
DigiPen Institute of Technology

1

©Copyright [2008] DigiPen Institute of Technology and DigiPen (USA) Corporation. All
rights reserved.

DigiPen Institute of Technology

2

INFUSING LIFE INTO AN ARTICULATED BODY USING SPACE TIME CONSTRAINTS

BY
Amar Chitimalli

Masters of Science in Computer Science

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science

in the graduate studies program
of DigiPen Institute of Technology

Redmond, Washington
United States of America

Spring
2008

DigiPen Institute of Technology

3

Thesis Advisor: Dr. Xin Li
DIGIPEN INSTITUTE OF TECHNOLOGY

GRADUATE STUDY PROGRAM

DEFENSE OF THESIS

THE UNDERSIGNED VERIFY THAT THE FINAL ORAL DEFENSE OF THE

MASTER OF SCIENCE THESIS OF AMAR CHITIMALLI

HAS BEEN SUCCESSFULLY COMPLETED ON 28TH MARCH 2008

TITLE OF THESIS: INFUSING LIFE INTO AN ARTICULATED BODY USING SPACE TIME

CONSTRAINTS

MAJOR FILED OF STUDY: COMPUTER SCIENCE

COMMITTEE:

Dr. Xin Li, Chair Charles Duba

 Gary Herron Michael Moore

APPROVED :

Xin Li 3/28/2008 Matt Klassen 3/28/2008
Graduate Program Director Dean of Faculty

Samir AbouSamra 3/28/2008 Claude Comair 3/28/2008
CHAIR OF COMPUTER SCIENCE PRESIDENT OF DIGIPEN DEPARTMENT

DigiPen Institute of Technology

4

The material presented within this document does not necessarily reflect the opinion of

the Committee, the Graduate Study Program, or DigiPen Institute of Technology.

DIGIPEN INSTITUTE OF TECHNOLOGY

PROGRAM OF MASTER’S DEGREE

THESIS APPROVAL

DATE: ________28ST _MARCH__2008___________

BASED ON THE CANDIDATE’S SUCCESSFUL ORAL DEFENSE, IT IS RECOMMENDED THAT

THE THESIS PREPARED BY

Amar Chitimalli

ENTITLED: INFUSING LIFE INTO AN ARTICULATED BODY USING SPACE TIME

CONSTRAINTS

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF COMPUTER SCIENCE FROM THE PROGRAM OF MASTER’S DEGREE AT

DIGIPEN INSTITUTE OF TECHNOLOGY.

Dr Xin Li
Thesis Advisory Committee Chair

Xin Li
Director of Graduate Study Program

Matt Klassen
Dean of Faculty

DigiPen Institute of Technology

5

DigiPen Institute of Technology

6

Table of Contents

List of Important Figures ... 8

Acknowledgements ... 9

Abstract ... 10

Introduction to study of computer animation.. 11

Current animation systems ... 13

Dynamics of Physics .. 15

Centre of Mass .. 15

Rotation and Centers of Gravity ... 16

Center of Momentum ... 17

Moment of Inertia tensor ... 17

Moment of Inertia Tensor... 18

Principal Moments of Inertia .. 19

Rigid Body Linear Momentum: ... 20

Angular Momentum and Torque .. 21

Articulated Character and Degree of Freedom (DOF) .. 23

Types of Joints: .. 24

Ball and Socket Joint: .. 24

Hinge Joint: ... 25

Slider Joint: .. 25

Universal Joint: .. 26

Hinge Slider Joint: ... 26

Motor Hinge Joint: .. 27

Motor Slider Joint: .. 27

The State Vector: .. 28

Survey of previous work in Physics based animation ... 29

Space time Constraints – Andrew Witkin and Michale Kass .. 29

Synthesis of Complex animation from simple animation ... 32

My Approach for Infusing Life into Articulated Character ... 35

Kinematics Vs Dynamic approach ... 36

Inspiration for this implementation .. 38

Luxo Physical Model .. 39

Centre of mass of the system ... 43

Measure of Joint Angle ... 45

Representing a Pose: .. 46

System overview view... 48

Physics Simulation ... 49

Computation of Joint Torques and Angular Velocities ... 51

Algorithm and Pseudo code of iterative Joint correction:.. 53

User Interface ... 55

Results ... 58

Statistics and performance ... 61

DigiPen Institute of Technology

7

Conclusion and future work .. 62

Appendix – A ... 64

JMonkey Engine, a Open Source OpenGL based Java Graphic Engine 64

DigiPen Institute of Technology

8

List of Important Figures

Figure 1 Shows the Angular velocity and COM of a body

Figure 2 Examples of articulated bodies

Figure [3 – 9] Type of joints

Figure 10 The Luxo jumps used in paper 1

Figure 11 The entire system architecture of paper 2

Figure 12 Shows the joints setup in the Luxo model

Figure 13 Shows the DOF's of Luxo

Figure 14 Shows the COM of links of Luxo

Figure 15 Shows the COM of entire Luxo

Figure 16 Shows the angle setup of Luxo

Figure [17 – 18] Shows poses WRT State Vector of Luxo

Figure 19 Shows the entire system architecture

Figure 20 Shows the JME node representation

Figure 21 Shows the bounding boxes of Luxo

Figure 22 Shows the rotation representation of Luxo joints

Figure 23 Shows relation between Torque and Force

Figure 24 Shows the UI of the simulation

Figure 25 Shows pre defined user poses

Figure 26 Shows the Stats of the simulation

Figure 27 Shows one of the inspirations

DigiPen Institute of Technology

9

Acknowledgements

This thesis would certainly not have been possible without the support of many

people. My sincerest gratitude goes to all of them. I would specially like to thank my

advisor Prof. Xin Li who has always supported and pushed me to go ahead and try

things until it worked. It has been a great experience working with him.

I am working at a game development company called BigFish Game, the company

and the team has been of great support and help is providing all the resources and

information required. They have always understood my passion towards my thesis

and supported to go ahead even while we had great deliverable to be met in the

team.

JME Physics team has bee a great resource; they have a forum that people help and

share the knowledge and solve your barriers. This forum has been a great help.

Finally I would like to thank my family, friends for believing in me and supporting me

all the way to reach my career prospects. I dedicate my work to my father and

mother.

DigiPen Institute of Technology

10

Abstract

Animation has come a long way starting from traditional hand drawn frames to

synthesizing the motion as physically realistic as possible, by adapting and evolving

with the research and knowledge from areas like robotics, biomechanics, space-time

optimization and kinesiology. Animation studios have always been trying to reduce

the gap between the animation generated artificially and the natural motion of a

living character in a real world.

This paper talks about implemented a simple prototype for animating an articulated

character using only its physical characteristics and constraints imposed by the

environment and itself, where the user can impose additional constraints both on

space and time of the characters animation. The over all idea is to make the

animation as interactive and provide the user a physics simulated environment with

an easy use interface to compose and control the character motion with out any

traditional key framing. There is no interpolation involved and the same animation

sequence can be generated uniquely by changing the physical characteristics of the

character.

This paper introduce a novel joint correction algorithm, where the joints of the

character are corrected in each physics time steps, by calculating the amount and

direction of angular velocity to be applied to each joint. The algorithm takes into

account the centre of mass of the entire system, the physical mass of each link, the

time and poses constraints to generate the animation sequence.

DigiPen Institute of Technology

11

Introduction to study of computer animation

Motion of a creature that can move its body parts are controlled by its brain, the

nervous system controls and prepares the creature to make the require moves so

that the desired motion and pose is obtained. The nervous system is able to control

this motion based on some of the inputs it gets from the environment in the form of

visual signals and many other forms. With out essential input and proper goal of the

motion, the complex nervous system also fails to get into the desired motion and

pose.

Also the system already has the very essential physical information of itself like

mass, density, stiffness, constraints and DOF’s of each joint and bones in its body.

Apart from that, most of the creatures have memory to store and learn the

experiences, and reuse them my making minor corrections in the initial conditions

based on the current inputs and external factors its getting from its senses. All these

factors lead a character to manipulate itself and make required changes to its body

before, during and after the course of the motion to reach the required position and

target, as long as it is physically possible.

For years scientists have been studying, collecting and applying the learnt data so

that they can build a system that can control the body in the same way a creatures

can manipulate moves based on the trained data, inputs to achieve the required

motion. This has lead to a tremendous research in the areas of robotics,

biomechanics to study the biology of the body and mix it up with the mechanical

DigiPen Institute of Technology

12

objects that they can create and simulate the control of the creatures control on its

body parts to achieve the required motion.

The movie, entertainment and gaming industry has evolved as the computers

become powerful, affordable. This has lead into solving and simulating these

problems of motion control by using the knowledge from Biomechanics, Kinesiology

and Robotics. As the art, imagination, computing and all this research joint together

and provided tools for the artists to express their ideas of motion of a character, we

started seeing something called computer generated animation.

Generating computer animation with out considering physics only artistic and does

not deal with all the complexities of environment and the body/character properties.

A cartoon character looks funny and interesting; here the artist does not worry about

making the character obey all the physic properties, joints and their degree of

freedom, and the environment the character is in.

But when it comes to applications that have a character with bones with DOF’s, mass

and muscle forces defined, generating a physically realistic animation that should

appeal our eyes is not in the hands of the artist alone, it need lot of parameters to be

considered. How hard the artist try they will not be able to make realistic. The more

realistic and physically possible animation we want the more complex and time

consuming the task becomes.

DigiPen Institute of Technology

13

Current animation systems

Animation, once considered merely a source of entertainment, has evolved into a

powerful medium of communication in our daily life. The overwhelming need for

animation in education, science visualization, architecture, medicine, and even

forensics has created a great environment that nourishes research in different

disciplines. Despite the prevalence of animation, the process of creating animation is

difficult and labor intensive. Character animation poses a still more challenging

problem. Unlike passive rigid body motion, animals use muscles to exert self-

propelling forces to achieve certain goals when locomotion is undertaken. Moreover,

the animator has to portray the style and expression that bring characters alive.

Finally, even minor glitches and oddities in the synthetic motions are easily detected

by the scrutiny of sensitive human perception of natural motion.

Most character animations appearing in movies or video games products were

generated painstakingly by hand. The Key frame technique enables animators to

choreograph and build an animation by arranging characters and taking snapshots at

key moments during a sequence of movements. The advent of computers alleviates

part of the manual process by automatically generating in-between frames in a

motion sequence. Since it is still up to the artist to convincingly portray the

expressiveness of the movement from one key frame to the next one, computers are

not of much use when dealing with complex and intricate motions.

DigiPen Institute of Technology

14

Data-driven methods leverage the high fidelity of motion capture data to produce

believable character animations with expressive details by learning a statistical

model from a large dataset of existing motion sequences acquired from the real

world, data-driven methods can synthesize new motions that are similar to the

training motion sequences. Since these methods do not explicitly model physics, the

output is limited to direct modifications to the existing motions. If the desired motion

is drastically six different from the existing motions, a large number of new motions

that are similar to the desired motion need to be acquired. Consequently, extremely

large motion datasets may be required for general-purpose motion synthesis.

In contrast to data-driven methods, the space-time constraints framework casts

motion synthesis as a variation optimization problem of minimizing some physical

measure of energy. In addition to producing physically plausible motion, space-time

constraints provide the user an intuitive way to control the output motion through

constraints. However, because many aspects of the real-life physics are abstracted

away from the model, the optimization tends to produce reasonable results only for

high energy motions (jumping, diving, acrobatics, etc.) which can be well defined by

straightforward Newtonian dynamics. Low energy motions (walking, reaching, etc.),

in contrast, contain more stylistic variations which have not been described in any

dynamic models. When synthesizing highly dynamic motion, these methods use a

small set of simplified physical rules to ensure the momentum of the motion

satisfying Newtonian Laws. For synthesis of low energy motions, the model takes

into account the relative strength of muscles, impedance, and neutral position

parameters of passive structures around each joint.

DigiPen Institute of Technology

15

Dynamics of Physics

Centre of Mass

In physics, the center of mass of a system of particles is a specific point at which, for

many purposes, the system's mass behaves as if it were concentrated. The center of

mass is a function only of the positions and masses of the particles that comprise the

system. In the case of a rigid body, the position of its center of mass is fixed in

relation to the object. In the context of an entirely uniform gravitational field, the

center of mass is often called the center of gravity — the point where gravity can be

said to act. [See Fig -1]

- Mass mk

- Center of mass Ck(t)

- Velocity vk(t)

- Inertia Tensor Jk

- Rotation Matrix Rk(t)

- Angular Velocity Wk(t)

Figure -1

DigiPen Institute of Technology

16

Center of Mass of a system of R particles is defined as the average of their positions

(ri) weighted by their masses mi

For a continuous distribution with mass density p(r) and total mass M, the sum

becomes an integral:

Rotation and Centers of Gravity

The center of mass is often called the center of gravity because any uniform

gravitational field g acts on a system as if the mass M of the system were

concentrated at the center of mass R. This is seen in at least two ways:

The gravitational potential energy of a system is equal to the potential energy of a

point particle having the same mass M located at R.

The gravitational torque on a system equals the torque of a force Mg acting at R:

If the gravitational field acting on a body is not uniform, then the center of mass

does not necessarily exhibit these convenient properties concerning gravity

DigiPen Institute of Technology

17

Center of Momentum

The "center of momentum" of a system is not a point in space, but rather a

particular inertial frame in which the center of mass is at rest, and the total linear

momentum of the system is zero. Thus, the term is generally used in conjunction

with the term "frame", as in "center of momentum frame" or COM frame. The center

of mass frame, a less-preferred term for the same concept, refers to the fact that in

the center of momentum frame, the velocity of the center of mass is zero. However,

the center of mass of an object or system of objects is defined as point, independent

of inertial frames.

Moment of Inertia tensor

Moment of inertia, also called mass moment of inertia or the angular mass, (SI units

kg m2, Former British units slug ft2), is the rotational analog of mass. That is, it is

the inertia of a rigid rotating body with respect to its rotation. The moment of inertia

plays much the same role in rotational dynamics as mass does in basic dynamics,

determining the relationship between angular momentum and angular velocity,

torque and angular acceleration, and several other quantities. The symbols I and

sometimes J are usually used to refer to the moment of inertia.

Moment of inertia was introduced by Euler in his book a Theoria motus corporum

solidorum seu rigidorum in 1730. In this book, he discussed at length moment of

inertia and many concepts, such as principal axis of inertia, related to the moment of

inertia

DigiPen Institute of Technology

18

Moment of Inertia Tensor

For the same object, different axes of rotation will have different moments of inertia

about those axes. In general, the moments of inertia are not equal unless the object

is symmetric about all axes. The moment of inertia tensor is a convenient way to

summarize all moments of inertia of an object with one quantity. It may be

calculated with respect to any point in space, although for practical purposes the

center of mass is most commonly used.

Definition
For a rigid object of N point masses mk, the moment of inertia tensor is given by

. Its components defined by

Where i, j equal 1, 2, or 3 for x, y, and z, respectively, rk is the distance of mass k

from the point about which the tensor is calculated, and dij is the Kronecker delta.

Here Ixx denotes the moment of inertia around the x-axis when the objects are

rotated around the x-axis, Ixy denotes the moment of inertia around the y-axis when

the objects are rotated around the x-axis, and so on…

DigiPen Institute of Technology

19

Principal Moments of Inertia

Since the moment of inertia tensor is real and symmetric, it is possible to find a

Cartesian coordinate system in which it is diagonal, having the form

Where the coordinate axes are called the principal axes and the constants I1, I2 and

I3 are called the principal moments of inertia. The unit vectors along the principal

axes are usually denoted as (e1, e2, e3)

Using the tensor I, the kinetic energy can be written as a quadratic form

Angular momentum can be written as a product

Where W is the angular velocity of the entire system, W1, W2… are angular velocities

of each rigid body part of the system

Taken together, one can express the rotational kinetic energy in terms of the angular

momentum (L1, L2, and L3) in the principal axis frame as

The rotational kinetic energy and the angular momentum are constants of the motion

(conserved quantities) in the absence of an overall torque. The angular velocity W is

not constant.

Source:

http://en.wikipedia.org/wiki/Moment_of_inertia#Principal_moments_of_inertia

DigiPen Institute of Technology

20

Rigid Body Linear Momentum:

The equation for particle linear momentum is

 m is the particle's mass

 v is the particle's velocity

 fi is one of the N forces acting on the particle

Assuming constant mass, this reduces to

To generalize assume a body of finite mass and size is composed of such particles.

There exist internal forces, acting between any two particles, and external forces,

acting only on the outside of the mass. Each particle has:

 a mass dm

 a position vector r

Thus, the linear momentum equation of any given particle would look like this:

If the equation for each particle were added together, the internal forces would

cancel out, since by Newton's third law, any such force would have opposite

magnitudes on the two particles. Also, the left side would become an integral over

the entire body, and the second derivative operator could come out of the integral,

leaving

DigiPen Institute of Technology

21

Letting M be the total mass, the left side can be multiplied and divided by M without

changing the validity:

However, is the formula for the position of center of mass. Denoting this by

rcm, the equation reduces to

Thus, linear momentum equations can be extended to rigid bodies by denoting that

they describe the motion of the center of mass of the body.

Source: http://en.wikipedia.org/wiki/Momentum

Angular Momentum and Torque

Similarly, the angular momentum L for a system of particles with linear momentum

pi and distances ri from the rotation axis is defined

DigiPen Institute of Technology

22

For a rigid body rotating with angular velocity W about the rotation axis n (a unit

vector), the velocity Vi vector may be written as a vector cross product

Substituting the formula for Vi into the definition of L yields

Where we have introduced the special case that the position vectors of all particles

are perpendicular to the rotation axis .

The torque N is defined as the rate of change of the angular momentum L

If I is constant (because the inertia tensor is the identity, because we work in the

intrinsically frame, or because the torque is driving the rotation around the same

axis so that I is not changing) then we may write

 Where alpha is called the angular acceleration (or rotational

acceleration) about the rotation axis

Source:

http://en.wikipedia.org/wiki/Rigid_body_dynamics#Angular_momentum_and_torque

DigiPen Institute of Technology

23

Articulated Character and Degree of Freedom (DOF)

An articulated figure or character is made up of links and joints. The different links

are connected by joints which have some degree for freedom (DOF). In gaming

terminology these articulated characters are referred as rag dolls. Rag doll are being

used in many games to simulate natural motion where physics is involved with the

character.

Link can be thought of as a rod, which cannot change its shape and nor length.

Joint can be thought of as a connection between two neighboring links.

A joint has several Degrees of freedom, i.e., it might rotate around one, two, or

three axes. Or it might translate along one two or three axes.

Links and joints are numbered from 0,…,N, and an articulated figure always starts

with joint0, which is fixed at some stationary base coordinate system. The

numbering of the Links is very important in an articulated system. A joint inside an

articulated system say joint (i) connects link(i-1) and link(i), where link(i-1) is closer

to the base. Figure- 2 shows some of the examples of articulated bodies.

Figure -2

DigiPen Institute of Technology

24

Types of Joints:

1) Revolute Joint: A joint that can be rotated around one or more axes

a. They can have up to 3 degrees of freedom, that is rotate in all the

three axes [x,y,z]

b. Example: Ball and socket

2) Prismatic Joint: A joint that can translate along one or more axis

a. They can have up to 3 degrees of freedom, that is translate in all

the three axes [x,y,z]

b. Example: Hinge

Ball and Socket Joint:

A ball joint connects two bodies in one common point The bodies can rotate around

this common point but they can't move apart in this point (anchor). See Fig -3

Figure- 3

DigiPen Institute of Technology

25

Hinge Joint:

Hinge Joint eliminates all translational degrees of freedom and two rotational ones.

The linked bodies are allowed to rotate around one axis and they can't move relative

to each

Figure- 4

Slider Joint:

A slider joint eliminates all the rotation of freedom two translational ones. The linked

bodies are allowed to translate on axes relative to each other

Figure - 5

DigiPen Institute of Technology

26

Universal Joint:

Eliminates all translational and one rotational degrees of freedom. The linked bodies

are allowed to rotate around two different axes and they can't move relative to each

Figure - 6

http://www.ode.org/ode-latest-userguide.html

Hinge Slider Joint:

Eliminates two translational and two rotational degrees of freedom. The linked bodies

are allowed to rotate around one axis and they move relative to each on a slider

Figure - 7

http://www.ode.org/ode-latest-userguide.html

DigiPen Institute of Technology

27

Motor Hinge Joint:

A Motor Hinge Joint is a hinge joint with a servo motor . The motor is controlled with

a PID controller

Figure - 8

Motor Slider Joint:

A Motor Slider Joint is a slider joint with a servo motor. The motor is controlled with

a PID controller

Figure - 9

http://www.impulse-based.de/manual.html

http://www.impulse-based.de/manual.html#SimulationJoints

DigiPen Institute of Technology

28

The State Vector:

A state vector is a vector that represents the state of a physical body. Mostly stare

vectors are used in representing the Degree of Freedom (DOF) of joints in a

particular character.

To represent all kinds of mentioned above we will need 3 elements for translation

and 3 for rotation. Hence a vector with a size of 6 is good to represent most of joint

configuration. Let S be a state vector and it can be defined by:

 S= {Xpos, Ypos , Zpos ,Yaw, Pitch ,Roll}

Most of the animation sequences have the trajectories for all the joints in the

character tracked for the entire animation sequence, which is basically huge array of

state vectors tracked for the entire time of animation.

DigiPen Institute of Technology

29

Survey of previous work in Physics based animation

Space time Constraints – Andrew Witkin and Michale Kass

Introduction:

Space time constraints were first introduced in the year 1988, by Andrew Witkin and

Michale Kass. This was the first attempt to animate a character using only physics

properties of the characters. The goal of their new method was to eliminate the

dependency on the traditional animation techniques like key frame interpolation

provided by the artist. This was the first time where some one tried to eliminate

static key framing and come up with a method that can generate the animation as

realistic as possible.

The two common methods are simulation methods and constraint force methods to

generate animation but, Simulation methods solve initial value problem, they are not

good for problems like two-point boundary problems. They are good for problems

with the starting and the ending conditions are available, where as constraint force

methods permit parts of the character to move along predefined key framed

trajectories, but cannot be used to define the trajectories itself. Finding the optimal

trajectory of the parts is the central problem of character animation.

The Space time optimization introduced in this paper solves for characters motion

and time-varying muscle forces over the entire time interval of animation. The model

can be extended through time as well as space they call this formulation space time

constraints.

DigiPen Institute of Technology

30

 Space-time formulation does the following things

o Imposes constraints throughout the time course of the motion

o Constraints on positions and velocities directly encode the goals of the

motion

o Constraints limiting muscle forces or preventing interpenetration

define properties of the physical situation

o Newtonian physics provides a constraint relating the force and position

functions that must hold at every instant in time.

o Solving the above constrained optimization problem will result in a

physically valid motion

This paper explains the formulation of a motion of a simple particle with some mass

and comes up with the equation of motion with respect to time and discusses its

extension to a complex model and the numerical solutions available to optimize the

solution.

The Numerical solution this paper adapts to use the Sequential quadratic

programming [SQP] which involves the derivation if the entire systems equation of

motion in complex tensors. This involves the computation of large sets of Jacobian

and Hessians for solving the linear system during runtime.

The paper also discusses the extension to complex model where the model they

chose is Luxo Lamp. They formulate for the Kinetic energy T. The KE of the entire

system is the sum of the KE of each part of lamp.

DigiPen Institute of Technology

31

Over all this method is very complex and involves solving lot of tensor equations and

also deals huge sparse matrices of Jacobian and Hessians.

Some of the results that they discuss involve

Simple jumping of the Luxo Lamp

Variation Jumps

Ski Jumping

Figure – 10

 Advantages

o They do much of work only a skilled animator can do

o No high detail of Key framing is involved

o Motions can be sketched out as start here and stop

o New motion control by attributes like force and mass

 Draw Backs

o Needs formulation of equation of motion for every new body

o Involves ―SQP‖ Sequential Quadratic Programming where large sets of

Jacobian and Hessians are solved offline

o Involves complex Tensor expressions to be solved

o Needs Offline computation of these tensors and Jacobian

o Hardly interactive

DigiPen Institute of Technology

32

Synthesis of Complex animation from simple animation

C. Karen Liu Zoran Popovi´c University of Washington

Abstract :

This was paper has a different approach for the generating a realistic animation by

using the so called bio mechanics and the momentum constraints

Key features of this method can be put as following

 Method for rapid prototyping of realistic character motion

 Solve from a simple animation provided by the animator

 Describe a method to automatically find constraints from the input motion

 Uses small set of linear and angular momentum constraints

 Avoid the complexities of computing muscle forces

Overview

 System transforms simple animations into realistic character motion by

applying laws of physics and the biomechanics domain knowledge

 Input to the system

o An articulated character with its mass distribution

o Arbitrary character animation values of joint angles at each frame

 The motion synthesis problem is framed into a space time optimization

 The unknowns to this problem

 Values of joint angles at each frame

 Parameters that determine the behavior of angular and linear

momentum

DigiPen Institute of Technology

33

Four key stages of this method

 Constraint and stage detection

 Transition pose generation

 Momentum control

 Objective function generation

 Figure - 11

Putting it all together

 All constraints and the objective function fit naturally within the space time

framework

 The unknowns of our system Q are the character DOF’s q i for each time i and

the control point vectors for all constrained-stage momentum curves q j m

 The optimization needs to enforce three types of constraints:

o Environment constraints (Ce)

o Transition pose constraints (Cp)

o Momentum constraints (Cm)

 The space time constraints formulation finds the unknowns Q that minimize

the objective function while satisfying all the constraints

DigiPen Institute of Technology

34

Advantages and disadvantages:

 Needs Offline computation of solving all the constraints

 Not real time, but good for quick prototype

 Good for high energy, as governed by Newtonian physics

 Do not work for low energetic motion

DigiPen Institute of Technology

35

My Approach for Infusing Life into Articulated

Character

This implementation mainly consists of an articulated Luxo Lamp with three joints

connecting between four rigid links. The goal of the implementation is to make this

articulated character animate using the knowledge gained from the above papers.

The character is places in a fully simulated physics environment with mass values

and DOF’s values assigned to each of its body parts. Only by using Bio Mechanics

knowledge and simple physics dynamics discussed above we try to make the Luxo

move for pose to pose smoothly applying required angular velocities to each joint

iteratively in the simulation step. The idea is to eliminate the traditional method of

key framing the poses and then using some kind of interpolating techniques to

simulate the motion.

Since we are having the Luxo in a totally physics simulated environment the

animation is physically realistic and most importantly it’s real-time and hence

interactive. The Lamp reacts to the user’s inputs in real time and moves form one

pose to other pose. The user has the ability to add a new pose from the interface

provided and also modify the joint constraints as the simulation is in progress. Apart

from the user can specify a series of poses and the Lamp start moving form one pose

to the other pose, which make the user to create interesting moves and animation.

DigiPen Institute of Technology

36

Kinematics Vs Dynamic approach

There can be two ways of approaching this problem of moving the joint angles to the

desired angles, while in the process we achieve the animated effect of the skeleton

of the articulated body.

Kinematics Approach:

Kinematics is the study of motion without regard to forces that causes the motion.

Kinematics analysis is a simpler task than dynamic analysis and is adequate for

many applications involving moving parts. Kinematics simulations show the physical

positions of all the parts in an assembly with respect to the time as it goes through a

cycle. This approach is useful for simulating steady-state motion (with no

acceleration), as well as for evaluating motion for interference purposes, such as

assembly sequences of complex mechanical system. Some of the kinematics

packages provide "reaction forces," forces that result from the motion.

Dynamic Approach:

Dynamics is the study of motions that result from forces.

Dynamic simulation is more complex because the problem needs to be further

defined and more data is needed to account for the forces. Dynamics are often

required to accurately simulate the actual motion of a mechanical system. Generally,

kinematics simulations help evaluate form, while dynamic simulations assists in

analyzing function.

DigiPen Institute of Technology

37

Traditionally, kinematics and dynamics have followed the classic analysis software

method of preprocessing (preparing the data), solving (running the solution

algorithms, which involve the solution of simultaneous equations), and post

processing (analyzing the results). Even though today's programs are much more

interactive, most programs follow this basic process since it is a logical way to solve

the problem. Most solvers are available as independent software programs.

The basic output of generating motion are numerous, including animation, detecting

interference, trace functions, basic motion data, and plots and graphs. Animated

motions are the classic output of simple kinematics analyses. Initially, the designer

uses simple animation as a visual evaluation of motion to see if it is what is desired.

More sophisticated animations can show motion from critical angles or even inside of

parts, a definite advantage over building and running a physical prototype.

In my approach for generating animation for the articulated body, I have chosen the

non classic and more complex dynamic approach where the motion of the character

is generated from the amount of force you apply on the joints of the articulated

body. The algorithm that will be described below will be a dynamic approach where

we calculate the linear and angular velocities based on the force that has to be

applied to a joint based on its physical properties, current position and the desired

position. The algorithm is a very simple iterative correction of the joint angular

velocities that result from the joint forces and their connectivity with the parent and

the child of the joint.

DigiPen Institute of Technology

38

Inspiration for this implementation

My basic interest is physics as a subject and character animation is one of the

reasons I started researching the area of physics based animation. I started with

looking into the area of space-time constraints and biomechanical laws and wanted

to control the character animation in real-time. Pixar’s Luxo Jr and the amazing

Natural motion software are some of the reasons for me to look into the area of

physics based animation.

With the hardware capabilities that a normal user has, it is very much possible to do

lots of calculations on in real-time and achieve the natural physical motion. Hence

it’s a good time to move the character using physics and make the motion as natural

and interactive as possible.

- Animation in games and movies

- Natural Motion

- Dance and animation

DigiPen Institute of Technology

39

Luxo Physical Model

My Luxo model has the following configuration:

Joints:

There are there joints namely connecting four links.

- Base Joint

- Mid Joint

- Head Joint

All the joints are modeled as rotational Hinge Joints which connect the two links. As

explained a rotational Hinge joint can have at most three DOF.

All the joints in the Luxo have 1 Degree of freedom (DOF) about Z-axes.

Which introduces 2 rotational and there translational constraints at each joint.

The figures below show the complete and physical view of the lamp.

As mentioned above the joints are names and labeled in the below figures.

DigiPen Institute of Technology

40

Figure - 12

All the three joints rotational joints having only one Degree Of freedom in the

Z axes. The above figures show the resting position of the lamp.

Links:

There are four links (Dynamic nodes) which can move around the world and are

connected by these joints.

- Base

- Lower Arm

- Upper Arm

- Head

Each of these have a mass and material associated with them. The material tells the

physics simulation about the density and elasticity of the links.

DigiPen Institute of Technology

41

Base Link: It is the made with two cylinders (lower and upper), rotated locally in

order to make the cylinder face the ground. Once the geometry is created it is

attached to the root dynamic node, which has all the physics properties needed

Upper and Lower Arm: These are made with simple capsules that are aligned and

given world position relative to its parent. Here the parent of the lower arm is the

base and the parent of the upper arm is the lower arm.

Head: The head of the lamp is made with a cone, cylinder and two spheres.

The head has one single dynamic node that can translate and rotate, while has

multiple geometries.

The connectivity and the ordering of these links and joints are very important.

- Base Joint connects the Base and lower arm

- Mid Joint connects the Lower and Upper arm

- Head Joint connects the upper and the Lower arm

Figure - 13

DigiPen Institute of Technology

42

Below are two blocks of code which show the actual functions written in java and

using the JMonkey physics (https://jmephysics.dev.java.net) to show how to create

joints between two dynamic physics nodes.

private void createHingeLinkJoints() {

 Vector3f anchor2 = new Vector3f(0, 3, 0);

 Vector3f anchor1 = new Vector3f(0, 3.7f, 0);

 Vector3f anchor0 = new Vector3f(0, 0, 1);

s_headJoint = createRevJointAxis("HeadJoint", s_upperDPN,

s_headDPN, anchor2, new Vector3f(0, 0, 1), -45, 45);

s_midJoint = createRevJointAxis("MidJoint", s_lowerDPN,

s_upperDPN, anchor1, Vector3f.UNIT_Z, 0, 90);

s_baseJoint = createRevJointAxis("BaseJoint", s_baseDPN,

s_lowerDPN, anchor0, Vector3f.UNIT_Z, -50, 50);

 }

private Joint createRevJointAxis(String name,

DynamicPhysicsNode nodeA, DynamicPhysicsNode nodeB, Vector3f

anchor,

Vector3f dir, float min, float max) {

Joint joint = m_physicsSpace.createJoint();

joint.attach(nodeA, nodeB);

joint.setAnchor(anchor);

JointAxis jointAxis = joint.createRotationalAxis();

jointAxis.setDirection(dir);

jointAxis.setPositionMinimum((float)Math.toRadians(min));

jointAxis.setPositionMaximum((float)Math.toRadians(max));

return joint;

}

private void createBaseRigidLink(String name,float lowR,float

upR,float lowH,float upH){

s_baseDPN = m_physicsSpace.createDynamicNode();

m_baseGeomNode = new Node(name);

Cylinder baseCyl1 = new Cylinder("lower",2,10,upR,upH,true);

Cylinder baseCyl2 = new Cylinder("upper",2,20,lowR,lowH,true);

Sphere jointSphere = new Sphere("joint",10,10,upR);

Utils.setColor(jointSphere, new ColorRGBA(1,0,0,.2f), 1);

m_baseGeomNode.attachChild(baseCyl1);

m_baseGeomNode.attachChild(baseCyl2);

m_baseGeomNode.attachChild(jointSphere);

m_baseGeomNode.setModelBound(new BoundingBox());

m_baseGeomNode.updateModelBound();

s_baseDPN.attachChild(m_baseGeomNode);

s_baseDPN.generatePhysicsGeometry(true);

s_baseDPN.getLocalRotation().fromAngleAxis(-FastMath.PI/2,

Vector3f.UNIT_X);

attachChild(s_baseDPN);

 }

https://jmephysics.dev.java.net/

DigiPen Institute of Technology

43

Centre of mass of the system

Each of the rigid links connected using the hinge joints have mass associated with

them. This will eventually lead to have a center of mass of the entire system COM

(system).

Below figures show the centre of mass of each link and the entire system in different

poses. The center of mass of the entire system is calculated every frame as the links

move dynamically in every frame.

Below are some of the figures which show how the COM is represented in the Luxo

system fro each rigid links (yellow) and the COM of the entire system in (green)

Figure - 14

DigiPen Institute of Technology

44

Figure - 15

Below is the code to calculate the COM of the entire system

public void updateCOMPositions(){

m_LuxoCOMPos =

LuxoModel.s_baseDPN.getLocalTranslation().mult(LuxoModel.s_baseDPN.ge

tMass());

m_LuxoCOMPos.addLocal(LuxoModel.s_lowerDPN.getLocalTranslation().mult

(LuxoModel.s_lowerDPN.getMass()));

m_LuxoCOMPos.addLocal(LuxoModel.s_upperDPN.getLocalTranslation().mult

(LuxoModel.s_upperDPN.getMass()));

m_LuxoCOMPos.addLocal(LuxoModel.s_headDPN.getLocalTranslation().mult(

LuxoModel.s_headDPN.getMass()));

m_LuxoCOMPos.divideLocal(LuxoModel.s_baseDPN.getMass() +

LuxoModel.s_lowerDPN.getMass()

 + LuxoModel.s_upperDPN.getMass() +

LuxoModel.s_headDPN.getMass());

LuxoModel.s_LuxoCOMBox.getLocalTranslation().set(m_LuxoCOMPos);

}

DigiPen Institute of Technology

45

Measure of Joint Angle

Since all the angles are having only single DOF and around the Z axes, the system

becomes very easy to calculate measure the angle at joint. All the joints around the

Z axes, and the default starting position of the lamp where all the joints have a zero

angle is facing upwards.

Figure – 16

In the figure above you can see that the angle made by a joint is measured with the

axes of its previous parent link

DigiPen Institute of Technology

46

Representing a Pose:

The pose is represented in the system as a data type [class] that holds the

information of each joint angle, the position of the base in world coordinate system,

the time required to move form one pose to the next pose and finally the name of

the pose.

Since we have only 3 DOF fro each joint, a pose can be represented by a data

structure that can handle 3 variables that is angle configurations for each joint for

that particular pose.

Example of a Pose: Pose2 VectorDOF<-20,0,0>

Figure - 17

Example of a Pose: Pose5 VectorDOF<0,60,0>

Figure - 18

DigiPen Institute of Technology

47

Representing a Sequence

Sequence element syntax:

 [Pose Id, Time for Pose Movement]

A sequence is a group of poses arranged in a particular order by the user of the

animator. Each sequence can have any number of poses and can be repeated also.

Apart from taking in the list of poses a sequence takes in an extra parameter called

the time frame for each pose. While the simulation is carried the algorithm checks if

the user has enabled time constraints in the simulation. If the Time constraints are

enabled in the simulation will make sure the pose to pose movement reaches in the

amount specified by the user.

The very unique thing about the time constraints imposed at each pose level is that

we can have independent times specified for the same pose repeated several number

of times in the sequence.

For example: If we have a poses Pose1, Pose2, Pose3, Pose4…

Using above poses we will be able to define a sequence in the following way

Sequence {[Pose1, 1], [Pose2, 3], [Pose3, 4], [Pose1, 3]}

In the above example as you can see that though the Pose1 is repeated twice in the

sequence, they have independent times

DigiPen Institute of Technology

48

System overview view

The system can be basically divides into three main sections:

1) Physics Simulation

2) Computing the Joint Torques and Angular velocities

3) Joint correction to meet desired pose from user interface

Figure - 19

DigiPen Institute of Technology

49

Physics Simulation

The physics I am using here for all the Joint restrictions and collision is from an open

source physics wrapper written in java on top of ODE (Open dynamics engine

http://www.ode.org/) called JMonkey Physics (https://jmephysics.dev.java.net/)

Check the Appendix-A for more details on the technologies used.

These systems handle all the collisions and the joint restrictions on the articulated

body. JME physics is a scene graph based engine and allows creation dynamic and

static nodes. All the links in the Luxo lamp are dynamic nodes.

Figure - 20

JME format gets extended to allow storage of such scene graphs, a filter may be

provided to store only physics/visuals

http://www.ode.org/
https://jmephysics.dev.java.net/

DigiPen Institute of Technology

50

Figure - 21

The image on the left is enabled with all the bounding boxes, for each link and

system as a whole. Right the same with the geometry disabled.

The physics simulation takes care of the following things:

1) Collision of the base and other links with the environment

2) Joint restrictions, the way the hinge joints are constrained

3) Applying gravitational force of -9.8 m/sec2 along the y- axes

The physics calculations are very fast and the whole simulation runs at 330 FPS

DigiPen Institute of Technology

51

Computation of Joint Torques and Angular Velocities

This is the core of the system is this module is responsible for computing the

required amount of torque that has to be applied to the links connecting the joints.

The torque that is applied to each joint’s connected links is directly to the mass its

own along with its children links.

During every frame, the algorithm runs through all the joints and computes the joint

difference between the desired and the current angle and uses it to compute the

requited angular velocity to the joint. Once the difference in the desired and the

current joint angle is computed, the algorithm has to decide whether the joint has to

be moved in clockwise or anticlockwise direction.

Since all the joints can rotate along Z-axes only, the following can be applied:

Anti clockwise rotation along Z- axes:

Applying positive angular velocity along Z- axes makes the joint rotate in anti

Clockwise. This will be applied by the simulation to the joint when the current joint

angle is greater than the desired joint angle

Clockwise rotation along Z- axes:

Applying negative angular velocity along Z- axes makes the joint rotate in clockwise.

This will be applied by the simulation to the joint when the current joint angle is less

than the desired joint angle

DigiPen Institute of Technology

52

Once the difference is computed the joint’s angular velocity is applied based on its

current and desired, which makes the joint to move in the desired direction. Once

the joints start moving the difference between the desired and the current joint

angle becomes smaller and smaller and finally comes to a stable equilibrium.

As the joints are moving step by step in the simulation loop, the whole character

looks like animating from one pose to the other pose. The physics engine takes care

of the joints not crossing the minimum and the maximum (DOF) of the joints while

correction is happening in each time step.

The torque is always applied to the connected joints at the center of mass by the

physics simulation, which in turn generates the required motion of the joint.

The right hand rule is applied by the simulation to

Figure - 22

The left-handed orientation is shown on the left, and the right-handed on the right

DigiPen Institute of Technology

53

Figure - 23

this diagram shows the relation between force (F), Torque (T) and the momentum

vectors in a rotating system

This below code is responsible for calculating the angle difference for each joint in

each frame and applies the right hand rule to get the desired motion in the

articulated joint of the body

Algorithm and Pseudo code of iterative Joint correction:

 For each joint [Base, Mid and Head]

 Calculate the difference of the angel in current and desired

 Compute the diff of the connected links COM to the entire systems COM

 If time constrained, scale the diff with the ―dt‖

 Choose the direction of the velocity based on the difference in the angle and

Flemings right hand rule

 Calculate the magnitude of Angular velocity and scale it based on the mass of

the link to be applied to

 Apply velocity to the connected Link

 If difference less than [thresh] rest the link- desired angle is reached

DigiPen Institute of Technology

54

The above code snippet shows the actual code of how the angular velocity that has to be
applied to a joint is calculated in a simulation loop of the whole algorithm.

public void setRequiredAngularVelocity(JointType jType){

m_diffRad = _axis.getPosition() -

m_desiredPose.getDesiredRad(jType);

double dt;

if(null != m_desiredSequence &&

FloatingMenu.getInstance().isTimeConstrained())

 dt = m_desiredSequence.getCurrSeqElemTime();

 else

 dt =1;

 float dist =

_linkToRotate.getLocalTranslation().distance(m_LuxoCOMPos);

 dist*=dt;

 if(m_diffRad<-errorAllowed){

 _axis.getDirection(_clockWiseW);

 _clockWiseW.multLocal(-_scaleOfRotation);

//Need ClockWise Rotation, hence Apply Negative Angular Velocity

_linkToRotate.setAngularVelocity(_clockWiseW.mult(_linkToRotate.getMa

ss()/dist));

}else if (m_diffRad>errorAllowed) {

 _axis.getDirection(_antiClockWiseW);

 _antiClockWiseW.multLocal(_scaleOfRotation);

//Need ClockWise Rotation, hence Apply Negative Angular Velocity

 _linkToRotate.setAngularVelocity(_antiClockWiseW.mult(_linkToRo

tate.getMass()/dist));

 }else{

 _linkToRotate.rest();

 }

 }

 }

DigiPen Institute of Technology

55

User Interface

The interface for controlling the lamp is pretty simple. The user can do the following

thing from the interface

1) From the menu users can choose to enable and disable the physics view,

geometrical view, COM of each link, COM of entire system

2) Mass Panel: This panel can be used to set and get the mass of the each link

in the entire system. The links of the rigid body will dynamically react to the

change in the mass while the animation is proceeding

3) Dynamics Panel: This panel has the options to clear the following physics

elements of the entire system

a. Clear Dynamics [clears all the torques, velocities and forces on all links

and joints of the system]

b. Clear Torques and Forces: These will clear all the torques and forces

acting on each link and joint of the entire system

4) Enable and disable Constraints like

a. Constraints the base

b. Make the camera follow the Luxo

5) DOF Pane: Modify or Reset the Degree of freedom (DOF) for each joint

6) Add Pose Pane: Add a new desired pose, by specifying the desired angle

for each joint

7) Pose Chooser Pane : Choose a pose and either desire it or force it, also

modify the pose details before desiring it or forcing it, and then execute to

start motion

8) Current Joint Pane: See the current joint angles from the current simulation

in degrees

DigiPen Institute of Technology

56

9) Sequence Pane: This is the most interesting part, you can choose a series of

poses and the simulation will start moving for pose to pose

10) Just below the Sequence you can how you can enable and disable the time

constraints on the system

11) Num Lock keys, 0,1,2,3,4,5,6,7,8,9 are mapped to the poses. On choosing

the pose the lamp stars moving to the desired pose

Figure - 24

DigiPen Institute of Technology

57

Other Short Cuts keys:

1) WSAD: Use to navigate into the scene

2) Arrow Keys: Use to move the camera up and down

3) Mouse Left Click: Use the mouse to pick the Luxo in the scene and place it

any where in the scene

4) Space Bar : Mouse controlled camera mode [toggles]

5) Key V: Toggle the physics debug mode, can see the forces acting

6) Key N: Toggle Normal’s of the geometry

7) Key B: Toggle bounding draw bounding

8) Key L: Toggle Lights in the scene

9) Key T: Toggle wireframe mode of the scene

The entire user interface has been designed using Java swings. The actual rendering

is done using the OpenGL based JMonkey engine.

DigiPen Institute of Technology

58

Results

Pose to Pose motion:

The lamp can move from one pose to the other pose, with all the joint and the floor

constraints satisfied, the motion is all physically realistic as it is all simulated in total

physics environment. The whole application runs at a maximum of 350 FPS. The best

thing is all the complexities of the computing the joint forces, and solving multiple

linear system of equation is avoided. And the real time interaction with the lamp is

achieved with out any key framing of joint angles.

When we have a good number of poses defined and mapped to keys as mentioned

above. Upon interaction with the keys randomly or with a good sequence the whole

pose to pose simulation running in real-time looks like a controlled dance and is

totally interactive.

Figure - 25

DigiPen Institute of Technology

59

Luxo Dance [defining a sequence of poses and time intervals]:

The Lamp can move form pose to pose continually by specifying a series of poses it

has to under go. Along with the poses the user can specify in seconds, how long the

simulation has to take to go from pose to pose in the specified series. Since we are

controlling the pose to pose transition along with the time and space basically we are

exposing a simpler interface to the user or artist to go ahead in time and space and

specify how his animation character has to look at a particular point of time in the

entire sequence of animation.

The basic definition of ―Space Time‖ constraints is to allow the constraints to be met

by going forward both in space and time. We have a simpler interface created for the

user to think ahead in space an time and control both the space and time constraints

of the character animation.

Since all the simulation is done in a fully physics simulated environment we have the

options of modifying multiple parameters as the simulation proceeds, and expect

different results of end motion for the same predefined set of poses [sequence of

poses]

Changing the Physical characteristics during animation is the most fun part of the

entire algorithm. In the simulation we have tried a demo where the characters mass

of the head is increased from 400 units to 1000 units and the animation changed

naturally as if it’s lifting a heavy object on its head. Also you can notice the change

in its COM of the system.

DigiPen Institute of Technology

60

Example: If I have a pool of 20 poses defined by the user say Pose_0, Pose_1…..

Pose_20, having the joint configuration values encoded in them. This set of poses

can be combined into a series ―Sequence‖, along with the length of time that pose

has to stay on the sequence. The simulation can slowly move the character from on

pose to the other pose by applying required angular velocities to the required joints

and make the whole sequence look like animation. Since we are controlling the

characters motion and constraining it both in space an time we can call this a space

time approach.

The vast difference of this approach when compared to the traditional animation

where the joints are interpolated from one pose to the other does not take into

considerations of the physical properties of the character like its mass distribution,

environment constraints and most importantly not interactive and dynamic to the

user input.

Here if we change the mass of the characters body part, like head or base for the

same poses with the same sequence, we come up with a totally new animation which

follows the mechanics of physics. Hence we have the control to generate unique

motion every time we change the physical property of the character.

Below are some of the predefined poses along with some sequences generated form

this poses. See how the lamp reacts to the change in its mass of head, as the COM

of the entire system shifts towards the head.

If the user is aware of good poses he can imagine he can end up with a good

animation sequence.

DigiPen Institute of Technology

61

Statistics and performance

The whole simulation currently has the following statistics:

Number of Joints: 3 joints

Number of Triangles: 2856 {Luxo}

Number of Vertices: 1621

Number of Lights: 2 lights

System Configuration:
All the simulation has been tested on a Intel Pentium processor T2400 @ 1.83Ghz

2.00 GB RAM, ATI Graphics

With out Physics:

With Physics disabled the simulation could run at a frame rate of 310-330 FPS

With Physics enabled:

The Simulation runs at a frame rate of 290-300 PFS

Figure - 26

The physics joint correction itself is very fast and can be extended with out any over

head and more constraints to complex creatures like human.

DigiPen Institute of Technology

62

Conclusion and future work

Hence an articulated figure with joints and links setup properly in a fully physics

environment can be controlled as per the users desire in real time. We have

eliminate all the complex calculations involved in calculation the muscle forces

usually represented with springs which are usually very unstable and complex.

Also we have removed the dependency on traditional method of key framing where

the artist has to under go a painful procedure in defining all possible scenarios which

may not be physically realistic. Apart from that the characteristics of the joints and

their DOF and the physical properties of the links can be modified to get different

results using the same algorithm.

This simple approach of controlling an articulated character with joint angular

velocities can be extended in much way for very complex characters with a larger set

of constrains and DOF’s defined. Adding different kinds of joints as discussed above

will also make the animation more interesting.

The joint correction based on the mass displacement, space and time constraints

imposed my user itself is very fast and can be extended to complex characters.

I don’t see and huge performance drop with introducing some more joints and

constraints.

DigiPen Institute of Technology

63

Figure - 27

http://www.davidbessler.com/pulldown/pipecleaner_dance3.swf

My future extension for this project will be extending the same application to a

human like model and making him dance based on the music events derived on the

fly using a good DSP tool. Adding music along with predefined poses and using a

physics simulated environment makes the over animation experience a feel of

character dancing to the music. Apart from that the user can define their own moves

and poses for the characters at some predefined events as discussed in the

―Momentum based parameterization of character animation – Zoran Popovic‖

http://www.davidbessler.com/pulldown/pipecleaner_dance3.swf

DigiPen Institute of Technology

64

Appendix – A

JMonkey Engine, a Open Source OpenGL based Java Graphic Engine

http://www.jmonkeyengine.com/

Introduction:

jME (jMonkey Engine) is a high performance scene graph based graphics API. Much

of the inspiration for jME comes from David Eberly's book 3D Game Engine Design.

jME was built to fulfill the lack of full featured graphics engines written in Java. Using

a abstraction layer, it allows any rendering system to be plugged in. Currently,

LWJGL is supported with plans for JOGL support in the near future.

History

jME was created by Mark Powell in 2003 while he was investigating OpenGL

rendering. After discovering LWJGL he decided that Java (his language of choice)

would be perfect for his own graphics tools. These tools soon grew into a primitive

engine. After reading David Ebery's 3D Game Engine Design, scene graph

architecture was implemented. It was then that jME became part of Sun's Java.net

software repository. jME soon saw others joining the project to enhance it's

capabilities. It has since grown to encompass many advanced modern graphics

features and turned into a stable platform for game development. Joshua Slack

joined jME at the end of 2003 and became a core member and integral part of the

jME team.

http://www.jmonkeyengine.com/

DigiPen Institute of Technology

65

Features of jME:

jME is a scene graph based architecture. The scene graph allows for organization of

the game data in a tree structure, where a parent node can contain any number of

children nodes, but a child node contains a single parent. Typically, these nodes are

organized spatially to allow the quick discarding of whole branches for processing.

For example, if we build a graph such that all objects in a room share a parent

(room), and all rooms share a parent (floor), where all floors share a parent building.

Our character is in room 1 of the first floor. We can quickly discard the floor 2 node

(which is turn discards every room on the 2nd floor and every object in those

rooms). We can then process the floor 1 branch of the tree. All rooms that are not

room 1 are discarded (including all objects in that room). We then process room 1

including its objects.

Discarding can mean a variety of things, but the most significant in Graphics

programming is culling of data. jME's camera system uses frustum culling to through

out scene branches that are not visible. This allows for complex scenes to be

rendered quickly, as typically, most of the scene is not visible at any one time.

The leaf nodes of the scene graph are Geometry that will be rendered to the display.

There are many supported Geometries, including: Bezier Patches, Line, Points,

Models (Milkshake, MD2, ASE, etc), Terrain, Level of Detail, and more.

jME also supports many high level effects, such as: Imposters (Render to Texture),

Environmental Mapping, Lens Flare, Tinting, Particle Systems, etc.

jME supplies the user with easy to use, but powerful application classes for building

DigiPen Institute of Technology

66

the application. Jumping into jME should be a quick and painless process. With a

small learning curve, you can have your game up and running in no time.

JME Physics/ODE

jME Physics was providing an interface between jME (Java Monkey Engine) and ODE

(Open Dynamics Engine). It sat on top of a slightly modified version of ode java, and

provided a way to very easily set up a physics world and add objects to it - a simple

box-falling-on-a-floor application is only a matter of a few lines. Yet, the goal was to

provide advanced and powerful features - e.g. vehicle support is implemented.

Physics objects and types get specified within the scene graph like this:

Figure - 28

DigiPen Institute of Technology

67

References:

[1] Space-time Constraints Andrew Witkin Michael Kass

[2] Andrew Witkin, Kurt Fleischer, and Alan Barr, Energy constraints on

parameterized models, Computer Graphics, 21 (4) July 1987, pp. 225-232 (Proc.

SIGGRAPH '87). 168

[3] Unique Game Moments [2006], Natural Motion Ltd, Oxford, UK

[4] Dynamic Motion Synthesis [2005], Natural Motion Ltd, Oxford, UK

[5] http://www.naturalmotion.com/

[6] http://www.davidbessler.com/pulldown/pipecleaner_dance3.swf

[7] Pixar, Luzo, Jr., (film,) 1986

[8] MIRTICH, B. 1996. Impulse-based Dynamic Simulation of Rigid Body Systems.

PhD thesis, University of California, Berkeley

[9] Practical Physics for Articulated Characters [Evangelos Kokkevis] Game

Developers Conference 2004

[10] HECKER, C. 1998. Rigid body dynamics.

[11] http://www.d6.com/users/checker/dynamics.htm

[12] Physically Based Modeling, Course Notes. ACM Siggraph. BARAFF, D., KASS, M.,

AND WITKIN, A. 1999.

[13] William W. Armstrong and Mark W. Green, The dynamics of articulated rigid

bodies for purposes of animation in Visual Computer, Springer-Verlag, 1985, pp.

231-240.

[14] Ronen Barzel and Alan H. Barr, Dynamic Constraints, Topics in Physically Based

Modeling, Course Notes, Vol. 16, Siggraph 1987

[15]Michael Brady et. el., eds, Robot Motion: Planning and Control, MIT Press,

Cambridge, MA, 1982

[16] Charles E. Buckley, The Application of Continuum Methods to Path Planning,

Doctoral Dissertation, Dept. of Mechanical Engineering, Stanford University,

Steax£ord, CA, 1985

 [17] Kurt Fleischer and Andrew Witkln, A modeling testbed, Proc. Graphics

Interface, 1988.

[18] Philllp Gill, Welter Murray, and Margret Wright, Practical Optimization, Academic

Press, New York, NY, 1981

http://www.naturalmotion.com/
http://www.davidbessler.com/pulldown/pipecleaner_dance3.swf
http://www.d6.com/users/checker/dynamics.htm

DigiPen Institute of Technology

68

 [19] Michael Girard and Anthony a Maciejewski, Computataional Modeling/or the

Computer Animation of Legged Figures, Proc. SIGGRAPH, 1985, pp. 263-270

 [20] Herbert Goldstein, Classical Mechanics, Addison Wesley, Reading, MA, 1950

[21] David Haumarm, Modeling the Physical Behavior of Flezible Objects, Topics in

Physically Based Modeling, Course Notes, Vol. 16, Siggraph 1987

[22] Paul Isaacs and Michael Cohen, Controlling Dynamic Simulation with Kinematic

Constraints, Behavior

 [23] Charles Klein and Ching-Hsiang Huang, Review of Pseudoinverse Control for

Use with Kinematically Redundan Manipulators, IEEE Trans. SMC, Vol. 13, No. 3,

1983

[24] John Lasseter, Principles of Traditional Animation Applied to 3D Computer

Animation, Proc. Siggraph

1987, pp. 35--44

[25] William Press et. al., Numerical Recipes, Cambridge University Press,

Cambridge, Engiemd, 1986

 [26] Robert S. Stengel, Stochastic Optimal Control, John Wiley and Sons, New York,

1986.

 [27] Demetri Terzopoulos, John Platt, Alan Barr, and Kart Fleischer, Elastically

Deformable Models, Pros. SIGGRAPH, 1987.

[28] Jane Wilhelms and Brian Barsky, Using Dynamic Analysis To Animate Articulated

Bodies Such As Humans and Robots, Graphics Interface, 1985.

[29] http://animationphysics.wordpress.com/

[30] Synthesis of Complex Dynamic Character Motion from Simple Animations -C.

Karen Liu Zoran Popovi´c 2005

[31] Physically Based Motion Transformation – Zoran Popovic Andrew Witkin

[32] Momentum – based Parameterization of Dynamic Character Motion – Yeuhi Abe

C.Karen Liu Zoran Popovic

[33] Practical Physics for Articulated Characters -Evangelos Kokkevis GDC -2004

BOOKS:

[1] PHYSICS – BASED ANIMATION – [ISBN 1-58450-380-7 56995]

[2] Computer Animation Algorithms and Techniques [ISBN-13:978-1-55860-579-4]

[3] Classical Dynamics of Particles and Systems [ISBN: 0-534-40896-6]

http://animationphysics.wordpress.com/

	Copyright
	Title Page
	Table of Contents
	List of important figures
	Acknowledgements
	Abstract
	Introduction to study of computer animation
	Current Animation Systems
	Dynamics of Physics
	Centre of Mass
	Rotation and Centers of Gravity
	Center of Momentum
	Moment of Inertia Tensor
	Principal Moments of Intertia
	Rigid Body Linear Momentum
	Angular Momentum and Torque

	Articulated Character and Degree of Freedom
	Types of Joints
	Ball and socket joint
	Hinge Joint
	Slider Joint
	Universal Joint
	Hinge Slider Joint
	Motor Hinge Joint
	Motor Slider Joint
	The State Vector

	Survey of previous work in physics based animation
	Space time constraints
	Synthesis of Complex animation from simple animation

	My Approach for Infusing Life into Articulated Character
	Kinematics Vs Dynamic approach
	Inspiration for this implementation
	Luxo Physical Model
	Centre of mass of the system
	Measure of Joint Angle
	Representing a Pose
	System overview view
	Physics Simulation
	Computation of Joint Torques and Angular Velocities
	Algorithm and Pseudo code of iterative Joint correction
	User Interface
	Results
	Statistics and performance
	Conclusion and future work

	Appendix A
	References

