3. Label all remaining points as Far.

4. Begin Loop

5. Identify the point in Close with the smallest value of u and label this point as Trial.

6. Label all neighbors of Trial that are not Alive as Close. If one of these points was in Far,

then remove it from Far.

7. Recompute the values of u at all Close neighbors of Trial.

8. Add Trial to the Alive set and remove it from the Close set.

9. End Loop

In the context of the fuid simulation, the initial Alive set would be all points for which ° > 0.

The level set

Recall the level set equation
@°

+ u · r° = 0 . (6.1.6)
@t

This is an advection equation similar to the advection term in the Navier-Stokes equation,

(u · r)u. The authors solve this equation using the technique presented in [9]. This is a

multi-step process.

1. We need to calculate °+ and °− which represents the partial derivative of ° with respect x x

to x in forward and reverse directions respectively.

2. For °− let:x

° i−2−° i−3 ° i−1−° i−1v1 = , v2 = �x �x

° i−° i−1 ° i+1−° iv3 = , v4 = �x �x

° i+2−° i+1v5 = �x

3. For °+ let:x

43

http:Close.If

° i+3−° i+2 ° i+2−° i+1v1 = , v2 = �x �x

° i+1−° i ° i−° i−1v3 = , v4 = �x �x

° i−1−° i−2v5 = �x

4. Next we defne:

13 1
S1 = (v1 − 2v2 + v3)2 + (v1 − 4v2 + 3v3)2 (6.1.7)

12 4
13 1

S2 = (v2 − 2v3 + v4)2 + (v2 − v4)2 (6.1.8)
12 4
13 1

S3 = (v3 − 2v4 + v5)2 + (3v3 − 4v4 + v5)2 (6.1.9)
12 4

5. Next we defne:

1 1 a1a1 = w1 = 10 (�+S1)2 , a1+a2+a3

6 1 a2a2 = w2 = 10 (�+S2)2 , a1+a2+a3

3 1 a3a3 = w3 = 10 (�+S3)2 , a1+a2+a3

6. Lastly,

v1 7v2 11v3 −v2 5v3 v4 v3 5v4 v5(°±)i0 = w1(− +) + w2(+ +) + w3(− −)x 3 6 6 6 6 3 3 6 6

°− °+7. When solving the advection equation, if ui0 > 0 then use . If ui0 < 0, then use . If x x

ui0 = 0, then neither is required.

8. Derivations for y and z are an obvious extension of what was presented here.

Combining the Particles and the level set

After updating both the particles and the level set then the value of the level set is used to

determine how to interpret the particles. If a particle is inside and more than a few grid cells

away from the surface than it is deleted. This saves computational e�ort since the particle can

not contribute to the surface, then there is no reason to keep it around. Particles are introduced

into cells that are close to the °(x) = 0 isocontour that contain relatively few particles. This

44

will help to maintain defnition in these cells. For each particle that is close to the surface, the

curvature of the interface is calculated as:

k = r · (r°/kr°k) (6.1.10)

Areas with a small value of k have low curvature and are smooth. In these areas particles

are ignored and the level set is used to determine the surface of the liquid. In areas of high

curvature the particle values are used to modify the value of ° obtained from the level set. If

the implicit function for a particle at a grid point would give a smaller value of ° than the level

set, then the smaller value is used to replace the value obtained from the level set. Despite our

best e�orts, some particles will escape from the liquid. These can be used to indicate mist or

spray.

6.1.2 Updating the Velocity Field

Foster and Fedkiw use a combination of the semi-Lagrangian approach that was used by Jos

Stam and the fnite-di�erence approach used by Foster and Metaxas. The advection portion of

the Navier-Stokes equation is updated using the semi-Lagrangian approach and the di�usion

is handled using fnite-di�erences. The semi-Lagrangian approach allows for a large time step,

but tracking the fuid surface requires a small time step. The velocity feld is updated using a

large time step and then the surface is repeatedly updated using a series of small time steps

that sum to the value of the large time step. Conservation of mass is enforced using a technique

very similar to that used by Jos Stam in [26] except that a Preconditioned Conjugate Gradient

method is used rather than a Gauss-Seidel Overrelaxation Method.

6.1.3 Moving Objects

Foster and Fedkiw present a fairly straightforward method for the liquid to respond to moving

objects.

1. At the beginning of the frame, set the velocity of any cell within an object equal to the

velocity of that object.

2. Update the velocity feld as usual. Make no special considerations for cells with objects.

45

3. The velocities of every cell that intersects a surface has its velocities modifed so that the

component in the direction of the surface normal is equal to zero. That is u · ns = 0.

4. The velocity at cells within the object are set equal to the velocity of the object.

5. When performing the mass conservation step, the velocity is held fxed at any cell that

intersects an object.

Although straightforward, the method does have some drawbacks. First, it can only accomodate

one polygon per cell. This can be overcome by the averaging the normals for all faces within

a cell. Second, the method only models the liquid’s response to the object and not the forces

that the liquid applies to the object.

6.1.4 Results

All results were obtained on a 500MHz PentiumII and the times indicated include only

simulation time, not rendering time. A grid of 250x75x90 cells took about 7 minutes per

frame. A grid of 150x75x90 cells took about 4 minutes per frame. A grid of 150x200x150 cells

took about 3 minutes per frame.

Figure 6.2: An example of an animation created using the technique discussed in section 6.1.
The environment consisted of 150x75x90 cells and simulation took approximately four minutes
per frame. Image taken directly from [11].

46

Chapter 7

COLUMN-BASED APPROACHES

The model developed by Holmberg and Wünsche in [14] abandons the Navier-Stokes

equations all together. Theirs is a column-based approach that is based on the science of

hydrostatics.

7.1 Holmberg and Wünsche

The model proposed by Holmberg and Wünsche in [14] to simulate water can be broken down

into two pieces: the volume model and the spray model. The volume model is used to describe

the main volume of water while the spray model is used to describe water that has broken free

from the main volume.

7.1.1 Volume Model

The simulation area is divided into a 2D grid of columns with equally sized squares as their

base. The height of each column is initialized to a user-defned value and represents the depth

of the water. Each column is then divided into cells. Virtual pipes are then connected between

each of the cells. Figure 7.1 shows a 2D cross-section of the initial set up.

Figure 7.1: A 2D cross-section of the initial column set up used in [14]. Here arrows represent
virutal pipes and the solid colored blocks represent terrain.

47

The amount of liquid that fows through each pipe is dependent on the pressure di�erential

along the pipe. The pressure, Q, of each column is derived from Bernoulli’s equation [13] and

can be written as
1

Q = hˆg + ˆv2 + (p0 + E) (7.1.1)
2

where Q is the total pressure, h is the height of the column, g is the acceleration due to gravity, ˆ

is the fuid density, v is the velocity of the fow, p0 is the air pressure and E is the pressure from

external forces. The rate of fow through the pipe can then be determined based on Poiseuille’s

equation [13] � �
Qhead −Qtail v = fv0 + �t (7.1.2)

ˆl

where l is the pipe length (or grid size), f is the friction coeÿcient and v0 is the velocity

from the previous time step. Once the fow velocity is calculated, the volume of water passing

through the pipe is simply

V = �tvC (7.1.3)

where C is the cross sectional area of the pipe defned as

C = (htop − hbottom) � d (7.1.4)

htop = min(a1, a2)

hbottom = max(b1, b2)

where d is the grid spacing, ai is the top of two cells and bi is the bottom of two cells. This

can be thought of as the overlap of two cells. This area is shown in red in Figure 7.2. Since the

fuid is assumed to be incompressible then the volume fowing into one column must be equal

to the volume fowing out the column on the other end of the pipe. In the cases where a column

may be left with a negative volume, then the fow quantities need to be adjusted to avoid this

situation.

48

Figure 7.2: The area in red indicates the area calculated by equation (7.1.4).

7.1.2 Spray Model

Generating Particles

The spray model is intended to simulate water that has broken free from the main volume of

water. In previous work, such as [6], spray was introduced when the vertical velocity of a column

exceeded a pre-determined threshold. This approach has little to no physical justifcation.

Instead, Holmberg and Wünsche use research from the study of waves. It has been shown that

a wave becomes unstable when the wave height is 0.78 of the water depth. This same fact is

used to determine when particles should be released from the main volume.

Once the need for particles has been identifed then the amount of volume that the particles

represent needs to be determined. The authors use an adaptation of the Kindsvater-Carter

equation [20] which is used to measure the fow rate through a weir. A weir is a device that is

placed into a channel or river and is used to measure the fow of water [10]. The fow rate of

water through a weir is defned as
2 3 p

� = BH 2 2g (7.1.5)
3

where B is the base length, H is the height of the water above the base and g is the force due

to gravity. Since � is the rate of fow then the total volume represented is given by V = ��t.

The volume of each individual particle is determined prior to simulation. Therefore, the total

number of particles to be created is given by

nparticles = V/vparticle (7.1.6)

49

where vparticle is the volume of each individual particle. One additional particle may be created

to account for any additional volume left out in the above equation.

Now that the number of particles has been determined then their initial velocities needs to

be determined. The authors state

To do this the di�erence in total height between the column for which particles are

being generated and the column behind is used in the classic formula

2 v = u 2 + 2as

Where v is the current velocity, u is the initial velocity, a the acceleration, in this

case gravity, and s the distance covered.

However, it is unclear to which column they are refering to by “... and the column behind”.

Secondly, they do not provide a reference or derivation for their “classic” formula.

Particle Movement and Reabsorption

Once particles are created they are moved using simple kinematics. The only force acting on

particles is gravity.

When a particle hits a column of water, then it exerts a force on the water. The force can

be described as

F = vµ + V ˆg (7.1.7)

Where v is the velocity of the particle, µ is the viscosity, V is the volume of water displaced, ˆ

is the density of the fuid and g is gravity. Pressure is defned as P = F/Area. Therefore, it is

easy to calcuate the pressure increase at the column where the impact occurred.

7.1.3 Results

On a 1.4GHz PC an un-optimized simulation using 13,000 columns, 4 cells per column and

about 3700 particles was able to run at about 15 seconds per frame.

50

Figure 7.3: Frame from animation using the model described in [14]. Image taken directly from
[14].

51

Chapter 8

SMOOTHED PARTICLE HYDRODYNAMICS

8.1 Introduction

The previous approaches that have been discussed all fall under the category of Eulerian

approaches. They have utilized a fxed grid located in space and evaluated the properties

of the fuid as it moves past each grid point. An alternative approach is to describe the motion

of the fuid using particles that are moving with the fow. This is called a Lagrangian approach.

Smoothed particle hydrodynamics (SPH) works in this fashion.

The SPH approach estimates the properties of the fuid at any given point by a weighted

average of the property over the nearby fuid volume [21]. Mathematically this can expressed

as Z ˝

A(~r) = A(~s)W (|~s − ~r|)d3 s (8.1.1)
0

where A is some property of the fuid and W is the weighting function. Rather than computing

the given integral, the SPH approach approximates it by using a fnite set of particles. Thus

the above equation becomes

NX
A(~r) ˇ AjW (r − rj , h)�Vi (8.1.2)

j

Here j iterates over all particles and h is the “core radius” of W . The core radius of the

smoothing kernel can be thought of as the maximum distance from j for which W 6= 0. Using

mithe fact that �Vi = ˆi
then equation (8.1.2) becomes

NX Aj
AS(r) = mj W (r − rj , h) (8.1.3)

j
ˆj

where ˆj is the density of particle j, and mj is the mass of particle j. This equation is known

as the general SPH equation.

Every particle in the SPH simulation carries mass, position and velocity. Since density is

52

http:eachgridpoint.An

not one of the quantities carried by each particle it is obtained using the SPH equation by

setting A = ˆ.

ˆS(r) =

=

X ˆj
mj W (r − rj , h)

ˆjjX
mjW (r − rj , h)

j

Some terms of the Navier-Stokes equations rely on the gradient and Lapalacian of feld

values. Using SPH the gradient and Laplacian of quantity A is defned as the gradient and

Laplacian of W X AjrAS(r) = mj rW (r − rj , h) (8.1.4)
j

ˆj

X Ajr 2AS(r) = mj r 2W (r − rj , h) (8.1.5)
j

ˆj

To show this we will follow the derivation given in [17]. In a system with two particles, i and

j, the partial derivative of (8.1.3) with respect to x is

0 1
@ @ X Aj@ AAS(ri) = mj W (ri − rj , h) (8.1.6)
@x @x ˆjj

Using the product rule of di�erentiation we get

� � � �
@

@x

mj
Aj W (ri − rj , h)

ˆj
=

@

@x

mj
Aj

ˆj

mj
W (ri − rj , h) + Aj

ˆj

@
W (ri − rj , h)(8.1.7)

@x

=
mj0 · W (ri − rj , h) + Aj
ˆj

@
W (ri − rj , h)

@x
(8.1.8)

=
mj

Aj
ˆj

@
W (ri − rj , h)

@x
(8.1.9)

� �
mjAssuming that the value of A is constant throughout particle j then @ Aj = 0. The @x ˆj

parital derivative with respect to y and z follow a similar derivation thus allowing the gradient

of A to be written as equation (8.1.6). A similar derivation can be taken for the Laplacian of

A.

53

8.1.1 Lagrangian Approach to Solving the Navier-Stokes Equations

Recall equation (3.0.2) is the continuity equation and states that for an incompressible fow,

mass must be conserved. Since each particle in the system represents a distinct mass quantity

then mass is guaranteed to always be conserved. Therefore equation (3.0.2) can be disregarded

completely.

When discussing the Lagrangian approach to solving the Navier-Stokes conservation of

momentum equation it is convenient to rewrite equation (3.0.1) as [23]

� �
@u 2ˆ + (u · r)u = −rp + ˆg + µr u . (8.1.10)
@t

Once again, the choice of particles as fuid representation can simplify equation (8.1.10). The

advection term (u ·r)u is used to describe how the velocity fows with itself. Since the particles

both defne the velocity and move with it, then the advection term has already been satisfed

and does not need to be explicity calculated. This reduces equation (8.1.10) to

� �
@u 2ˆ = −rp + ˆg + µr u . (8.1.11)
@t

The right hand side of equation (8.1.11) represents the sum of the forces acting on each particle,

Fi. Using Newton’s equation which states that F = ma we can derive the acceleration for each

particle, i, as
Fi ai = . (8.1.12)
ˆi

Once the accleration of particle i has been determined, then its position and velocity can be

updated using any numerical integration scheme that one prefers.

8.1.2 Calculating Forces

Each force on the right-hand side of equation (8.1.11) can be calculated using equation (8.1.3).

However, in some cases the results will not be very accurate and some modifcations can be

made to overcome these shortcomings.

54

http:equation(8.1.10

Pressure

The force due to pressure, fpressure is represented in the Navier-Stokes equation as −rp.i

Plugging pressure into equation (8.1.4) gives

X
fpressure pj= mj rW (ri − rj , h) (8.1.13) i

j
ˆj

This equation presents two issues. The frst is that in order to calculate the pressure force at

position ri we need to know the value of the pressure at position rj . The second is that the

resulting pressure force is likely not going to be symmetric. The frst issue is resolved using the

ideal gas law [17]

pV = nRT (8.1.14)

1where p is pressure, V = is the volume per unit mass, n is the number of molecules in a mol, ˆ

R is the universal gas constant and T is the temperature. In the case of an isothermal fuid

with a constant mass then the right hand side can be reduced to a single scalar k. Thus, the

pressure can be written as

pV = k

1
p = k
ˆ

p = kˆ (8.1.15)

To understand the second issue with equation (8.1.13) consider a system with only two

particles, a and b. Particle a will only use the pressure of particle b to compute its pressure

force and vice versa. The only way that the force can be symmetric is if particles a and b had

the same pressure. In general this will not be the case. In [23] Müller et. al resolved this issue

by simply using the arithmetic mean of the two pressures. Thus the resulting equation for the

force due to pressure is defned as

X
fpressure pj + pi = mj rW (ri − rj , h) . (8.1.16)i

j
2ˆj

There exists one last issue with calculating the pressure force using equations (8.1.15) and

55

(8.1.16). The resulting force will always result in repulsive forces [17]. While this may be true

for a gas which is always expanding, it is not valid for a liquid that should exhibit internal

cohesion and have a constant mass-density when at rest. The solution discussed in [17] is to

introduce an additional rest pressure, p0, such that

(p + p0)V = k

(p + kˆ0)V = k

1
(p + kˆ0) = k

ˆ

p + kˆ0 = kˆ

p = k(ˆ− ˆ0) (8.1.17)

Using the pressure given by equation (8.1.17) in equation (8.1.16) will result in a pressure force

that will act to keep the fuid at its rest density.

Viscosity

Applying the SPH equation to viscosity yields

X
fviscosity 2 uj= µr u(ri) = µ mj r 2W (ri − rj , h) (8.1.18)i

j
ˆj

This again yields an asymmetric force. The solution proposed in [23] is a keen observation

that the viscosity of the fuid only depends on the relative velocity between particles. Thus the

equation becomes X
fviscosity mj

uj − ui = µ r 2W (ri − rj , h) (8.1.19)i ˆjj

8.1.3 Determining Surface Location

The free surface between the fuid and the air is obtained using an additional feld that the

literature calls the color feld. The color feld, cj , is defned to be 1 at particle locations and 0

56

everywhere else. Plugging the color feld into the general SPH equation (8.1.3) yields

X cj
cS(r) = W (r − rj , h)mj

ˆjj X 1
W (r − rj , h) Using the fact that cj is always 1 =

j

mj
ˆj

The normal to the surface, n is defned as the gradient of the color feld

n = rcS(r) (8.1.20)

The fnal location of the surface is defned at points where |n| > l where l is a pre-determined

threshold value. Once the surface has been determined then Müller et. al suggest in [23] that

it can be rendered using either point splatting or the Marching Cubes algorithm. They note

that Marching Cubes produces a better nicer result but takes much longer.

8.2 Müller, Charypar and Gross

The major contributions made by Müller et. al in [23] are smoothing kernels for various portions

of the SPH simulation, the description of an addtional force due to surface tension and the

description of results they have obtained using the SPH approach.

8.2.1 Smoothing Kernels

In [23], Müller et. al use the following smoothing kernel for all but two calculations

8 >< >: (h
2 − |r|2)3 , if 0 � |r| � h315

Wdefault(r, h) (8.2.1) =
64ˇh9

0, otherwise

The value of this kernel, its gradient and Laplacian is shown in Figure 8.1. One nice feature

of this kernel is that it does not involve computing the magnitude of r which avoids a

computationally expensive square root calculation.

The kernel given by equation 8.2.1 can not be used to calculate the force due to pressure.

The problem is that the gradient goes to zero as the two particles get close together. This would

erase any repulsive forces between the two particles. In [23], Müller et. al solve this problem

57

using the so called “spiky” kernel given by

15
Wspiky (r, h) =

ˇh6

8 >< >: (h− |r|)3 , if 0 � |r| � h
(8.2.2)

0, otherwise

The value of this kernel, its gradient and Laplacian is shown in Figure 8.1.

The last kernel introduced by Müller et. al in [23] is used to compute the force due to

viscosity. The kernel used to compute the viscosity force must have a Laplacian that is always

positive. To understand this recall that viscosity is a force that is created by friction and

decreases a fuids kinetic energy by converting it into heat. If the smoothing kernel were ever

allowed to be negative then it could end up increasing the relative velocity between particles.

The kernel proposed in [23] is defned as

8 >< >:
|r|3

+ |r|
2

+ h−
2h3 h2 2|r| − 1, if 0 � |r| � h15

Wviscosity(r, h) =
2ˇh3

(8.2.3)
0, otherwise

The value of this kernel, its gradient and Laplacian is shown in Figure 8.1.

Figure 8.1: The three kernels , Wdefault, Wspiky and Wviscosity (from left to right) proposed by
Müller et. al in [23]. The thick lines show the kernels, the thin lines their gradients and the
dashed lines the Laplacian. Image taken directly from [23].

8.2.2 Surface Tension

In [23], Müller et. al introduce an additional force not found in the Navier-Stokes equation.

This is the force due to surface tension. Fluid molecules are constantly subject to attractive

58

forces from nearby molecules. Inside the fuid all of these attraction forces balance each other.

However, on the surface the force is unbalanced.

The surface tension force is directly related to the curvature of the surface. The curvature

is defned as the divergence of the normal, n, as defned in section 8.1.3.

2n r cS(r)
� = r · = − (8.2.4)

|n| |n|

where cS is the color feld as discussed in section 8.1.3. The fnal equation given for surface

tension in [23] is

f surface 2 n
= ˙�n = −˙r cS (8.2.5)

|n|

where ˙ is a tension coeÿcient that depends on the two interacting fuids.

8.2.3 Results

Results obtained on a 1.8GHz Pentium 4 with a GeForce 4 graphics card. Times include

simulation and rendering. A system with 2200 particles rendered using point splatting was able

to achieve 20 fps. Another system that included 1300 particles and allowed for interaction with

user-supplied forces was able to achieve 25 fps. A third system rendered using the Marching

Cubes algorithm and containing 3000 particles was able to achieve 5 fps.

8.3 Kipfer and Westerman

In [18] the authors Kipfer and Westerman strive to simulate rivers using SPH and sparse

particle sets. One of the major contributions made by Kipfer and Westerman in [18] is a

spatial data structure to easily locate the nearest neighbor of each particle when evaluating the

SPH equations and when determining collision between particles. Additionally, they present a

technique to extract the surface of the water for rendering. The technique can be implemented

either on the CPU or entirely on the GPU. Lastly, they discuss joining the two techniques

together.

8.3.1 Spatial Data Structure

In [18], Kipfer and Westerman propose the use of a staggered grid data structure that can be

used to determine potential collisions between particles. Additionally, the data structure can

59

be used to determine a particle’s nearest neighbors, useful when evaluating the SPH equation

(8.1.3). The computational domain is divided into a grid of three-dimensional cells with each

side of length 2r where r is the maximum radius of a particle. This structure is similar to the

leaf-level of an octree. Each particle’s position is then used to determine the indices, (ix, iy, iz)

of the cell in which the particle currently resides. The indices are combined into a single 64-bit

identifer, (id = 0|iy|iz|ix). Note that ix has been placed at the end. This will be explored

shortly. The particles are then placed into a list and sorted by their identifer in descending

order. The list is then linearly traversed starting from the left-most entry and progressing to

the right checking for collision with each particle until a particle identifer is found such that

idparticle � (idself − 2). Since ix was placed as the least-signifcant bits of the identifer then

this collision detection is only valid for the x-dimension. Therefore, two additional lists need to

be created and sorted, one for the y-dimension and one for the z-dimension. Once a collision

is resolved, then the leading bit of the particles’ identifer is set to 1 so that the collision

is processed by subsequent list traversals. As shown in fgure 8.2, Kipfer and Westerman

demonstrated signifcant speed improvements using this data structure compared to a more

traditional octree.

Figure 8.2: A graph demonstrating the speed increase of the staggered grid data structure over
a more traditional octree implementation. Image taken directly from [18]

60

8.3.2 Surface Extraction - The Carpet Method

In [18], Kipfer and Westerman propose a technique called the “carpet method” to extract and

animate the surface of water. They provide two forms of implementation, one that runs on the

CPU and a second that runs on the GPU. In a scene with 20,000 particles, they reported a

speed up of almost four times when using the GPU method as opposed to the CPU method.

The goal of the surface extraction method is to quickly build a closed surface that encompasses

all particles.

CPU-Based Surface Extraction

A quadtree is laid over the computational domain. Each leaf-node of the quadtree is initialized

with the maximum height value all of particles inside the leaf, the minimum height value of

the terrain inside the leaf and a velocity value of zero. Both the he maximum particle height

value and the minimum terrain height value are then propogated up the tree. The carpet can

then be eÿciently rendered by traversing the tree and examining the two height values. If at

any point the maximum particle height is less than the terrain height then the recursion can

stop. If a leaf node is reached then the corresponding quad is rendered. After the quadtree

is traveresed and rendered then each quad is accelerated downward by gravity. If the particle

that was supplying the maximum height value has left the quad, then the quad will slowly fade

down below the terrain. If not, then the quad will be rendered again during the next frame.

GPU-Based Surface Extraction

The GPU-Based method for constructing the carpet utilizes two vertex bu�ers. The vertices of

the frst bu�er are accelerated downward according to gravity as they are drawn into the second

bu�er. The height is stored as the z-value. This step is analogous to the gravity acceleration

performed in the CPU construction. The particles are then splatted into the new carpet vertex

bu�er with z-testing turned on. This will have the e�ect of raising the carpet vertices at points

where the particles are above the lowered carpet. Lastly, the newly created bu�er is drawn as

an array of triangle strips and the original two vertex bu�ers are swapped for the next iteration.

Splatting, sometimes called surface splatting or point splatting, is a technique that is used to

render an image of an object whose color and normal are defned at specifc unconnected points.

61

A complete discussion of point splatting is beyond the scope of this paper. The interested reader

is referred to [32].

8.3.3 Joining the Spatial Data Structure and Carpet Method

Using the CPU-based method to render the carpet as described in section 8.3.2 would require

a very high resolution quadtree. This would require a great deal of memory and traversal times

would become unacceptable. Instead, the quadtree is defned to contain a set of the spatial bins

used for the data structure described in section 8.3.1. When rendering the carpet using the

CPU method, the topology of each quad will depend on which spatial bins contain particles.

Additionally, if a particle is in a bin far from its neighbors then it could be used to represent

spray and perhaps be rendered with a di�erent texture.

When using the GPU-based carpet approach one is not able to arbitrarily choose rendering

primitives. Additionally, there is no need to join the spatial data structure to the GPU-based

carpet method as the whole carpet must be rendered everytime regardless.

8.3.4 Results

Results were obtained on a 2.2 GHz AMD Athlon64 with an nVIDIA GeForce 6800 GT graphics

card with 256 MB of video memory. A simulation containing 3000 particles was able to run at

68 fps. Another simulation using 8000 particles was able to achieve 26 fps and a third using

20,000 particles was able to run at 12.7 fps using the CPU-based carpet method. All times

include simulation and rendering.

62

Chapter 9

SUMMARY

Many di�erent approaches to simulating the motion of fuids and particularly water have

been presented. This section provides a brief comparison of the di�erent techniques based on

their realism, speed, storage requirements and stability.

9.1 Realism

The heightfeld approach discussed in section 4.1 solves the Navier-Stokes equations in 2D and

then scales the pressure at each grid point to determine the height of the surface above the

terrain. This is clearly just an approximation technique that neglects the activity of the fuid

at any point other than the surface. Additionally, since the height above the terrain is defned

as a single scalar value, this approach does not allow for overturning waves. The column-based

approach presented in section 7 su�ers a similar fate. Additionally, the column-based approach

is based on the science of hydrostatics and therefore ignores many of the important properties

of a fuid in motion.

The grid-based approach discussed in section 4.2 simulates the full 3D Navier-Stokes

equations and presents several di�erent possible techniques to track the surface of the fuid. One

of the surface tracking techniques involves tracking the position of massless marker particles as

they move through the fuid. The surface tracking technique developed by Foster and Fedkiw

and discussed in section 6.1.1 can be seen as an extension of this technique. Instead of relying

solely on the particles, the authors additionally use a level set technique to extract the surface

and then use the particles to modify the level set values. This presents an extremely realistic

e�ect (see Figure 6.2).

The stable method discussed in section 5.1 also solves the full 3D Navier-Stokes equations

but the semi-Lagrangian technique used in the advection step tends to lead to unacceptable

dissapation of mass. This problem is corrected by Song et. al and is discussed in section 5.2.

The level set technique used to extract the surface combined with their approach to simulate

63

air bubbles in the water also presents extremely realistic results, see fgure 5.6.

Lastly, the smoothed particle hydrodynaimcs approach discussed in section 8 uses a

Lagrangian approach to solve the full 3D Navier-Stokes equations. The accuracy of the approach

depends largely on the smoothing kernels that are chosen. The technique can be shown to have

second order accuracy, [19], if the kernels meet the three following conditions. The frst condition

is the normalization condition which states

Z
W (x − x0, h)dx = 1 (9.1.1)

The second condition is called the Delta function property and it states

lim W (x − x0, h) = �(x − x0) (9.1.2)
h!0

where

�(x − x0) =

8 >< >: 1 if x = x0

0 if 6 x0x =
(9.1.3)

The third and fnal condition is known as the compact condition and states

W (x − x0, h) = 0 when |x − x0| > �h (9.1.4)

where � is a constant that defnes the e�ective area of the smoothing function at x.

9.2 Speed

The Stable Fluids method developed by Stam and discussed in section 5.1 is the only fully 3D

Eulerian approach discussed in this paper that is capable of producing real-time results. The

problem is that the semi-Lagrangian approach used to calculate the advection portion of the

Navier-Stokes equations leads to an unacceptable amount of mass dissapation. The technique

presented by Song et. and discussed in section 5.2 overcomes the mass dissapation but the

extra computational complexity prevents the simulation from producing 3D results running in

real-time.

The 2D heightfeld approach developed by Chen and Lobo (section 4.1) is able to achieve

real-time results but at the expense of neglecting the motion of the fuid any where other than

64

at the surface. The particle-based approach presented by Müller et. al and discussed in section

8.2 is a Lagrangian approach that manages to simulate the full 3D Navier-Stokes equations and

run in real-time. The downside to the particle method is that it is generally prohibitive to use

for large bodies of water because it requires a very large number of particles.

The model developed by Foster and Fedkiw that is presented in section 6.1 o�ers speeds

around 3 minutes per frame. While clearly not capable of real-time results, for an o�-line

renderer the results are very promising.

9.3 Storage Requirements

The Marker-and-Cell discretization technique used by Chen and Lobo and discussed in section

4.1 stores the pressure values of the grid at the cell centers and the velocities on the cell faces.

For a square grid of size w x h there are {(h + 1)(w) + (h)(w + 1)} unique locations where the

velocity is stored. The pressure is defned at w � h locations and each requires the storage of a

single scalar value.

For a square grid of w x h x d, the 3D Marker-and-Cell method used by Foster and Metaxas

(section 4.2) and Foster and Fedkiw (section 6.1) stores the velocity at {(d + 1)[(h + 1)(w) +

(h)(w + 1)] + (h + 1)(w − 1)(d − 1)} unique locations. The pressure is defned at w � h � d

locations and each requires the storage of a single scalar value.

Using a level set technique as proposed by Song et. al [25] or Foster and Fedkiw [11] requires

the additional storage space for a single scalar representing the signed distance to the surface

at each grid point. The use of marker particles as discussed in sections 4.2.4 and 6.1 requires

storing an extra 3D vector represnting position for each particle in the simulation.

The particle-based approach discussed in section 8 requires storing the position, mass and

velocity for each particle in the simulation. Since velocity and position are both 3-tuples, then

each particle requires storage of seven scalar values. Additionally, during the simulation the

density at each particle location needs to be calculated and stored for use in future computations.

This increases the number of scalars to eight per particle.

The column-based approach discussed in section 7 requires storing the pressure and velocity

for each column as well as two pointers for each of the virtual pipes used in the simulation.

65

9.4 Stability

The only two techniques discussed in this paper that are guaranteed to be stable are the two

that are discussed in section 5. These methods are considered unconditionally stable because

the simulation is guaranteed to never diverge regardless of how large a timestep is used. The

Eulerian methods that use an explicit discretization such as those discussed in sections 4.1,

4.2, 6.1, and 7 are not guaranteed to be stable but stability can be aided by abiding by the

Courant-Friedrichs-Levy (CFL) Condition.

The CFL condition states that the time step used in a numerical simulation should be

smaller than the amount of time for “something signifcant to happen.” In the case of Eulerian

fuid simulation this is typically defned as the amount of time for a discrete fuid element to

travel from one grid point to another. In [11], Foster and Fedkiw suggest a CFL condition such

that �t = �˝/|u| where �t is the time step, �˝ is the grid spacing and u is the velocity.

The stability of the particle-based approach discussed in section 8 is largely dependent on the

numerical integration technique used to update velocities and positions based on forces. While

simple Euler integration will suÿce, stability can be increased using higher-order integration

techniques such as RK (Runge-Kutta) 2 or RK-4, [31].

66

http:onegridpointtoanother.In

Chapter 10

IMPLEMENTATION AND RESULTS

The two following algorithms were implemented: the Chen and Lobo heightfeld technique

discussed in section 4.1 and the Stable Fluids technique discussed in section 5.1. They were both

implemented on the same hardware consisting of a Pentium D processor running at 3.2GHz

with 1 gigabyte of RAM and an NVidia GeForce 6800. The simulations were implemented in

C++ using Microsoft Visual Studio .NET and run on the Microsoft Windows XP Professional

operating system. The DirectX 9.0c API was used for rendering.

10.1 Chen and Lobo

Using a grid of size 80x80, a serial implementation of the Chen and Lobo heightfeld technique

is able to update the water simulation at an average of rate of 76 times per second. The

implementation is able to simulate the motion of the water and render the surface with refection

mapping, refraction mapping and high dynamic range to low dynamic range tonemapping at

an average rate of 40 frames per second. A single frame of the simulation is shown below.

Figure 10.1: A single frame of the Chen and Lobo simulation. The simulation includes refection
and refraction mapping as well as high dynamic range rendering.

67

10.2 Stable Fluids

While the Chen and Lobo technique was used to simulate water, the Stable Fluids technique was

used to simulate smoke. This algorithm was implemented both as a CPU-based simulation and

as a GPU-based simulation. Both simulations use a 128x128. The CPU-based implementation

is single threaded and is able to update the simulation and render the results at a rate of

approximately 25 frames per second. The GPU-based implementation is able to update the

simulation and render the results at approximately 50 frames per second. A single frame of the

simulation is shown below.

Figure 10.2: A single frame of the Stable Fluids simulation. The simulation allows the user to
paint ‘virutal smoke’ on the screen and then disturb the velocity feld and observe the result.

68

Chapter 11

FUTURE WORK

11.1 Parallel Approach

It has been shown that both algorithms are able to produce to very realistic looking results in

real-time. However, Eulerian fuid simulations such as these contain a great deal of inherent

parallelism. Typically each grid point can be updated individually and only requires knowledge

of its nearest neighbors. This fact combined with the increasing popularity of multi-core

processors provides potential for extremely fast simulations. A simple approach to parallelizing

the problem would be to divide all of the grid points into n sets, where n is the number of

processors available on the system. All of the processors could then be working on their own

sets simultaneously.

Another approach to parallelizing the Chen and Lobo technique would be to implement it on

the GPU, such as was done with the Stable Fluids method. Given the relative simplicity of the

Chen and Lobo technique, it is reasonable to assume that an experienced GPU-developer could

implement the algorithm with ease. Additionally, the project may prove extremely worthwhile

as a learning exercise for a novice GPU-developer.

11.2 Particle and Heightfeld Hybrid Approach

Both the smoothed particle hydrodynamics and the 2D heightfeld approaches are able to be

used to create real-time simulations. However, each has its own problem. The biggest problem

with the heightfeld approach is that the scalar-valued height of the surface above the terrain

does not allow for overturning water. Additionally, their does not exist a physically justifed

way to introduce spray. However, it is very eÿcient when used to simulate large bodies of water

where the focus of interest is on the surface. The particle-based approach is very capable of

simulating over-turning water and spray is automatically modeled by particles that have strayed

from their neighbors. The problem with the particle based approach is that the number of

particles required to simulate very large bodies of water can become computationally prohibitive

69

because particles are required throughout the entire fuid domain.

A hybrid approach can take advantage of the strengths of each technique will working to

remove their respective weaknesses. The proposed hybird model simulates the main volume of

the water using a 2D heightfeld approach analogous to that used by Chen and Lobo in [5] and

discussed in section 4.1. As the simulation progresses particles can be introduced at “points of

interest”. “Points of interest” may include locations such as the boundary between the water

and static or dynamic objects in the scene. A process must be developed that allows interaction

between the two di�erent simulation techniques. The main considerations involve developing

a physically-justifed method of advancing the simulation, determining how to convert water

from the heightfeld into particles and how to merge particles back into the heightfeld when

necessary.

During every iteration of the simulation the 2D heightfeld is updated using the technique

discussed in section 4.1.2. After the heightfeld has been updated, each of the particles is

updated using the smoothed particle hydrodynamics approach discussed in section 8. The

particles interact with each other exactly as described in the above section and treat the water

simulated by the heightfeld as simply a very dense collection of particles.

Imagine the scenario depicted in fgure 11.1. The fgure shows a cross-section of the

heightfeld and particles resting on the surface. Recall the generic SPH equation presented

in section 8.

Figure 11.1: A 2D cross-section of an example frame from the proposed technique.

X Aj
AS(r) = mj W (r − rj , h) (11.2.1)

ˆjj

Here A is any scalar-valued quantity of the fuid. When updating each particle three forces

70

need to be calculated as described in section 8, these are pressure, viscosity and external forces.

The inclusion of external forces is trivial and the others will be discussed below.

11.2.1 Columns and Volume

A “column” in the heightfeld is defned as three grid points that lie on the vertices of a

triangular region such as those shown in Figure 11.2. The height of the column, hc, is defned

as the average pressure at each grid point times the user-defned height scale value, s, plus the

user-defned base height of the surface, h. Let the pressure at the three grid points for a given

column be defned as p1, p2 and p3. The height of the column can be defned as

hc = h + s(pc) (11.2.2)

p1 + p2 + p3
pc = (11.2.3)

3

Here the variable h is used to indicate the height of the surface above the terrain when the

pressure at each of the grid points is zero.

Figure 11.2: (a) A top-down view of the 2D computational grid. The red and green triangles
each represent a single triangular column. (b) A 2D side view of the column defnition. The
region in green defnes a single column in the heightfeld simulation.

Using the defnition of the height of a column given by equation (11.2.2) then the volume in

a given column, vc, is defned as simply the height of the column times the area of its triangular

base (the green area shown in Figure 11.2.

hc ��x ��y
vc = (11.2.4)

2

71

11.2.2 Calculating Pressure Force

Recall the SPH equation used for calculating the force due to pressure

X
fpressure pj + pi = mj rW (ri − rj , h) . (11.2.5)i

j
2ˆj

In the hybrid technique, when updating an SPH particle, i, equation (11.2.5) would be used

directly when calculating the pressure force due to other nearby SPH particles. However, the

particle is also infuenced by the the main volume of water being simulated by the heightfeld

technique. To include these forces the volume of fuid that is contained within the core radius

around each particle needs to be considered. This is the red area in Figure 11.3. Assuming that

the area in red inside of each column is completely flled with other SPH particles, then the

total contribution from the heightfeld to the pressure term for the single red particle would be

ZX pc + pi
pS(x) = mc rW (r) · d3r (11.2.6)

2ˆc c Vc

where c iterates over all of the columns in i’s core radius and Vc is the volume in column c

inside of i’s core radius. Since it can assumed that the pseudo-particles inside of the column are

packed tight enough for their density to be constant and using the fact that volume equals mass

mover density, V = , and since the heightfeld approach assumes that the pressure is constant ˆ

along the entire column, then equation (11.2.6) can be written as

ZX pc + pi
pS(x) = Vc rW (r) · d3r (11.2.7)

2
c Vc

Using the Green-Gauss theorem from calculus, equation (11.2.7) can be rewritten as the

following surface integral [4]

ZX pc + pi
pS(x) = Vc W (r)nda (11.2.8)

2
c Sc

where n is the outward pointing surface normal. Depending on the smoothing kernel this

integral can either be computed analytically or computed using a numerical integration

technique such as Gaussian Quadrature [31]. Alternatively, one could consider the volume

72

in the column to represent one very large particle and the total contribution to the pressure

force from all of the columns would simplify to

pS(x) =
X pc

Vc
+ pi rW (r)
2

(11.2.9)
c

where r is the vector from the SPH particle to the center of the red area in each column as

shown in Figure 11.3.

Figure 11.3: A 2D cross section of the proposed technique. Here the red particle is the particle
currently under consideration. The circle represents the core radius around the particle. The
area colored in red represents the volume of water from the heightfeld simulation that needs
to be considered when updating the red particle. Note that the volume in each of the three
columns needs to be considered seperately and then summed to achieve the fnal result.

11.2.3 Determining Pressure

The previous section assumes that pressure is defned at all particle locations. Recall from

section 8.1.2 that the equation for pressure at each particle is

p = k(ˆ− ˆ0) (11.2.10)

which requires the calculation of the density at the particle location. Additionally recall the

equation for density presented in section 8

X
ˆS(r) = mjW (r − rj , h)

j

73

When determining the density of the fuid for a particle, i, the SPH equation above can be used

directly when considering other nearby SPH particles. However, just as in the previous section,

the particle also needs to consider the main volume of fuid. Referring to fgure 11.3, the total

contribution of the main fuid volume to particle i is

ZX
ˆi = mc W (r, h) (11.2.11)

c Vc

Using equation (9.1.1) and the fact that the density of water is one and thus, mc = Vc, then

the above equation simplifes to X
ˆi = Vc (11.2.12)

c

11.2.4 Viscous Force

Recall the SPH equation for calculating the force due to viscosity

fviscosity
i =

X uj − ui
µ mj r 2W (ri − rj , h)

ˆjj

(11.2.13)

When updating the SPH particles in the proposed technique, equation (11.2.13) can be applied

directly to all of the particles in the simulation. However, the SPH particles also need to take

into consideration the main volume of water. Using a procedure similar to that described in

section 11.2.2, the volume in each column that lies within the particle’s core radius contributes

to the viscous forces that it experiences. Thus, the total contribution to the viscous force for

all columns can be computed as

ZX
fviscosity = Vcµ(uc − uparticle) r 2W (r, h)d3r (11.2.14) i

c Vc

Using the divergence theorem, equation (11.2.14) can be rewritten as

ZX
fviscosity
i = Vcµ(uc − uparticle) rW (r, h)da (11.2.15)

c Sc

Depending on the smoothing kernel, W , this integral can either be computed analytically or

using a numerical integration technique such as Gaussian Quadrature [31]. Alternatively, one

could consider the volume in the column to represent one very large particle and the total

74

contribution to the force due to viscosity from the main volume of water would simplify to

X
fviscosity = Vcµ(uc − uparticle)r 2W (r, h) (11.2.16)i

c

where r would be defned as the vector from the SPH particle to the center of the red area in

each column as shown in fgure 11.3.

11.2.5 Determining Volume Inside of Core Radius

When calculating the force due to pressure and the force due to viscosity, it is necessary to

determine the amount of water represented by the heightfeld that lies within the core radius

of a given SPH particle. This section presents the algorithm used to solve this problem. It is

important to note that in consideration of speed and ease of implementation, this algorithm

only attempts to compute an approximation to this volume.

The SPH particle can be modeled as a sphere whose radius is equal to the core radius of

the particle. The top of each column is modeled as a triangle, as described in section 11.2.1.

The frst step of the algorithm is to determine which triangular columns the particle is near.

This is done by frst dividing the x and y components of the particle’s position by �x and �y

respectively. This will indicate which set of grid points the particle resides between.

The next step is to project the sphere onto the plane of the heightfeld simulation. Let’s

assume that the 2D heightfeld grid is on the x-y plane. The projection is accomplished by

simply setting the z-component of the particle’s position to zero. The frst part of the problem

has now been reduced to determining which triangles in the heightfeld simulation. This can be

accomplished with a simple circle-triangle collision test. For an example see [8]. Now that the

list of interacting columns has been determined the next step is to determine what quantity of

volume lies within each column and the sphere representing the particle.

Each column of the heightfeld simulation can be visualized as a triangular prism. The prism

can be divided into an octree by recursively placing a new vertex mid-way along each edge,

see Figure 11.4. The process of estimating the volume inside of the column and the particle

becomes simply summing the volumes of the largest prisms in the octree whose vertices all lie

within the core radius of the particle’s center.

75

Figure 11.4: 2D visualization of the octree building process. In 2D the result is a quadtree. The
extension to 3D is straightforward. The black triangle represents the base of the heightfeld
column. The red triangle represents the frst level of the quadtree. The blue triangle represents
a node at the next level.

11.2.6 Surface Extraction

The extraction of the surface will follow the color feld approach discussed in section 8.1.3.

While the color feld is valid for the SPH particles it would ignore the surface given by the

heightfeld. Therefore, during the surface extraction process additional static particles will be

introduced along the surface of each column as shown by the green particles in fgure 11.5. This

approach should be suÿcient to capture the e�ect of overturning water.

One of the other desired e�ects of the proposed technique is to provide a physical justifcation

for the generation of spray. The technique would able to handle this quite easily. Any time that

the main volume of water is no longer within an SPH particle’s core radius then the volume

of water will no longer have an e�ect on the particle’s motion and thus the particle can be

thought of as spray. Once a spray particle has been identifed then it will be subject to simple

kinematics until it moves back within its core radius of the main water volume.

11.2.7 Interaction with Rigid Bodies

Including interaction with rigid bodies is also easily accomdated by this technique. When a

rigid body makes contact with the surface of the water then its geometry will be projected along

the object’s velocity direction onto the water surface. Water from the height feld simulation

will be converted into SPH particles that will be uniformly distributed throughout the projected

area. When the object contacts the particles the collision response can be handled in the same

76

Figure 11.5: A 2D cross section of the proposed surface extraction technique. Here the black
particles are the typical SPH particles and the green particles have been introduced along
surface of the heightfeld columns in order to account for the surface of the heightfeld.

manner as any other collision between an object and a sphere.

If the density of the object is greater than that of the water then it will continue to sink.

In this scenario then the above procedure can be repeated each time that the object contacts

the surface of the height feld. Once the object reaches the bottom of the simulation domain

then the pressure in the columns containing the object will likely have reached zero. However,

since the e�ect of the object on the surface will be negligible then it can be ignored and water

is allowed to fow back into the columns either from neighboring columns or from SPH particles

entering the column.

If the density of the object is less than that of the water then it should eventually come

to rest on the surface. The particle-based collision response technique discussed above can be

used to slow the object. Once the object’s vertical velocity has fallen below a pre-determined

threshold value, ˛, then it can be treated as a simple particle that moves with the fow.

11.2.8 Converting Particles To and From the Heightfeld Simulation

From Heightfeld To Particles

As discussed in section 11.2.7, when a dynamic object comes near the surface of the heightfeld

then a thin layer along the surface of the water column needs to be converted from the heightfeld

simulation into particles. Let i and j be predetermined constants that describe the number of

particles to introduce per unit width of the 2D grid and the number of particles to introduce

per unit length of the 2D grid, respectively. When converting water from the heightfeld into

77

Figure 11.6: A 2D cross section of the proposed rigid body interaction technique. Part (a)
represents the object coming into contact with the water surface. The red arrow is the object’s
velocity. Part (b) represents the projection of the object onto the water’s surface. Part (c)
shows the reduction of the volume in the columns being converted into particles inside of the
object’s projected area.

particles then the number of particles to be created, n, is equal to

n = (i ��x)(j ��y) (11.2.17)

where �x is the grid spacing in the x-direction and �y is the grid spacing the in y-direction.

The particles are evenly distributed throughout the area on the surface of the column. The

velocity of each particle is taken as the average of the velocities at each of the three points

comprising the column. Lastly, the mass of each particle needs to be determined.

Let the user-defned constant, �v, represent the amount of volume to be converted into

particles. This value of �v is used any time that a thin layer of water along the top of the

heightfeld needs to be converted into particles. If the volume in a given column is less than v

then let v = vc where vc is the volume of the column. Using n and �v then the mass of each

of the particles is simply
�v

mp = (11.2.18)
n

When water is converted into particles, then the volume in the column needs to be reduced.

The change in pressure at each grid point, �pc, can be obtained by taking the derivative of

equation (11.2.4) � �
1 1 −�v = s � (�p1 + �p2 + �p3) �x�y (11.2.19)
2 3

78

If we enforce the constraint that the change in pressure be equal at each grid point, that is

�p1 = �p2 = �p3 = �pi, then (11.2.19) becomes

−�v = s � 1
2

� �
1

(�pi + �pi + �pi) �x�y
3

−�v = s � 1
6

(�pi + �pi + �pi) �x�y

−�v = s � 1
�pi�x�y

2
−2�v

s�x�y
= �pi

(11.2.20)

here �v is negative because it represents volume being removed from the column.

From Particles To Heightfeld

Collision between a particle and the heightfeld can easily be determined by checking the height

of the water surface at the point where the particle resides. If the particle’s height is less than or

equal to the height of the surface, then it is colliding with the water. If the particle is colliding

with the surface and the distance from the particle to any static or dynamic object is greater

than a predetermined threshold, d, then the particle will be converted back into the heightfeld

simulation. Otherwise, the particle will remain in its current position and be updated with the

simulation.

Once the need to convert a particle into the heightfeld has been determined, then the

volume represented by the particle is added into the column on which it resides. If a particle

resides on the boundary between one or more columns, then its volume is spread evenly across

all columns. The change in pressure for a column that is absorbing a particle is the same

as equation (11.2.19) except that a positive value of �v is used. If a particle resides over n

columns, then the volume added to each column is simply �v = vp/n where vp is the volume

of water represented by the particle.

79

BIBLIOGRAPHY

[1] Allen, M., and Wilkinson, B. Parallel Programming. Prentice Hall, Inc, Upper Saddle
River, New Jersey, 1999.

[2] Allstar network. aeronautics - fuid dynamics - level 3 - fow equations. http://www.
allstar.fiu.edu/aero/Flow2.htm, January 29th, 2007.

[3] B.D. Nicholas, C. W. H. Calculating three-dimensional free surface fows in a vicinity
of submerged and exposed structures. Journal of Computational Physics, 12 (1973).

[4] Cfd online. gradient computation. http://www.cfd-online.com/Wiki/Gradient_
computation, 2 February 2007.

[5] Chen, J. X., and da Vitoria Lobo, N. Toward interactive-rate simulation of fuids
with moving obstacles using navier-stokes equations. Graph. Models Image Process. 57, 2
(1995), 107–116.

[6] David Mould, Y.-H. Y. Modeling water for computer graphics. Computers and Graphics
21, 6 (November 1997), 801–814.

[7] D.J. Auld, K. S. Flow description, streamline, pathline, streakline and timeline. http:
//www.ae.su.oz.au/aero/fprops/cvanalysis/node8.html, November 16, 2006.

[8] Ericson, C. Real Time Collision Detection. Morgan Kaufman, 2005.

[9] Fedkiw, R. P., Aslam, T., Merriman, B., and Osher, S. A non-oscillatory eulerian
approach to interfaces in multimaterial fows (the ghost fuid method). J. Comput. Phys.
152, 2 (1999), 457–492.

[10] Flow science inc. weir fow. http://www.flow3d.com/Appl/weir.htm, December 02, 2006.

[11] Foster, N., and Fedkiw, R. Practical animation of liquids. In SIGGRAPH ’01:
Proceedings of the 28th annual conference on Computer graphics and interactive techniques
(New York, NY, USA, 2001), ACM Press, pp. 23–30.

[12] Foster, N., and Metaxas, D. Realistic animation of liquids. Graph. Models Image
Process. 58, 5 (1996), 471–483.

[13] Giancoli, D. C. Physics for Scientists and Engineers, 3 ed. Prentice Hall. Upper Saddle
River, New Jersey, 2000.

[14] Holmberg, N., and Wünsche, B. C. Eÿcient modeling and rendering of turbulent
water over natural terrain. In GRAPHITE ’04: Proceedings of the 2nd international
conference on Computer graphics and interactive techniques in Australasia and South East
Asia (New York, NY, USA, 2004), ACM Press, pp. 15–22.

80

http://www.flow3d.com/Appl/weir.htm
www.ae.su.oz.au/aero/fprops/cvanalysis/node8.html
http://www.cfd-online.com/Wiki/Gradient
http://www

[15] IRIX Device Driver Reference Pages. Silicon Graphics, Inc, November 14,
1994. http://techpubs.sgi.com/library/tpl/cgi-bin/getdoc.cgi/0530/bks/SGI_
Developer/books/DevDriver_PG/sgi_html/apa.html#id35547.

[16] Jiun-Der Yu, Shinri Sakai, J. A. S. A coupled level set projection method applied to
ink jet simulation. Interfaces and Free Boundaries 5 (2003), 459–482.

[17] Kelager, M. Lagrangian fuid dynamics using smoothed particle hydrodynamics.
Master’s thesis, University of Copenhagen, 2006.

[18] Kipfer, P., and Westermann, R. Realistic and interactive simulation of rivers. In
GI ’06: Proceedings of the 2006 conference on Graphics interface (Toronto, Ont., Canada,
Canada, 2006), Canadian Information Processing Society, pp. 41–48.

[19] Liu, G., and Liu, M. Smoothed Particle Hydrodynamics. World Scientifc, 2003.

[20] LMNO Engineering, R., and Software, L. Rectangular weir calculator. http:
//www.lmnoeng.com/Weirs/RectangularWeir.htm, December 02, 2006.

[21] Martin, T. J., Pearce, F. R., and Thomas, P. A. An owner’s guide to smoothed
particle hydrodynamics. ArXiv Astrophysics e-prints (Oct. 1993).

[22] Matthews, P. Vector Calculus. Springer, 1998.

[23] Müller, M., Charypar, D., and Gross, M. Particle-based fuid simulation
for interactive applications. In SCA ’03: Proceedings of the 2003 ACM
SIGGRAPH/Eurographics symposium on Computer animation (Aire-la-Ville, Switzerland,
Switzerland, 2003), Eurographics Association, pp. 154–159.

[24] Sethian, J. A. Level set methods: An act of violence. American Scientist (May-June
1997).

[25] Song, O.-Y., Shin, H., and Ko, H.-S. Stable but nondissipative water. ACM Trans.
Graph. 24, 1 (2005), 81–97.

[26] Stam, J. Stable fuids. In SIGGRAPH ’99: Proceedings of the 26th annual conference
on Computer graphics and interactive techniques (New York, NY, USA, 1999), ACM
Press/Addison-Wesley Publishing Co., pp. 121–128.

[27] Temam, R. Une mthode d’approximation de la solution des quations de navier-stokes.
Bull. Soc. Math. de France, 98 (1968), 115–152.

[28] Wikipedia. Fick’s law of di�usion. http://en.wikipedia.org/wiki/Fick%27s_law, 12
September 2006.

[29] Wikipedia. Navier-stokes equations. http://en.wikipedia.org/wiki/Navier-Stokes_
equations, November 16, 2006.

81

http://en.wikipedia.org/wiki/Navier-Stokes
http://en.wikipedia.org/wiki/Fick%27s_law
www.lmnoeng.com/Weirs/RectangularWeir.htm
http://techpubs.sgi.com/library/tpl/cgi-bin/getdoc.cgi/0530/bks/SGI

[30] Wikipedia. Reynolds number. http://en.wikipedia.org/wiki/Reynolds_number,
November 16, 2006.

[31] William H. Press, Saul A. Teukolsky, W. T. V., and Flannery, B. P., Eds.
Numerical Recipes in C: The Art of Scientifc Computing. Cambridge University Press,
1992.

[32] Zwicker, M., Pfister, H., van Baar, J., and Gross, M. Surface splatting. In
SIGGRAPH 2001, Computer Graphics Proceedings (2001), E. Fiume, Ed., ACM Press /
ACM SIGGRAPH, pp. 371–378.

82

http://en.wikipedia.org/wiki/Reynolds_number

	Copyright
	Title Page
	Table of Contents
	Chapter 1 Introduction
	Chapter 2 Vector Calculus Review
	2.1 Scalar Fields and Vector Fields
	2.2 Gradient
	2.3 Flux
	2.4 Divergence
	2.5 Divergence Theorem

	Chapter 3 Equations of Motion - The Navier Stokes Equations
	3.1 Conservation of Mass Equation
	3.2 Conservation of Momentum Equation

	Chapter 4 Finite Difference Appraoches
	4.1 Chen and Lobo
	4.1.1 Governing Equations
	4.1.2 Discretization Technique
	4.1.3 Boundary Conditions
	4.1.4 Floating Objects
	4.1.5 Stability
	4.1.6 Results and Shortcomings

	4.2 Foster and Metaxas
	4.2.1 Governing Equations of Motion
	4.2.2 Discretization Technique
	4.2.3 Boundary Conditions
	4.2.4 Surface Tracking
	4.2.5 Rigid Bodies

	Chapter 5 Stable Methods
	5.1 Stable Fluids by Jos Stam
	5.1.1 Governing Equations of Motion
	5.1.2 Helmholtz Hodge Decomposition
	5.1.3 Four Step Fluid Solver

	5.2 Song Shing and Ko
	5.2.1 Level Set Methods
	5.2.2 The Constrained Interpolation Profile Method
	5.2.3 Air Bubbles and Water Droplets
	5.2.4 Interacting with Rigid Bodies
	5.2.5 Results

	Chapter 6 Hybrid Approaches
	6.1 Foster and Fedkiw
	6.1.1 Tracking the Free Surface
	6.1.2 Updating the Velocity Field
	6.1.3 Moving Objects
	6.1.4 Results

	Chapter 7 Column Based Appraoches
	7.1 Holmberg and Wunsche
	7.1.1 Volume Model
	7.1.2 Spray Model
	7.1.3 Results

	Chapter 8 Smoothed Particle Hydrodynamics
	8.1 Introduction
	8.1.1 Langrangian Approach to Solving the Navier Stokes Equations
	8.1.2 Calculating Forces
	8.1.3 Determining Surface Location

	8.2 Muller Charypar and Gross
	8.2.1 Smoothing Kernels
	8.2.2 Surface Tension
	8.2.3 Results

	8.3 Kipfer and Westerman
	8.3.1 Spatial Data Structure
	8.3.2 Surface Extraction The Carpet Method
	8.3.3 Joinging the Spatial Data Structure and Carpet Method
	8.3.4 Results

	Chapter 9 Summary
	9.1 Realism
	9.2 Speed
	9.3 Storage Requirements
	9.4 Stability

	Chapter 10 Implementation and Results
	10.1 Chen and Lobo
	10.2 Stable Fluids

	Chapter 11 Future Work
	11.1 Parallel Approach
	11.2 Particle and Heightfield Hybrid Approach
	11.2.1 Columns and Volume
	11.2.2 Calculating Pressure Force
	11.2.3 Determining Pressure
	11.2.4 Viscous Force
	11.2.5 Determining Volume Inside of Core Radius
	11.2.6 Surface Extraction
	11.2.7 Interaction with Rigid Bodies
	11.2.8 Converting Particles To and From the Heightfield SImulation

	Bibliography

