

c 2015, Alexander N. Pecoraro. All Rights Reserved.

The material presented within this document does not necessarily refect the opinion of the
Committee, the Graduate Study Program, or DigiPen Institute of Technology.

GIGAVOXEL PAGED TERRAIN GENERATION AND RENDERING

BY
Alexander N. Pecoraro

THESIS

Submitted in partial fulfllment of the requirements
for the degree of Master of Science in Computer Science

awarded by DigiPen Institute of Technology
Redmond, Washington

United States of America

December
2015

Thesis Advisor: Pushpak Karnick

DIGIPEN INSTITUTE OF TECHNOLOGY

GRADUATE STUDIES PROGRAM

DEFENSE OF THESIS

THE UNDERSIGNED VERIFY THAT THE FINAL ORAL DEFENSE OF THE

MASTER OF SCIENCE THESIS TITLED

GigaVoxel Paged Terrain Generation and Rendering

BY

Alexander N. Pecoraro

HAS BEEN SUCCESSFULLY COMPLETED ON February 10, 2016.

MAJOR FIELD OF STUDY: COMPUTER SCIENCE.

APPROVED:

name date name date

Graduate Program Director Dean of Faculty

name date name date

Department Chair, Computer Science President

DIGIPEN INSTITUTE OF TECHNOLOGY

GRADUATE STUDIES PROGRAM

THESIS APPROVAL

DATE: February 10, 2016

BASED ON THE CANDIDATE’S SUCCESSFUL ORAL DEFENSE, IT IS

RECOMMENDED THAT THE THESIS PREPARED BY

Alexander N. Pecoraro

ENTITLED

GigaVoxel Paged Terrain Generation and Rendering

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE

AT DIGIPEN INSTITUTE OF TECHNOLOGY.

Pushpak Karnick date Xin Li date

Thesis Committee Chair Thesis Committee Member

Gary Herron date Leo Salemann date

Thesis Committee Member Thesis Committee Member

ABSTRACT

The paper investigates the feasibility of using the volume rendering technique
described in the paper, "GigaVoxels: Ray-Guided Streaming for Eÿcient and Detailed
Voxel Rendering" by Cyril Crassin, as the basis for a large scale terrain visualization
system. Today’s 3D terrain visualization systems are predominantly textured polygon
mesh based rendering systems. These systems require geometric surfaces and their
textures to be modeled at ever increasing resolution in order to achieve photo-realism.
However, as textured polygon mesh resolution increases so does the amount of aliasing
in the rendered image. A point is reached where an increase in polygonal and/or
texture fdelity results in lower quality output. To overcome these shortcomings
a new approach is needed. The introduction of programmable graphics processing
units and the rapid increase in their processing power makes it possible to explore the
use of other rendering data formats that do not have the shortcomings of textured
polygonal meshes. One such format, that has promise, is a volume based format
called voxels (e.g. volumetic pixels). This is because voxel data and voxel rendering
techniques are less prone to aliasing issues than polygonal mesh techniques. Voxel
rendering, however, requires signifcantly more memory and is generally more diÿcult
to render at high frame rates. The GigaVoxel voxel rendering technique solves
both of these problems. However, the GigaVoxel technique, as described by Cyril
Crassin, concentrates on rendering only a single highly detailed object. Adapting
and extending the GigaVoxel technique to support the rendering of massive outdoor
environments that consist of multiple highly detailed voxel objects, which is a problem
domain to which the GigaVoxel technique has yet to be evaluated against, is the
focus of this thesis. In addition, in order to demonstrate the GigaVoxel Paged
Terrain rendering system, this paper describes a unique out-of-core GigaVoxel Terrain
generation system, which at this time is the only known example of an out-of-core
GPU voxelization and sparse-voxel oct-tree generation system, implemented with
NVIDIA’s CUDA GPU programming platform, capable of converting large scale
polygonal terrain data into a pageable runtime format optimized for rendering with
the GigaVoxel rendering technique

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER 1 Introduction . 1
1. Why Volume Rendering? . 1
2. Objectives . 5
3. Contributions . 5
4. Organization . 6

CHAPTER 2 Survey . 7
1. Volume Rendering Techniques . 7

1.1. Volumetric Data Models . 7
1.2. Indirect Volume Rendering Techniques 8
1.3. Direct Volume Rendering Techniques 8

2. Volume Rendering Optimizations . 13
2.1. Performance Optimization . 13
2.2. Memory Optimization . 14

3. Terrain Rendering . 15
4. Scene Graph Based Rendering . 17
5. Sparse Voxel Oct-Tree Generation . 18

5.1. Voxelization . 19
5.2. SVO Generation . 20

CHAPTER 3 Implementation . 22
1. CUDA . 22
2. GigaVoxel Sparse Voxel Oct-Tree . 23

2.1. GigaVoxel Run-time Format 23
2.2. Paged GigaVoxel Scene Graph File Format 25
2.3. GigaVoxel Oct-Tree File Format 26
2.4. GigaVoxel Paged Terrain Generation System Overview 28
2.5. GigaVoxel Paged Terrain Generation 30

3. GigaVoxel Paged Terrain Rendering System 37
3.1. GigaVoxel Paged Terrain Rendering System Overview 38
3.2. GigaVoxel Oct-Tree Overview 39
3.3. GigaVoxel Ray-Casting . 40

vi

Page

3.4. GigaVoxel High Quality Filtering 41
3.5. GigaVoxel Ray Guided Cache Updates 42
3.6. GigaVoxel Node List Compaction 43

4. GigaVoxel Extensions . 44
4.1. View Frustum Culler . 44
4.2. Database Pager . 44
4.3. Node List Processors . 44
4.4. Asynchronous Upload and Download 45
4.5. Rendering Modifcations . 46

CHAPTER 4 Results . 47
1. Data Size Results . 48
2. Rendering Results . 48

CHAPTER 5 Conclusions & Future Work 53

REFERENCES . 56

vii

LIST OF TABLES

Table Page

viii

LIST OF FIGURES

Figure Page
1.1 Example of high resolution tree whose non-connected leaf polygons are

nearly impossible for automatic mesh simplifcation algorithms to handle. 2
1.2 Example of GigaVoxel scene. 4
2.1 Marching Cubes Predefned Polygon Cases 9
2.2 Volume Slicing . 11
2.3 Volume slicing samples volume at irregularly spaced step sizes 12
2.4 Thin and conservative voxelization example 19
3.1 GigaVoxel Oct-Tree and Texture Pool Structure 23
3.2 Node Pool Texel . 24
3.3 GigaVoxel Paged Terrain Generation System Data Flow 29
3.4 Terrain Profle Showing Stacking of Oct-Trees 30
3.5 Di˙erence between standard box flter and enhanced box flter 35
3.6 GigaVoxel Paged Terrain Rendering System Overview 38
3.7 GigaVoxel Oct-tree with MIP-map Pyramid 40
4.1 Source Data Showing Voxelized Regions 47
4.2 Single GigaVoxel oct-tree with majority of rays requiring full traversal 48
4.3 Single GigaVoxel oct-tree with no rays requiring full traversal 49
4.4 Screen shot of the NVIDIA OpenGL frame debugger showing timing

of the various stages of the rendering algorithm 50
4.5 20483 Grid of oct-trees with 600 meter view range. 51
4.6 10243 Grid of oct-trees with 600 meter view range. 52

ix

CHAPTER 1

Introduction

Volume rendering is a set of techniques by which a 3D discretely sampled
data set is displayed as a 2D projection. Volume rendering techniques generally
fall into two categories, indirect and direct rendering[70]. Indirect volume rendering
techniques rely on the ability to extract surfaces, such as polygons, from the volume
and rendering them directly using typical 3D surface rasterization techniques. The
Marching Cubes algorithm is a well known indirect volume rendering algorithm [36].
Direct volume rendering generates an image without converting the data to geometric
primitives. This makes it possible for the entire volume data set to contribute to the
image. Volume slicing, splatting, shear warp, and volume ray casting fall into this
category of volume rendering [22, 42, 64, 66].

Volume ray casting, in particular, is interesting because, of all the techniques,
it generates the highest quality images [13], but it is also the slowest. However, rapid
increase in processing power of programmable GPUs over the past decade plus years
now makes it possible to achieve very high quality volume rendering at interactive to
real-time frame rates with volume ray cast rendering techniques [12, 13]. However,
dealing with the increased memory demands of volume rendering is still an unsolved
issue that is an active area of research [22, 3, 12, 13, 41].

1. Why Volume Rendering?

As the demand for ever more realistic computer generated images in movies,
video games, simulation and the like increases traditional textured polygonal mesh
based rendering systems become limited because in order to increase scene fdelity,
the polygons must become smaller, to better model the surface geometry and,
furthermore, the surface detail textures must increase in resolution. However,
increasing scene fdelity by decreasing polygon and texel size causes a higher
prevalence of aliasing in the output images [15]. There are several methods for
dealing with aliasing in textured mesh scenes. To deal with texture aliasing texture
MIP-mapping is used. However, prefltered MIP-maps do not deal with aliasing

2

on the geometry’s silhouette [15]. Eliminating aliasing on the silhouette or edge
of geometry requires either multi-sampling or mesh simplifcation or both. Multi-
sampling scales poorly because e˙ectively anti-aliasing smaller and smaller polygons
requires increasing the number of samples, which increases the memory required and
decreases the frame rate. Furthermore, multi-sampling, is a static solution that does
not adapt to the view or scene being rendered, which means that time and memory
is wasted over-sampling or quality is compromised due to under-sampling [15]. Mesh
simplifcation has its own drawbacks, such as the loss of essential details when a
mesh’s polygons are simplifed, especially when simplifed in an automated fashion.
Automated mesh simplifcation algorithms also do not deal well with non-connected
or very thin (i.e. trees, fur on an animal, etc.) mesh geometry making them not
useful for many types of geometry [45]. Non-automated (i.e. artist controlled) mesh

Figure 1.1. Example of high resolution tree whose non-connected leaf polygons are
nearly impossible for automatic mesh simplifcation algorithms to handle.

simplifcation is time consuming, but is often the only solution for many polygonal
mesh scenes if photo-realistic quality is desired [13]. Additionally, artist controlled
mesh simplifcation, unlike automated-progressive mesh simplifcation algorithms,
su˙ers from level of detail popping artifacts that show up when the mesh switches
between the di˙erent levels of detail (i.e. non-linear detail reduction) [45]. For these

3

reasons, mesh simplifcation alone results in rendered images that are less than photo-
realistic. To combat this, extra texture maps are introduced such as bump maps,
normal maps, high frequency detail maps, etc. These measures help improve quality,
but at the cost of even more memory consumption.

Voxel scenes, on the other hand, due to their uniform grid structure are well
suited to automated simplifcation, even in cases where mesh simplifcation fails such
as disconnected and thin geometry. Voxel scenes can be pre-fltered using the same
MIP-mapping technique used to reduce aliasing in 2D texture images because voxels
are essentially a 3D texture. Pre-generated, pre-fltered representations (i.e. a 3D
MIP-map) of the voxel data can be generated and the best resolution for the current
view dynamically picked at run-time in much the same way that it is done when
picking a MIP-map level or levels during rasterization of a textured polygon mesh
[12]. However, because the voxel structure represents the geometry’s structure as
well as the geometry’s surface details, the 3D MIP-mapping method also e˙ectively
deals with anti-aliasing the geometry’s silhouette reducing or eliminating the need for
multi-sampling [12].

The challenge with voxel rendering is memory and bandwidth management.
Memory usage is a problem for textured polygonal mesh based rendering too, but it
is even more pronounced when dealing with voxel data because voxel data models the
entirety of an object as opposed to just the surface of the object. Video memory is
generally less plentiful than the system’s main memory, as such, a brute force upload of
high resolution voxel data from main memory to the video memory is not a scale-able
solution. One method for optimizing video memory usage when working with voxel
data is to encode the data into a Sparse Voxel Oct-Tree (SVO) [2, 27, 41]. An SVO
optimizes memory by taking advantage of the fact that voxel scenes quite often consist
of small dense clusters of non-homogeneous space surrounded by large expanses of
homogeneous or empty space [41]. An SVO hierarchically partitions the space so
that only the non-homogeneous partitions are stored in memory [41]. Furthermore,
an SVO optimizes voxel rendering by enabling various other acceleration techniques
such as empty space skipping and early ray termination [35].

Along with being relatively limited in size as compared to the main system
memory, access to the GPU’s video memory from the CPU is also relatively slow.
The CPU cannot directly read or write from or to video memory. Changes to the
video memory data by the GPU must be made in the main system memory and then
transferred to the video memory. The transfer speed of the data is limited by the bus
bandwidth available between the two memory systems and as such it is important
to be very eÿcient when uploading or downloading data to the video memory. Cyril
Crassin’s GigaVoxel rendering system is an SVO based rendering implementation

4

designed to deal with the memory consumption and the memory bandwidth issues
via an LOD management and video memory management system driven by GPU
ray casting. This innovative technique makes it possible to eÿciently render high
resolution, out-of-core, voxel data sets in order to produce photo-realistic results at
interactive to real-time frame rates on modern GPU hardware [12, 13].

Figure 1.2. Example of GigaVoxel scene.

The basic supposition that this thesis aims to test is that the GigaVoxel
rendering technique’s unique ability to support real-time rendering of out-of-core voxel
data makes it a good ft as the basis of a large-scale voxel terrain rendering system. In
addition, a GigaVoxel terrain would have the added beneft of being able to seamlessly
combine the terrain details such as, trees, grass, street signs, buildings, etc. with the
terrain itself, simplifying the LOD management of the scene and allowing the scene’s
terrain and terrain details LOD to linearly transition, in lock-step, again resulting in
higher quality rendered images. Thus, the exploration of the GigaVoxel technique, as
a basis for a volume terrain rendering system, is the focus of the research and software
developed for and described by this thesis.

5

2. Objectives

The goal of this thesis is to build a large-scale terrain rendering system driven
by the algorithm and data structures described in Cyril Crassin’s paper, "Gigavoxels:
Ray-guided Streaming for Eÿcient and Detailed Voxel Rendering.", and in doing so,
answer the following questions:

1. Is the GigaVoxel technique a feasible basis for the implementation of a large-
scale (i.e. out-of-core) terrain rendering system where the terrain consists of
the terrain surface and the terrain details?

2. What extensions to the base GigaVoxel rendering algorithm are required to
support large-scale terrain rendering?

3. How would a voxel terrain format that is optimized for use in a GigaVoxel based
terrain rendering system be designed?

4. How would a system for generating such a terrain format be designed and
implemented?

In answering the questions above, this thesis makes several contributions to the feld
of volume rendering.

3. Contributions

The contributions to the feld of volume rendering provided by this thesis
include::

1. Design of a GPU/CUDA software system that generates a page-able terrain
format, optimized for rendering in a GigaVoxel terrain rendering system, from
an out-of-core polygonal terrain data set.

2. Design of a GigaVoxel page-able terrain format.

3. Design of GigaVoxel paged terrain rendering system.

4. Performance results and analysis of prototype implementations of said software
designs.

Implementation of a large-scale voxel terrain rendering system based on the GigaVoxel
rendering algorithm requires the design of a GigaVoxel terrain format that supports
paging, from disk, multiple oct-trees from a 3D grid of GigaVoxel oct-trees
representing the terrain and terrain details as well as a system for generating the

6

oct-tree terrain grid. Furthermore, rendering multiple oct-trees, as opposed to a
single oct-tree, requires extending the GigaVoxel rendering algorithm.

The design of the generation system and the extensions to the base GigaVoxel
rendering system described in this paper are based on the latest research in the felds
of GPU based voxelization and SVO generation and large scale terrain rendering.
The GigaVoxel terrain generation system incorporates and extends prior work, to
implement dual out-of-core (i.e. main memory and video memory), GPU based
voxelization and SVO generation. The core GigaVoxel rendering algorithm is
extended to also support dual out-of-core terrain rendering using techniques borrowed
from the latest research in large-scale terrain rendering.

Furthermore, the performance results of a prototype implementation of the
GigaVoxel paged terrain rendering system are presented and analyzed. From this
analysis conclusions about the suitability of the GigaVoxel rendering algorithm as
a basis for large-scale terrain rendering now and into the future are presented.
Additionally, this thesis includes a discussion of ways that this work can be extended
and improved.

4. Organization

This thesis consists of fve chapters. Chapter 2 provides a survey of the research
in the felds relevant to this thesis. Chapter 3 provides a detailed descriptions
of the GigaVoxel terrain database format, GigaVoxel terrain generation system,
and the GigaVoxel terrain rendering system respectively. Results of the prototype
implementations are presented in Chapter 4. Analysis of and conclusions based on
the results as well ideas for future work are presented in Chapter 5.

CHAPTER 2

Survey

This chapter provides a survey of the relevant research on volume rendering,
volume rendering optimizations, terrain rendering, scene graphs, and sparse voxel
oct-tree generation that was used as the basis for the software designs described in
chapter 3.

1. Volume Rendering Techniques

The initial research into volume rendering was driven by the need for detailed
renderings of volumetric data generated by medical devices such as CT and MRI
scanners drove the initial research into volume rendering techniques [16, 60, 65, 70].
Additionally, geophysical exploration and geologic mapping processes produce large
3D data sets that require visualization [49, 61]. More recently, the movie and special
e˙ects industry, in particular, has found value in modeling and rendering highly
detailed objects with volumetric data, especially objects whose surfaces are not well
defned and are thus not easily modeled with textured polygons, such as fur, clouds,
and highly detailed vegetation [17, 34].

Volume rendering techniques fall into two categories indirect volume rendering
and direct volume rendering. An indirect volume rendering algorithms works by
attempting to ft geometric primitives to the voxels or to generate geometric primitives
from the voxels and rendering those using conventional rendering techniques. Direct
volume rendering techniques do not attempt to convert the voxel data to geometric
primitives and, thus, support semi-transparent voxels, which, unlike indirect methods,
allow for every voxel to potentially be considered in the fnal rendered image. Direct
volume rendering algorithms traverse the volume data directly and employ a transfer
function to translate the voxel data values to a color and opacity value that are
blended into the fnal rendered image, often taking into account a gradient and
illumination [22].

1.1. Volumetric Data Models. Typically the data produced by CT, MRI,
and other such 3D scanner devices is a stack of regularly spaced and regularly sized

8

images. Other types of volume generation processes, such as LIDAR, produce a 3D
point cloud [69]. These types of data are mapped to a 3D array of regularly spaced
voxels, generally referred to as a voxel data set, voxel grid, or simply voxels. Each cell
in the voxel data set is a hexahedral (typically cubical) area surrounding a central
gridpoint [21]. Historically, the voxel data model approach considers the data value
stored at a single grid point in the grid to be homogeneous within the bounds of the
grid point’s voxel [21]. Another approach to model 3D volumetric data sets is as a
3D array of cells. Cell arrays model the volume data as a collection of hexahedra
whose corners are grid points and whose values, as opposed to voxels, vary (i.e. can
be interpolated) between the grid points [21]. The choice of whether to model the
source data with a voxel grid or a 3D cell array comes down to whether or not it
is appropriate to be able to interpolate when sampling from the data. However, it
is common practice in the literature to refer to regularly spaced volumetric data as
simply voxels and to be explicit about the extent to which the data in question can
vary between grid points. This thesis will use that convention as well.

1.2. Indirect Volume Rendering Techniques. The best known indirect
volume rendering algorithm is an isosurface extraction algorithm known as the
Marching Cubes algorithm [36]. The Marching Cubes algorithm is a variation of
the Cuberilles or opaque cubes algorithm, which was the frst widely used algorithm
for visualizing volume data [30]. The basis of the Marching Cubes algorithm is that
the eight neighbor voxels in a voxel grid can be converted to a planar surface by
comparing the values of those voxels to an isovalue. If one or more of the voxels
in the group have a value that is greater than the isovalue and one or more of the
voxels in the group have a value that is less than the isovalue then a portion of the
isosurface is constructed by selecting from a group of 15 predefned polygons based
on which of the voxels are greater than and which are less than the isovalue. Other
examples of indirect volume rendering algorithms are the Dividing Cubes and the
Marching Tetrahedra algorithms [11]. Both of these algorithms are enhancements to
the Marching Cubes algorithm. The Dividing Cubes algorithm eliminates potential
aliasing issues caused by sub-pixel sized polygons by drawing them as points. The
Marching Tetrahedra algorithm prevents the erroneous holes sometimes seen with the
Marching Cubes algorithm due to ambiguities in the pre-defned polygon selection
process [11].

1.3. Direct Volume Rendering Techniques. Direct volume rendering
techniques are further categorized into object-order and image-order algorithms.
Object-order algorithms treat each voxel as a separate geometric point primitive that
is projected and rasterized into the fnal image in much the same way that a triangle

9

Figure 2.1. Marching Cubes Predefned Polygon Cases

is projected and rasterized in traditional 3D graphics applications [22]. Object-order
techniques such as the Westover Back to Front Visibility Ordering and the V-Bu˙er
Traversal Ordering are worth noting for historical perspective as they were some of
earliest volume rendering algorithms [8]. The most advanced object-order volume
rendering algorithm is the volume splatting algorithm [8]. The splatting algorithm
works by more or less throwing each traversed voxel into the output image. The color
and opacity are accumulated in the output image as the voxels are traversed in front
to back order. The splatting algorithm starts by traversing from the closest voxel
on to the farthest voxel and splatting each into the output image. The splatting
algorithm is summarized below:

1. Project the voxel’s object-space centroid into image-space.

2. Project a reconstruction kernel, such as a round Gaussian, into image-space and
place it at the center of the voxel’s image-space projection.

10

3. Using a transfer function, compute the resultant color and opacity of each pixel
within the kernel by summing all the voxel contributions for that pixel.

When the splatting algorithm was originally introduced it provided better
performance than any other direct volume rendering algorithm, but at the cost of
quality in the fnal image output [8].

Image-order rendering algorithms, on the other hand, are fundamentally
di˙erent than object-order rendering algorithms in that they start from a pixel in
the output image and traverse the voxel data set to determine which voxels a˙ect
that pixel, as opposed to object-order techniques, which start at a voxel and attempt
to determine which pixels the voxel a˙ects. In general, image order voxel rendering
algorithms cast a ray, starting at the pixel, in the direction that the camera is pointing
and march the ray through the voxel data, sampling at regular intervals. Each data
sample is converted to a color and opacity either at run-time or in pre-processing step
via a transfer function [37]. The color and opacity is then used in a light interaction
computation to compute the voxel’s contribution to the fnal color of the pixel. As
the ray progresses, the color contributed by each sample is accumulated until the ray
exits the voxel grid [22]. The general fow of the algorithm is described below:

1. Calculate starting position and direction of each ray.

2. Step ray through voxel grid at regular intervals, sampling the voxel grid at each
step.

3. Convert voxel data value to color and opacity with a transfer function.

4. Compute gradient.

5. Compute shading based on gradient and local light sources.

6. Composite shaded color and opacity into output image.

The ray casting technique produces the highest quality output images because it
models the e˙ect of illumination on the volumetric data more accurately than
object order techniques, such as splatting [22]. This is because the regularly spaced
stepping and sampling of the voxel data performs a Reimann sum to compute the
volume rendering integral [22]. The volume rendering integral is the basis for the
lighting model, known as the emission, absorption model of light transport through
a participating medium, which is commonly accepted as the most accurate method
to render volumetric data [22].

The paper, “Display of Surfaces from Volume Data.” by Levoy [37] was one of
the earliest described ray-casting algorithms capable of rendering locally illuminated,

11

high quality images of volumetric data that exhibited smooth silhouettes and very
little aliasing artifacts. The key component of Levoy’s paper was the introduction of
a pre-processing step where the voxel data values are converted to a color and opacity
via a transfer function prior to run-time. By pre-converting the voxel data values to
colors and opacity it enabled higher order interpolation of the samples taken from the
voxel grid by a ray during its traversal and thus smoother looking output [37].

Image-order rendering techniques produce more accurate results, but are
generally slower than splatting and other object-order algorithms [13, 70]. However,
the performance gap between object order and image order techniques is shrinking
due to the introduction of and continued improvement of hardware accelerated
rendering via dedicated graphics processing units. The early graphics processing
hardware, unlike today’s programmable GPU hardware, was designed for the purposes
of rendering textured polygonal data only. As such, volume rendering researchers
wanting to utilize the power of this hardware, had to ft their voxel algorithms into
a textured polygonal mesh paradigm. The volume slicing algorithm is one such
approach that simulates volume ray casting by using textured polygonal primitives
in order to harness the power of the graphics hardware [64]. This algorithm works by

Figure 2.2. Volume Slicing

generating a stack of parallel planes aligned with the viewport that cut through the
volume at regular intervals. The voxel grid is stored in a 3D texture map and each
plane in the stack utilizes texture mapping coordinates to sample from the 3D texture.
Each plane represents a step taken by a ray marching through the voxels. The left side
of fgure 2.2 shows the volume slicing technique applied to a voxel grid that models a

12

simple box structure. The left side of fgure 2.2 shows a side view of the slice planes
after disabling the dynamic update of the volume slice planes, which prevents the slice
planes from rotating with the camera making the plane primitives that perform the
volume texture sampling visible. The volume slicing approach is capable of producing
very high quality images in real-time, but it is not a perfect replication of ray casting
and thus does not produce as high quality of output because of the fact that the
planes do not sample the voxel data at regularly spaced intervals (see fgure 2.3).

Figure 2.3. Volume slicing samples volume at irregularly spaced step sizes

An improvement on the volume slicing technique is GPU ray casting. GPU
ray casting algorithms are only feasible to implement on fully programmable graphics
processing units. Additionally, because of the rapid increases in processing power of

13

GPU hardware it has become possible to render non-out-of-core volumetric data sets
via GPU ray casting at interactive or even real-time frame rates. Some of the earliest
implementations of GPU ray casting were demonstrated by Kruger and Westermen
[35], Rottger et al. [56], and Scharsach [59]. For this technique, the voxel grid is again
stored in a 3D texture in GPU memory. Proxy geometry, representing either the near
plane or the eight planes surrounding the voxel grid’s bounding box, is transformed
along with the camera’s position from world space into the voxel’s 3D texture space
using a vertex shader program. The pixel shader then computes each ray’s direction
vector by using the camera’s texture space position and the texture space position of
the pixel shader’s current pixel. The pixel shader then marches the ray through the
voxel grid sampling the 3D texture at regular intervals to obtain a color and opacity
that are composited into the frame bu˙er. Interaction with local lighting sources can
be computed with gradient vectors, computed on-the-fy via central di˙erencing or in
a pre-processing step [22] A ray’s exit from the volume is detected when any of the
components of its position are no longer in the range zero to one.

2. Volume Rendering Optimizations

GPU ray casting is very e˙ective at producing high quality output and, on
smaller data sets, can produce these images at a high frame rate. However, as the
size of the data set grows, the performance tends to decrease and the amount of
memory required to hold the larger data sets is often more than what is available
on even high end GPUs. The next sections describe the latest research into volume
rendering algorithms that attempt to overcome the performance and memory related
challenges associated with rendering large volumetric data sets.

2.1. Performance Optimization. Optimizing the run-time performance of
volume rendering algorithms, in particular volume ray cast rendering, has lead to the
development of several optimization techniques including, early ray termination [35],
empty space skipping, adaptive sampling, and occlusion culling [22, 43]. Early ray
termination optimizes ray casting by ending a ray’s traversal of the voxels before it has
fully exited the volume when the pixel shader determines that a suÿcient amount of
opacity has been reached. This optimization can greatly improve rendering on some
data sets. Occlusion detection, empty space skipping, and adaptive sampling is made
possible by frst sub-dividing the voxel data into non-homogenous, homogenous, and
nearly homogenous regions. Sub-dividing and classifcation of the sub-regions of the
voxel data is usually accomplished with hierarchical space dividing data structures
such as BSP trees or oct-trees, which are constructed pre-runtime [22]. Occlusion
detection queries executed on the GPU can be used to eliminate the need to ray cast
an entire sub-region of the volume if the sub-region is determined to be completely

14

or substantially occluded. Occlusion queries work by drawing a proxy geometry,
consisting of a few planes or triangles, representing the voxel’s bounding box or the
internal structure of the volume (possibly pre-generated by marching cubes) to the
frame bu˙er and then using a graphics driver API (i.e. OpenGL, DirectX, etc.) to
perform occlusion queries. The result of the queries provide a way to determine if
the level of occlusion is large enough to warrant skipping the more expensive ray cast
rendering of the voxel sub-region in question. This can be an e˙ective optimization
if the voxel data set has lots of self occlusions or when mixing volume rendering with
polygonal rendering for applications such as games or simulations [22]. Empty space
skipping works by allowing completely homogenous regions to be skipped entirely if
they are completely translucent, or their contribution can be computed procedurally
[22]. Adaptive sampling is an optimization that enables regions that are nearly
homogenous to be down sampled to a lower resolution and traversed in fewer steps
without a˙ecting the accuracy of the results provided that for each step the color
and opacity is corrected for the larger step size [22]. These optimization techniques
when applied to rendering on modern GPU hardware further help to make interactive
and real-time rendering of volume data via GPU ray casting possible. However, they
do not necessarily address the challenge of dealing with out-of-core volume data, i.e.
data too large to ft entirely into video memory.

2.2. Memory Optimization. The biggest obstacle to GPU ray cast
rendering of large voxel data sets is that the size of the data set often does not even
ft into the GPU memory. This type of data is referred to as out-of-core. There are
several techniques described in the literature for dealing with out-of-core volumetric
data. Scharsach introduced the idea of a texture cache or pool to deal with out-of-core
volume data[59]. The texture pool is flled with only the regions of the voxel grid
that are needed in order to render the current view point. A secondary 3D texture is
used to keep track of which portions of the overall voxel grid are stored in the texture
pool and where. Additionally, the Sparse Voxel Oct-tree (SVO) data structure is a
data structure adapted to deal with out-of-core volume data. The SVO concept grew
out of oct-trees used for solid texturing, which is a 2D texture mapping technique
designed to deal with distortions caused by surfaces that have no natural texture map
parameterization [52, 53]. Perlin’s and Peachey’s oct-trees were eventually adapted
to the GPU [2, 27, 40]. From there voxel researchers realized the potential of oct-tree
textures as an optimization for voxel rendering [12, 41, 47]. The SVO reduces the
memory required to store a voxel grid by taking advantage of the fact that voxel data
often consists of dense patches of non-homogenous space surrounded by large swathes
of homogeneous space. The SVO thus allows homogenous portions of the voxel grid
to be stored as a single constant value. SVOs have been shown to have a compression

15

ratio of 600,000 to 1 in data sets consisting of large expanses of terrain [58]. the
concept of the GPU based SVO was further enhanced by the integration of it with
the brick map technique frst developed by Christensen and Batali [6]. Combining the
concept of a brick map with an SVO allows the oct-tree nodes to be stored separately
from the voxel content, which improves the coherency of the memory accesses.

The GigaVoxel rendering algorithm combines the texture pool, SVO, and brick
map concepts into an innovative algorithm that performs real-time ray cast rendering
of voxel data. To optimize GPU memory usage the SVO structure and the bricks are
stored in two texture pools [12]. The texture pools guarantee a consistent amount of
texture memory usage. They are loaded with only the portions of the voxel data that
are needed for the current viewpoint. As the viewpoint changes the stale, no longer
needed, SVO nodes and bricks are replaced by new nodes and bricks in an LRU
fashion. The needed nodes and bricks are identifed by the GPU rays themselves
without any CPU based traversal of the SVO required [12]. This feature is unique
to the GigaVoxel technique. Other research has been conducted into eÿcient use
of the SVO for real-time rendering by Gobetti et al. and Laine et al. [26, 41].
However, the GigaVoxel technique, despite being very similar to Gobetti’s technique,
is more eÿcient in terms of memory usage and also performs better overall because the
GigaVoxel technique does not require a CPU based traversal of the SVO to determine
which nodes and bricks to load like Gobetti’s. In addition, the GigaVoxel technique is
more fexible than Laine’s technique because it focuses solely on dealing with opaque
object surfaces and is not capable of dealing with objects that consist of both partially
transparent and opaque voxels [12]. The GigaVoxel technique is described in more
detail in the 3 chapter.

3. Terrain Rendering

Terrain rendering research covers a lot of ground in the 3D visualization world.
The areas of particular interest to the goals of this thesis are level of detail research
and out-of-core research. Research on level of detail (LOD) management and, in
particular, LOD management strategies that support out-of-core paging of terrain
data from disk to system memory and from system memory to video memory are
especially relevant. Managing the paging and LOD of large outdoor terrain is very
complex because terrain data consists of the terrain surface, the static terrain details
or models (i.e. building models, vegetation models, etc.), the terrain surface texture
maps, and the static terrain models’ texture maps. All of these data types require
a di˙erent paging and LOD management strategy. Researchers over the years have
developed some very complex solutions to the problems associated with this domain.
These solutions usually start with the basic premise of dividing the terrain up into

16

separately page-able tiles [45]. From that basic premise others have developed more
complex schemes to optimize paging performance such as Lindstrom and Pascucci’s
use of terrain data paging via memory mapped fles [44] or Gao’s technique involving
compression and complex viewer motion prediction with pre-fetching of tiles via a
background thread [25].

In addition to terrain data paging, terrain rendering systems manage terrain
surface LOD. The earliest algorithms for managing terrain surface LOD involved the
triangulated irregular network (TIN) data structure and algorithm initially developed
for terrain rendering by W. Randolph Franklin in 1973 [71]. A TIN of polygons is
generated from a heightmap such that it models the surface as closely as possible,
within some error threshold, using as few vertices as possible. Continuous level
of detail algorithms attempt to do at runtime what TINs do pre-runtime [45].
The best known CLOD method are, most likely, the ROAM algorithm developed
by Duchaineau[19], of which there are many variants [44, 25], as well as Hoppe’s
progressive mesh refnement technique [31]. CLOD methods are so named because
they compute and generate the terrain surface mesh at runtime from a heightmap or
digital elevation map (DEM) and continuously update the number of vertices uses to
model the surface based on the current viewpoint.

Run-time paging and LOD management of a terrain’s texture maps are another
highly active area of research. A basic approach, conceptually the same as the TIN
method, is to pre-generate multiple di˙erent resolutions of a texture and then use
a view dependent calculation to pick a specifc resolution for paging [45]. A more
complex solution to this problem, known as the texture clipmap, dynamically streams
in only the needed portions of a large out-of-core texture based on a view centered
rectangular region. This method, originally developed by Tanner et al. [63], has
been enhanced and extended by many others, including [32, 10]. The texture clipmap
technique has also been extended to the domain of terrain surface management as
well, in the form of method known as the geometry clipmap [39], which involves
streaming the heightmap instead of a texture map.

As far as LOD management of the terrain detail models like vegetation,
buildings, etc., the most common practice is to generate multiple representations
of the models at various levels of detail, either automatically or by hand, and to
use a distance or projected size metric to switch between the di˙erent resolutions at
run-time [45, 73]. An individual model’s texture map LOD tends to be tightly bound
to the model’s geometry LOD, which makes them easier to manage than the terrain
surface geometry and textures LODs, which are often not directly tied to each other.

More recently, the idea of managing the LOD of the shader program used to
render a terrain surface or a terrain detail model has been studied. For instance,

17

the shader program used to render a highly detailed tree model, one that supports
complex light interactions with leaves, branches, etc. is not necessary and obviously
too costly to execute when the tree is viewed at a great distance and in great numbers.
Meyer et al. has proposed use of multiple di˙erent shaders where each shader is
designed to render at di˙erent resolution from needles on the branches on up to the
collection of branches and trees that form the canopy of a forest[46]. Clearly, given
all the research it has generated, large scale terrain paging, LOD management, and
rendering is a challenging problem.

4. Scene Graph Based Rendering

Closely related to the feld of terrain rendering research is the feld of scene
graph research. A scene graph is data structure commonly used in 2D and 3D graphics
to organize and optimize the rendering of a scene and the objects in it [68]. One of
the earliest descriptions of a scene graph comes from Clark in which a scene graph is
presented as mechanism for LOD management, polygon clipping, data paging based
on visibility information, and the ability to tightly couple rendering performance with
scene complexity [9]. In addition to those initially identifed benefts, modern scene
graphs designed for today’s graphics rendering technology can also beneft from the
ability of a scene graph to spatially and hierarchically organize a 3D scene. This
organization makes possible the implementation of common optimization techniques
such as culling, and render state inheritance, encapsulation, and sorting [1]. By
spatially organizing the elements of a 3D scene in a scene graph, a culling systems
can easily identify and collect the currently active set of visible objects in order to
deliver them to the rendering system for eÿcient drawing on screen. Furthermore, a
culling system can identify portions of the scene graph that should be loaded from
disk because it can predict that a portion of the scene graph will soon be coming into
view [1]. The primary mechanisms used to determine the potential visibility of a scene
graph branch or leaf node is to detect an overlap between the node’s bounding sphere
and the view frustum or to detect that the bounding sphere is within some specifc
distance of the camera. Alternatively, the projected size of a scene graph node’s
bounding sphere (in pixels) is computed and when the projection becomes larger
than some pre-confgured amount, the node is collected for rendering or triggered for
paging [1].

Scene graphs also optimize rendering performance of large 3D scenes by
enabling graphics system state inheritance and encapsulation. Inheritance and
encapsulation of graphics system state means that the changes to the graphics
system state, needed to render a particular branch of the scene graph, can be
stored in a state structure at various levels of the graph and inherited by and

18

overridden by lower levels. This architecture makes it possible to sort the list
of scene graph nodes collected for rendering such that graphics state switching is
reduced to only the essential changes and redundant changes are eliminated, which
greatly optimizes rendering performance on modern hardware [1]. An example of a
scene graph that supports culling, paging, state encapsulation, and sorting, among
other things, is the OpenSceneGraph, which is a widely used opensource scene graph
based rendering toolkit [5]. The OpenSceneGraph provides inspiration for the scene
graph implemented by the rendering system described in this thesis, in particular the
OpenSceneGraph’s Group node, the PagedLOD node, and the Drawable node types.
The Group node provides a way to spatially organize the scene graph by storing a
bounding sphere of the child nodes of the Group. The PagedLOD node is special type
of Group whose children are not loaded into the scene graph until the culling system
determines that they are potentially in view [5]. The culling system initiates the
loading of the PagedLOD node’s child nodes by submitting a request to a database
pager thread [5]. A Drawable node is a leaf node that encapsulates a draw-able entity
[5]. The OpenSceneGraph culling system collects these items in its list of potentially
visible draw-able items and then sorts them for rendering based on their encapsulated
graphics state [5]. Furthermore, each PagedLOD node’s last accessed time-stamp is
tracked so that stale data can be unloaded after a confgurable amount of time [5].
These methods are put to use in the paging and culling system for the GigaVoxel
terrain rendering system described by this thesis.

5. Sparse Voxel Oct-Tree Generation

In order to test the feasibility of using the GigaVoxel and related large scale
terrain rendering research on a large scale voxel terrain, a terrain generation system
capable of producing a GigaVoxel SVO based terrain is needed. Typically, a real world
terrain data set designed for 3D visualization is generated by processing the Earth
measurements obtained from multiple di˙erent types of scanners (Satellite imagery,
LIDAR, etc.) into a set of catographic data sources (imagery, height map, etc.). The
cartographic sources are then compiled, by a terrain generation system, into a 3D
visualization optimized run-time format consisting of the terrain skin, terrain texture,
and terrain details (building models, tree models, etc.) [60, 58]. In general, most 3D
terrain visualization systems are designed to run on data that is in a textured polygon
format and most of the existing software tools that generate 3D terrain visualization
data target textured polygons as the output format. Ideally, a voxel based terrain
generation system would go directly from Earth measurements to voxel data, but
developing the tools to do this is beyond the scope of this thesis. As such, the
input to my GigaVoxel terrain generation system is a textured polygon mesh terrain

19

generated by a typical 3D terrain generation system.

5.1. Voxelization. The frst step in generating GigaVoxel terrain is to
voxelize the polygonal terrain. Fortunately there is a fair amount of research on
voxelization of polygonal data. Hardware accelerated voxelization executed on the
GPU is of particular interest because voxel data, being essentially a 3D array, maps
nicely to the parallel architecture of a GPU making it an optimal computing platform
for generation and computation of voxel data. Pantaleon’s VoxelPipe is one of the best
examples of a GPU based voxelization system [50]. VoxelPipe is based on previous
work by Schwarz and Seidel [62], Zhang et al. [74], Eisemann and Decoret [20], Dong
et al. [18], and Fang and Chen [23], among others. The key building block of the
VoxelPipe software is its triangle/box overlap test that determines if a polygon should
contribute to a particular voxel. This test, which stems from the 2D version of the test
frst described by Moller and Aila [47] and later extended to 3D by Schwarz and Seidel
[62], works by frst executing an inexpensive test to determine whether the triangle
plane intersects the box. Then a more expensive test is performed. The expensive
test comes in two variants, a thin voxelization variant, and a conservative voxelization
variant. The thin variant checks for intersection of the 2D projections of the triangle
and the voxel’s bounding box along the dominant axis of the triangle’s normal. The
conservative variant checks for intersection along all three axis [50]. The thin variant
is faster, but can incorrectly produce holes in certain situations. The conservative test
is more accurate, but takes more time and can produce a voxelization that appears
to be more chunky. Prior to executing the fne grained overlap test the VoxelPipe

Figure 2.4. Thin and conservative voxelization example

algorithm performs several pre-processing steps, including:

1. Coarse Grained Triangle Prep - these steps assign a single GPU thread to each

20

triangle in order to obtain a coarse grained sort of the triangles assigned to tiles
(tiles are 3D sub-region within the full voxel grid).

(a) Pre-compute integer bounding box and dominant axis (these values are
used in box/triangle overlap test) generating a list of triangles and their
associated data.

(b) Perform coarse sorting to assign trangles to voxel tiles. This process
generates an unsorted list consisting of the triangle-id and tile-id.

(c) Sort the triangle-id, tile-id list by tile-id.

(d) Split the per tile lists up into smaller chunks (this is done for better load
balancing).

2. Fine Grained Process - these steps perform the voxelization with a single GPU
thread per triangle where triangles are grouped by tile.

(a) Execute triangle plane overlap test.

(b) Execute triangle axis test.

(c) Write data to tile/voxel output.

5.2. SVO Generation. After voxelization of polygonal data is complete an
SVO can be generated from the voxel grid. Parallel to my own implementation of GPU
based SVO generation Crassin et al. and Baert published papers describing similar
techniques for SVO generation. Crassin et al. describes an algorithm for GPU based
SVO generation in an article written for the book OpenGL Insights [14]. Crassin’s
algorithm makes use of the latest features of OpenGL, including image load/store
and atomic counters, to generate an SVO from a high resolution mesh in real-time.
This technique is somewhat similar to the approach of my implementation, but less
memory intensive and faster. Their algorithm is described here:

1. Compute voxelization of highest resolution nodes (i.e. leaf nodes).

2. Identify non-homogenous nodes using voxelization data from step 1.

3. Compute MIP-maps for lower resolution levels using node data from step 2 and
voxelization data from step 1.

The frst step voxelizes each triangle of the input mesh. Crassin does not use the
triangle/box overlap test and instead uses the GPUs rasterization capabilities to
orthographically project each triangle along the dominant axis of its normal in order
to maximize it’s projected area into the output image. The output image is confgured

21

to be the size of the lateral size of the desired voxel grid’s resolution (i.e. 5122 if
the desired voxel resolution is 5123). The projected triangle produces a set of 2D
fragments that indicate the potential for an intersection between the triangle and
a particular voxel. The pixel shader then uses the interpolated depth of each 2D
fragment and the screen space derivatives to compute the list of voxels in the 2D
fragment region that are actually intersected. This list of voxels is then added to a
pre-allocated bu˙er using the image load/store and atomic operations introduced by
OpenGL 4.2 capabilities. The list of voxel intersections is then used to generate an
oct-tree by traversing from the root of the tree down to the leaf node that contains
each of the intersected voxels. Finally, the brick for each node is created by traversing
back up the tree and flling in each brick by computing a MIP-map from the higher
resolution node’s brick. The only shortcoming with this algorithm is the requirement
for a pre-allocated bu˙er to store the initial list of voxel intersections. If a particular
set of triangles generates more voxel intersections than can be held by the list then
they will be lost and the voxelization will be incomplete [14].

The algorithm described by Baert et al. in a paper entitled, Out-of-Core
Construction of Sparse Voxel Octrees, makes the insight that a full voxel grid is not
needed to compute a branch of the SVO that would contain and model it [3]. As
such the software is designed to process the source data in chunks corresponding to
the regions that represent the bounding boxes of the leaf nodes in the SVO. The
algorithm is in fact very similar to the algorithm that this paper describes for GPU
SVO generation, but has a few key di˙erences, foremost of which is that Baert’s
algorithm is not a GPU algorithm [3].

CHAPTER 3

Implementation

This chapter describes the design of the GigaVoxel terrain renderer and a
system capable of generating a pageable grid of GigVoxel sparse voxel oct-trees from
a large polygonal texture terrain. The rendering system is implemented with OpenGL
and is based on the GigaVoxel rendering algorithm with a few extensions in order to
support paged SVO terrain. The terrain generator is implemented using NVIDIA’s
CUDA (Compute Unifed Device Architecture) and is based on the techniques for
voxelization and SVO generation described in chapter 2.

1. CUDA

CUDA is NVIDIA’s parallel computing platform and programming model that
streamlines the implementation of GPU powered applications on NVIDIA GPUs [67].
CUDA was used to implement the terrain generation system because voxelization and
sparse voxel oct-tree generation from polygonal data, due to the 3D grid nature of
the voxel and SVO data, is well suited to take advantage of the massively parallel
architecture of the GPU and CUDA makes harnessing that power for non-graphics
applications, like a terrain generation system, much easier to accomplish. The CUDA
programming model is designed around the execution of GPU kernel programs.
Multiple instances of a kernel program are executed on the GPU in parallel. Each
kernel program can uniquely identify itself by its thread indexes and its block indexes
[48]. A kernel instance’s block and thread indexes are essentially global constants that
a running kernel can obtain via the blockIdx and threadIdx built-in symbol names.
They are both defned to be of type uint3 aka X, Y, and Z [48]. The dimension
or number of blocks is referred to as the grid size and the dimension or number of
threads is referred to as the block size. A GPU, depending on it’s capabilities, can
support up to a certain number of thread blocks and a certain number of threads per
block for a single kernel execution. The grid size times the block size equals the total
number of threads that can execute a particular kernel concurrently. When executing
a kernel the number of blocks and threads that are spawned is specifed as part of the

23

execution syntax [48]. For example, to execute a kernel with 2 blocks of 2 threads
one would do:

• MyKernelFunction<�uint3(2, 0, 0), uint3(2, 0, 0)>�(...)

The example above would result in the execution of MyKernelFunction on 4
concurrent GPU threads.

2. GigaVoxel Sparse Voxel Oct-Tree

2.1. GigaVoxel Run-time Format. In order to better understand the
algorithms used to generate a GigaVoxel oct-tree, a detailed description of the
GigaVoxel oct-tree run-time data structure is required. First o˙, the tree structure
as described in [12], is not necessarily an oct-tree. The tree structure is actually

Figure 3.1. GigaVoxel Oct-Tree and Texture Pool Structure

generalizable into an N3 tree (i.e. each node has N3 uniformly sized children). The
choice of N o˙ers a trade o˙ between memory eÿciency and traversal eÿciency. A
smaller N results in a deeper tree, whereas a larger N results in a shallower tree.
However, in order to simplify the implementation of both the generation system and

24

the rendering system support for N=2 trees is implemented (i.e. an oct-tree). The
GigaVoxel oct-tree data structure is stored by the rendering system in both main
system memory and in video/GPU memory. The GPU version of the oct-tree is
stored in two pool textures. The Node Pool texture stores the nodes of the tree and
the Brick Pool texture stores the brick for each node in the Node Pool (refer to fgure
3.1). The Node Pool texture is a 32 bit unsigned integer luminance alpha texture.

Figure 3.2. Node Pool Texel

Each node in the tree is stored in a single texel of the Node Pool texture. The frst
32 bits of the texel are used to store a max subdivision fag, a node type fag, and
a child pointer. The max subdivision fag, which is stored in the highest order bit
is used to indicate whether the node is refned to a maximum or whether the node
has children that are yet to be loaded into the Node Pool. The node type fag stores
whether the node is a constant or non-constant node. The frst 30 bits, with 10 bits
per each XYZ component, are used to encode a pointer to the node’s children (i.e.
an XYZ o˙set within the Node Pool texture). Each node only needs a single child
pointer because its children are stored in a 2x2x2 contiguous block of the Node Pool,
thus the siblings of the base child can be addressed via a simple XYZ o˙set from
the base child. The second 32 bit portion of the node (i.e. the alpha component of
the luminance alpha texture) stores either a constant color or a brick pointer. The
constant color is encoded as an 8 bit RGBA value. The brick pointer, like the child
pointer, is encoded as three 10 bit integers that specify the XYZ o˙set of the brick
in the Brick Pool texture (refer to fgures 3.1 and 3.2) .

A node’s brick stores the portion of the voxel grid that corresponds to the area
within the node’s bounding box. The leaf node bricks contain the color and opacity
from the highest resolution voxel grid (post transfer function translation from scalar
to color and opacity). The data stored in the non-leaf node bricks comes from a voxel
grid generated by, MIP-map style, down sampling of the highest resolution voxel

25

grid. For example, in a two level oct-tree that represents a 16x16x16 voxel grid, the
root node brick is an 8x8x8 voxel grid generated by computing the MIP-map of the
16x16x16 voxel grid. In turn, the 16x16x16 voxel grid would be divided amongst the
8 children of the root node, giving each of them an 8x8x8 brick. Also, note that
for proper interpolation when sampling, each brick needs to store an extra layer of
border voxels to ensure that linearly interpolated samples taken around voxels at the
edge of a node’s extent pull from the voxels that are actually neighboring the node’s
bounding region, as opposed to whatever voxels happen to be stored in the Brick Pool
next to the node’s brick.

2.2. Paged GigaVoxel Scene Graph File Format. Ultimately, the
generation system needs to generate a 3D grid of GigaVoxel oct-trees, where each
oct-tree represents a chunk of the terrain and terrain details. The oct-trees need
to be in a format that can be quickly loaded from disk when requested by the
rendering system. The generation system encodes the 3D grid of page-able oct-
trees in the Paged GigaVoxel Scene Graph XML fle. The Paged GigaVoxel Scene
Graph XML fle consists of an "OctTrees" node, which is similar in function to the
OpenSceneGraph’s "Group" node, and a "PagedOctTree" node, which is similar in
function to the OpenSceneGraph’s "PagedLOD" node [5]. A detailed description of
each node type and its parameters is described below.

1. OctTreeGroup - element node that contains OctTree element nodes.

(a) Parameters:

i. Compressed - indicates whether or not the OctTrees referenced by this
XML fle contain compressed brick data. The possible values are YES
or NO.

ii. BrickXSize, BrickYSize, BrickZSize - indicate the size in voxels of the
bricks referenced by the OctTrees in the grid of oct-trees.

(b) Child Elements: OctTree

2. PagedOctTree - element node that provides a reference to GigaVoxel oct-tree
tree and brick data.

(a) Parameters:

i. CenterX, CenterY, CenterZ - specifes the center position of the
OctTree.

ii. Radius - specifes the radius of the bounding sphere of this OctTree.

26

iii. TreeFile - specifes the path to the XML fle that defnes the nodes of
the actual OctTree.

(b) Child Element Nodes: None

The OctTreeGroup element’s Compressed and BrickXSize, BrickYSize, and
BrickZSize indicate to the rendering system the dimensions and data type required for
the Brick Pool texture. The PagedOctTree element’s parameters specify a bounding
sphere for the oct-tree referenced by the TreeFile parameter, both of which are used by
the rendering system for on-demand loading of oct-tree data. The TreeFile parameter
specifes the path to the GigaVoxel Oct-Tree File.

2.3. GigaVoxel Oct-Tree File Format. The GigaVoxel Oct-Tree File
specifes the structure of the oct-tree nodes in a single GigaVoxel oct-tree. The
generation and rendering systems support either an XML format or a more compact
binary format. The structure of the XML version of the GigaVoxel fle is described
below.

1. GigaVoxelsOctTree - contains Node element nodes and specifes oct-tree
parameters.

(a) Parameters:

i. X, Y, Z - specify the X, Y, and Z location in world coordinates of the
minimum corner of the oct-tree’s bounding box.

ii. DeltaX, DeltaY, DeltaZ - specify the size in meters of a single voxel
in the oct-tree.

iii. VolumeXSize, VolumeYSize, VolumeZSize - specify the size in meters
of the bounding box of the oct-tree.

iv. BrickXSize, BrickYSize, BrickZSize - specify the number of voxels in
the bricks referenced by the nodes of this oct-tree.

v. Binary - specifes whether or not the brick data referenced by the nodes
in this oct-tree is stored in a binary format or a text format. Possible
values for this parameter are YES or NO.

(b) Child Element Nodes: Node

2. Node - specifes the parameters for a node in the oct-tree.

(a) Parameters:

27

i. Type - specifes whether the node is a CONST (i.e. contains a constant
color), or a NON-CONST (i.e. contains a brick), or a LEAF-CONST
node. A LEAF-CONST node is a node that is leaf node, but is not
at the MaxDepth of the oct-tree because it is a CONST and all of its
children are CONST nodes.

ii. Brick - specifes the index of this node’s brick in the fle that contains
the brick data for the node’s at the current level of the tree.

(b) Child Element Nodes: None

The GigaVoxelsOctTree element’s X, Y, Z, DeltaX, DeltaY, DeltaZ, VolumeXSize,
VolumeYSize, and VolumeZSize parameters specify the parameters for the bounding
box "proxy geometry" that serves as a mechanism for ray generation in the rendering
system. The BrickXSize, BrickYSize, BrickZSize, and Binary parameters specify
parameters that describe the brick data referenced by the nodes in the oct-tree.

The binary format of the GigaVoxel Binary File is optimized to facilitate quick
loading from disk into the node pool texture, as such, its format closely resembles the
format of the Node Pool texture. The header of the fle consists of the parameters
defned by the GigaVoxelsOctTree XML element node, specifcally:

1. Bytes (0 - 96]: three 32 bit foating point values encoding the X, Y, and Z
parameters.

2. Bytes (96 - 192]: three 32 bit foating point values encoding the DeltaX, DeltaY,
and DeltaZ parameters.

3. Bytes (192 - 288]: three 32 bit unsigned integers encoding the VolumeXSize,
VolumeYSize, and VolumeZSize parameters.

4. Bytes (288 - 1056]: twenty four 32 bit foating point values encoding the vertexes
of the bounding box of the oct-tree.

5. Bytes (1056 - 1057]: one bit to encode the Binary parameter.

6. Bytes (1057 - 1089]: one 32 bit unsigned integer encoding the size of the oct-tree
node data that follows.

From there bytes 1089 through the size specifed by the last header parameter contain
the data for the pixels of the node pool texture starting with the root node. The root
node inhabits the frst 64 bits of the frst 512 bits starting at o˙set 1089. Recall that
we need 512 bits for each node because nodes are stored in 2x2x2 blocks in the Node
Pool texture. The next 512 bits encode the children of the root node. Following that

28

is the 512 bits to encode the frst child of the root node’s children. The children are
laid out in the fle such that they can easily be loaded into the Node Pool texture via
a call to glTexSubImage3D.

The data that is stored starting at o˙set 1090 is loaded by the rendering system
as a single chunk of contiguous memory. After loading this "oct-tree chunk" into main
memory, the rendering system, or more specifcally the data paging system, builds
an oct-tree of nodes where each node has a pointer to the o˙set within the chunk
corresponding to the node (i.e. the root node points to o˙set zero, the root’s frst
child points to o˙set 512). Refer to section 3 for more details on the run-time data
structures used by the rendering system.

The brick data is stored separately in the Brick Data File and each level of
the oct-tree has its own Brick Data File. The content of the Brick Data File are the
RGBA colors of the voxels and XYZ components of the voxel gradients. The brick
fle contains the bricks in the same order that the nodes are ordered in the node fle
so that is easy to determine the o˙set within the Brick Data File that a particular
node’s brick, which is again used at load time by the paging system to build an oct-
tree node structure in main system memory that indexes into the Brick Data File and
the GigaVoxel Binary File. Each brick is stored such that it can easily be loaded into
the Brick Pool texture with glTexSubImage3D. The format of the fle’s header is as
follows:

1. Bytes (0 - 192]: encodes the dimensions of each brick (width, height, depth).

2. Bytes (192 - 193]: a bit indicating if the data in the brick is compressed or not.

After the header each node’s brick data is encoded in the fle with the RGBA portion
leading and the XYZ gradient portion following. Each RGBA portion is preceded
by a 32 bit integer specifying the size of the RGBA brick data to follow. The XYZ
gradient portion is also preceded by a 32 bit integer specifying the size of the XYZ
brick data to follow. The bricks are in the same order that the NON-CONST nodes
appear in the node defnition fle.

2.4. GigaVoxel Paged Terrain Generation System Overview. The
generation system takes as input both the terrain skin and terrain details, such as tree
and building models, in the form of an OpenSceneGraph runtime terrain database
and outputs a 3D grid of GigaVoxel oct-trees and a scene graph with references to the
oct-trees that are used for paging/loading the oct-trees at run-time by the rendering
system. The primary challenge of the system is to maintain a minimal memory
footprint while dealing with out-of-core terrain data and to quickly convert large
amounts of polygonal terrain and imagery into GigaVoxel oct-trees. Figure 3.3 is a

29

fow chart showing the major components of the system and the inputs and outputs
of each. The major components and the inputs and outputs are described in more

Figure 3.3. GigaVoxel Paged Terrain Generation System Data Flow

detail below:

1. Terrain Loader - this component loads the polygonal terrain and it’s imagery
and maintains a grid/list of the parameters describing the oct-trees that have
been generated by the CUDA Generator component.

2. CUDA Voxel and Octree Generator - this component consists of a series of
CUDA kernels responsible for converting polygonal data into GigaVoxel oct-
tree data (listed below).

3. GigaVoxel Paged Terrain Writer - this component manages the fle output
operations.

30

2.5. GigaVoxel Paged Terrain Generation. The frst step of the
generation process is to determine the 2D layout of the 3D grid of GigaVoxel oct-
trees, by dividing up the bounding box of the input data by the desired oct-tree output
dimensions in order to compute the number of oct-trees, in the X and Y directions,
required to encompass the input terrain’s extents.

Input terrain that uses round Earth coordinate systems are handled by
transforming the input polygons into a local coordinate system at the centroid of
the input data with the the Y axis pointing towards the North pole, the X axis
pointing due West, and both of them tangent to the Earth’s gravity vector at the
centroid.

Once the X and Y position and the width and height of each oct-tree grid cell
has been determined then the Z dimension for the grid and the Z position for the
oct-tree in each XY grid cell is computed based on the input data’s height in that
cell. The Z position is chosen such that the number of oct-trees required to encompass
the height of the input terrain’s polygons is minimized and such that the oct-tree is
centered on the portion of the terrain that it encompasses. Figure 3.4 shows a side
view of an example terrain to illustrate the dynamic nature of the Z positioning of
each oct-tree in the grid. The positioning algorithm is described in more detail below.

Figure 3.4. Terrain Profle Showing Stacking of Oct-Trees

1. Load required subset of input data - the 2D bounding region of the grid cell is
used to load only the triangles, and the textures used by the triangles, contained
or overlapped by the cell. The loading system maintains a fxed size LRU cache
of previously loaded data to reduce redundant loading of data for neighboring

31

oct-tree’s that require an overlapping set of input fles. The triangles and texture
color imagery are loaded into GPU memory in groups organized by texture.

2. For each oct-tree grid cell determine the number of oct-trees in the Z dimension
that are required to encompass the input data’s height.

3. For each oct-tree determined by step 2.

(a) Compute Z component of centroid of oct-tree.

(b) Generate GigaVoxel Oct-tree.

The fnal step, Generate GigaVoxel Oct-tree, is implemented as a series of
CUDA kernels. The frst kernel performs some pre-processing to setup the triangle
groups for further processing by the voxel and oct-tree kernels. After the pre-
processing step, the full resolution voxel grid for each oct-tree is generated in N3

chunks, where N can be any power of 2 that is less than (or equal) to the full resolution
voxel grid. The value chosen for N depends on the amount of memory that the GPU
provides.

1. ComputeChunkLists - for each triangle group assign each triangle to a chunk
list (i.e. the list of triangles that overlap each chunk).

2. For each N3 chunk of the total voxel grid.

(a) For each triangle group.

i. ComputeVoxelization
ii. ComputeVoxelColorsAndGradients

(b) ComputeMipMaps

(c) ComputeOctTreeNodeConstColor

(d) ComputeOctTreeNodeType

3. CollapseConstantBranches

The ComputeChunkList kernel uses a single GPU thread per triangle to
compute the bounds (in voxels) of each triangle and assign the triangle to one or
more chunk lists. The bounds of each triangle are written to an array corresponding
to the order of the triangles in the triangle group list. The triangle bounds are used
in the ComputeVoxelization kernel for the voxel-triangle overlap test. The chunk lists
consist of one array of triangle indexes per N3 chunk of the full voxel grid. The
chunk lists ensure that only the triangles that are defnitely overlapping a chunk

32

are processed by the voxelization kernels. The number of items in each chunk list
is computed via the CUDA atomic add function and stored in a chunk list count
array, that, which is read back to main system memory prior to execution of the
voxelization kernels in order to drive the dimensional confguration and launching of
the voxelization kernels.

After the bounds and chunk list setup, the voxel and oct-tree data is
generated one N3 chunk at a time by the two voxelization kernels, which are named
ComputeVoxelization and ComputeVoxelColorsAndGradients.

The ComputeVoxelization kernel performs the triangle voxel overlap test for
each triangle and each voxel in the voxel grid chunk. The dimensions of the
ComputeVoxelization kernel are confgured such that the cube root of the max number
of threads per block supported by the GPU is used for all three dimensions of the
block size, in order to assign one GPU thread to each voxel. The grid size is confgured
such that there are total of N2 threads spread across as many blocks as required in
the XY dimension. The Z dimension of the grid is set to the number of triangles in
the current chunk list. For example, if the GPU supports 512 max threads per block
and there are 128 triangles in the chunk list then ComputeVoxelization kernel would
be invoked like so:

ComputeV oxelization < uint3(32, 32, 128), uint3(8, 8, 8) > (...);

Each instance of the ComputeVoxelization kernel is responsible for testing for overlap
of a single triangle on the voxel at cell X, Y, and Z, which are computed:

T riangleIndex = CurrChunkList[blockIdx.z]

X = (blockIdx.x ∗ blockDim.x) + threadIdx.x

Y = (blockIdx.y ∗ blockDim.y) + threadIdx.y

and the column of eight voxels starting at Z:

Z = zOffset + threadIdx.z

where zO˙set is an outer loop variable that is input to the ComputeVoxels kernel
and is used to iterate the entire N 3 voxel grid from the minimum Z, in voxels, of the
triangle group’s bounding box to its maximum Z. In order to optimize for triangle
groups whose bounding regions are larger in the Z dimension, for instance tree or
building models, the algorithm selects the smallest of the three dimensions to use for
the loop (i.e. zO˙set could be yO˙set if the smallest dimension of the triangles being
processed is in the Y dimension). The triangle index within the triangle group for

33

each GPU thread is the blockIdx.z parameter, that is, each thread block processes a
single triangle.

Each ComputeVoxelization kernel instance uses the box overlap test described
previously to detect if a voxel overlaps a triangle. If it does then the triangle’s index
is added to the triangle overlap list for the voxel. The triangle overlap list is stored
in 12 bits of a 3D array of 64 bit integers depending on the number of triangles in the
chunk list. Each element of the array represents a list that can encode triangle indexes
of up to 5 triangles. Supporting only 4 to 8 overlaps per voxel might seem like not
enough to store all of the overlaps for each voxel, but the fact that the triangles are
grouped into small groups by texture, which are further paired down by the chunk
list, and the fact that the voxel size is very small, in practice, this results in 1 to
2 overlaps per triangle group. Each thread synchronizes writes to the list by using
a second 3D array, the triangle overlap count list, to keep track of the number of
items in each voxel’s overlap list. When a GPU thread detects an overlap, it uses the
CUDA atomicAdd function to obtain the write index for the current overlap and to
increment the count for the next overlap write index.

The triangle overlap count list and the 3D array that tracks the
list of triangle indexes that overlap each voxel is used in the next kernel,
ComputeVoxelColorsAndGradients, to compute the voxel color and gradient. For this
kernel a single GPU thread is assigned to each voxel in the N3 chunk by spreading the
threads evenly across the available blocks in the grid and maximizing the number of
threads per block using the same cube root method used by the ComputeVoxelization
kernel. The X, Y, and Z indexes of each thread’s voxel is computed as such:

X = (blockIdx.x ∗ blockDim.x) + threadIdx.x

Y = (blockIdx.y ∗ blockDim.y) + threadIdx.y

Z = (blockIdx.z ∗ blockDim.z) + threadIdx.z

Each thread loops through the the list of overlapping triangles stored in the triangle
overlap list. For each triangle the color is looked up from the color texture using the
input texture map and texture map coordinates. The interpolated texture coordinates
are computed by projecting the overlap triangle along the dominant axis of the its
face normal and then computing the barycentric coordinates of the voxel’s center
with respect to the 2D projection of the triangle. The barycentric coordinates of the
voxel’s center are then used to compute the interpolated texture coordinates to use
for texture lookup via the following equation:

V = (uvB − uvA) ∗ baryY

34

U = (uvC − uvA) ∗ baryX

interpUV = uvA + U + V

Where uvA, uvB, and uvC are the texture coordinates associated with the three
vertices of the overlapped triangle and baryX and baryY are the barycentric
coordinates of the voxel’s center. The same computation is used to compute the
voxel’s gradient if the triangle has per vertex normals. The color from each triangle
is added to a N3 array of RGBA values. Similarly the voxel gradient is added to a
N3 array of XYZ values. After adding the contribution of color and gradient for each
overlapping triangle the triangle overlap count is used to compute the average color
and gradient respectively. One thing to note is that if the texture lookup results in a
color that is completely translucent (i.e. alpha is zero) then it is does not contribute
to the color or gradient computation.

After the contribution of all the triangles in every triangle group is computed
and stored in the two N3 arrays, then, for each level of the oct-tree, a MIP-map
is computed. This is handled by a kernel function called, ComputeMipMap, that
takes as input the parent level’s color and gradient data and writes it’s output to
a 3D voxel grid that is half the dimensions of the parent’s. Each GPU thread is
assigned a single voxel in the ouput voxel grid and uses a custom box flter to compute
a weighted average from the parent voxels. The weight for the weighted average
computation comes from the alpha component of the parent voxels, that is, a higher
alpha component carries more weight than a lower alpha. Furthermore, for MIP-map
levels 2 and above, the output is actually computed from the parent level that is
two levels higher than the current level. This results in much better accuracy in the
MIP-map computation. So for level N=1 the weighted average comes from the 8
(2x2x2) voxels at N=0 (i.e. root level). However, for N >= 2 the weighted average
comes from the 64 (4x4x4) voxels of the level N-2 voxel grid. Additionally, the alpha
average is computed in a way that prevents the translucent voxels from causing the
object modeled by the voxels from fading inordinately fast:

alphaAvg = alphaSum/sumCount

alphaAvgP ow = pow(alphaAvg, 1 − alphaAvg)

Where the alphaSum is the sum of the alpha components from the parent or grand-
parent voxels and sumCount is the number voxels from the parent (i.e. 8) or grand-
parent (i.e. 64). By using the pow function the alpha component fades out more

35

Figure 3.5. Di˙erence between standard box flter and enhanced box flter

slowly as the amount of completely translucent voxels (i.e. voxels with no overlaps)
mix with the non-translucent voxels. If this pow() function is not used then the e˙ect
is that the voxelized object appears to shrink and become inordinately translucent in
the lower resolution MIP-maps. By applying the pow() function it causes the lower
resolution MIP-maps to appear fuzzier, which is the desired e˙ect.

The last operation performed on each N3 chunk is to compute the node type
and constant color for each node in the portion of the oct-tree corresponding to
the current chunk of full voxel grid. The levels of the oct-tree are traversed one
at a time from leaf to root using recursion on the CPU. At each recursion/oct-
tree level a ComputeOctTreeNodeConstColor kernel function is used to determine

36

the constant color that would be used to represent each node if it is determined
to be a constant node. Then the ComputeOctTreeNodeType kernel uses this
value to determine whether a node is or is not a constant node. For the
ComputeOctTreeNodeConstColor, each GPU thread is assigned a node in the current
level of the oct-tree. The X, Y, and Z index of the node in the oct-tree is computed
as such:

X = nodeXOffset + ((blockIdx.x ∗ blockDim.x) + threadIdx.x)

Y = nodeY Offset + ((blockIdx.y ∗ blockDim.y) + threadIdx.y)

Z = nodeZOffset + ((blockIdx.z ∗ blockDim.z) + threadIdx.z)

where nodeXO˙set, nodeYO˙set, and nodeZO˙set are computed based on
the o˙set of the current N 3 chunk within the full voxel grid. The
ComputeOctTreeNodeConstColor kernel function uses the X, Y, Z of the oct-tree
node to sample a single value from the set of voxel colors corresponding to the
area covered by the oct-tree node. The thread stores that value in 3D array of
RGBA values whose dimensions correspond to the dimension of the current level
of the oct-tree (i.e. 1x1x1 at level 0, 2x2x2 at level 1, etc.). This array then
becomes the input to the ComputeOctTreeNodeType kernel function, which, like
the ComputeVoxelColorsAndGradients kernel function, assigns a single GPU thread
to each voxel in the N3 chunk. In this case each kernel instance is responsible for
detecting that its oct-tree node is non-constant by comparing the node’s constant
color to the voxels assigned to it. Each GPU thread determines which oct-tree node
it is responsible for by the following equation:

brickX = fullV oxXY Z.x/brickDim.x

brickY = fullV oxXY Z.y/brickDim.y

brickZ = fullV oxXY Z.z/brickDim.z

where fullVoxXYZ is equal to the XYZ o˙set of thread’s assigned voxel relative to
the full voxel grid. Each GPU thread/kernel instance uses the brickX, brickY, and
brickZ to look up the constant color computed by ComputeOctTreeNodeConstColor
to compare it to its assigned voxel. If the values are di˙erent then the node is classifed
as a non-constant node by writing a 1 to 3D array whose dimensions, like the constant
color 3D array, correspond to the dimensions of the oct-tree at the current level of the
oct-tree. Thus, if any of the GPU threads detect a di˙erence between the constant
color and the color of the voxel that they are assigned, then they mark the oct-tree

37

node as non-constant. There is a special case for brick border voxels. Voxels at the
border of a brick also require checking for non-const-ness for the oct-tree nodes whose
bricks share the particular border. So in those cases the GPU thread compares the
constant color of those neighboring nodes to its assigned voxel’s color as well. After
the node type is computed then each non-constant node’s brick is dumped into the
brick fle.

After the full voxel grid has been traversed in N3 chunks then the fnal CUDA
kernel, CollapseConstantBranches, identifes constant branches of the oct-tree that
can be eliminated. A constant branch is one where the root of the branch is a constant
node and the root’s children, grand-children, etc. are all constant nodes. The input to
this function is the node type 3D array computed by ComputeOctTreeNodeType. The
output is another 3D array of integers, where like the constant color 3D array, each
element corresponds to a node in the oct-tree. The integer for each node indicates
if a particular node is a constant branch, where a value of zero indicates that the
node is the root of a constant branch and a value of one indicates that it is not. The
constant branch array is initialized to zero to indicate that all nodes in the tree start
o˙ as constant branch root nodes. The CollapseConstantBranches kernel is called
recursively at each level of the oct-tree starting at the bottom of the tree (i.e. leaf
node level). Each GPU thread is assigned to a particular node in the oct-tree at the
current level of the tree. The algorithm is described below.

1. Look up my node’s type in the node type array.

2. If my node’s type is constant then do nothing

3. Else if it is non-constant then write 1 to my parents node’s cell in the constant
branch 3D array.

The CollapseConstantBranches kernel produces a list of nodes whose children can
be omitted from the oct-tree because they can be accurately represented as a single
constant color. The fnal step in the generation process is to use the 3D array of node
types, constant colors, and the constant branch array to dump the oct-tree node data
to a fle.

3. GigaVoxel Paged Terrain Rendering System

The GigaVoxel Paged Terrain Rendering System design builds o˙ the data
structures and algorithms described by Cyril Crassin in the paper "Gigavoxels: Ray-
guided streaming for eÿcient and detailed voxel rendering." [12] with enhancements
adapted from the felds of large scale terrain rendering and scene graph rendering
(see chapters 3 and 4. This section gives an overview of the rendering system as a

38

whole. The next section reviews, in detail, the base GigaVoxel algorithms and data
structures. Finally, the last few sections detail the extensions to the base algorithms
and data structures.

3.1. GigaVoxel Paged Terrain Rendering System Overview. Figure
3.6 depicts the major components of the rendering system along with the data
fow through the rendering system components. The components and data fow are
described in more detail below.

Figure 3.6. GigaVoxel Paged Terrain Rendering System Overview

1. GigaVoxel Renderer

(a) Identifes the list of oct-trees needed for rendering.

(b) Manages OpenGL state for execution of pixel shaders and blending of oct-
tree output images.

(c) Manages read back of compressed node usage lists.

(d) Submits load requests to Disk Pager.

39

2. Disk Pager - loads individual oct-trees from disk into system memory.

3. Ray Cast Shader

(a) Renders oct-trees to an image.

(b) Generates list of traversed oct-tree nodes.

4. Node Usage List Compression Shader - compresses the node usage list generated
by the Ray Cast Shader.

5. Node Usage List Processor

(a) Iterates compressed node usage lists.

(b) Submits usage and upload requests to Texture Pool Manager.

6. Texture Pool Manager - uploads oct-tree nodes and voxel bricks to the GPU.

The primary components and their logic, data structures, and algorithms are
described in more detail in the sections that follow.

3.2. GigaVoxel Oct-Tree Overview. The GigaVoxel rendering algorithm
relies on an oct-tree data structure stored in both the main system memory and the
GPU memory. The main system memory stores the full oct-tree, that is, the entire
oct-tree including all the nodes and all the bricks. The GPU data structure stores
only the portions of the oct-tree needed for rendering the current viewpoint. The
in-view nodes and bricks of the oct-tree are copied from main system memory into
the Node Pool texture and the Brick Pool texture respectively. The pool textures
ensure that the amount of GPU memory used by the rendering system is limited to a
constant pre-runtime confgured amount. Section 2.1 describes in detail the format of
the texture pools. The oct-tree and MIP-map brick pyramid data structures stored
in the texture pools allows the view rays to drive the loading of the required oct-tree
nodes and bricks from main system memory into GPU memory and to render realistic
images from out-of-core voxel data. The oct-tree consists of either constant nodes or
non-constant nodes (refer to 2.1 for more detail). Non-constant nodes have a pointer
to a brick, which is encoded as an XYZ o˙set into the Brick Pool texture. Constant
nodes, on the other hand, do not require a brick and can be represented by a single
color and opacity. The non-constant nodes from each level of the oct-tree point to
bricks that come from the corresponding level of a 3D MIP-map generated from the
full resolution voxel grid upon which the oct-tree is based (see fgure 3.1 and fgure
3.7).

40

Figure 3.7. GigaVoxel Oct-tree with MIP-map Pyramid

3.3. GigaVoxel Ray-Casting. Rendering an image from a GigaVoxel oct-
tree consists of marching a single view ray for each pixel in the output image through
the oct-tree structure. Each ray computes the color and opacity of its pixel in the
output image by sampling from non-constant node bricks or, for constant nodes,
by computing the node’s color and opacity contribution computationally. The rays
originate from proxy geometry that encompasses the bounding box of the oct-tree
or, if the camera is inside the bounding box, a pair of triangles representing the near
view plane. The OpenGL stencil bu˙er is used to determine which of the two ray
origination methods takes precedence over the other. This is done by frst drawing
the bounding box geometry, with back face culling on, and then drawing the near
plane geometry. the stencil bu˙er test allows only the fragments from the closest of
two proxy geometries to execute the pixel shader stage and thus only those rays a˙ect
the output image.

Each ray marches across the oct-tree’s volume by traversing down the oct-tree
until it arrives at a node with the correct level of detail. To determine which level
of the tree to stop at, the projected size of a voxel at the current oct-tree level is
compared to the size of a pixel in the output image. If the projected size is less
than or equal to one pixel then the correct level has been reached. The ray can now
start computing the node’s contribution to the output color and opacity via brick
sampling or via constant color computation. Because each level of the oct-tree, from

41

the root down to the leaf node level, represents the voxel data at progressively higher
resolution each ray’s traversal across the brick is optimized because the sampling rate
is adjusted accordingly based on the voxel size at each level, i.e. lower resolution
voxels are sampled at a lower rate [22]. After the ray computes the contribution of
the node then the exit point from the node is used as the new starting point for
another descent of the oct-tree node hierarchy. This process repeats until the entire
oct-tree has been traversed by each view ray or until the opacity of the output pixel
has become suÿciently saturated.

Descent of the tree is simple because the ray’s current location within a node
converts easily into a pointer to the root’s child that should be visited next in order
to continue the downward traversal. For example, given a ray position in the root
node’s local coordinate system P ∈ [0, 1]3 the o˙set to the child node containing P
is simply Q = int(P ∗ 2). This is because the children of each node are stored in a
contiguous 23 block in the node pool texture. Each node has an XYZ index to its
lower left child, in the node pool. Given a child pointer C, the XYZ coordinates of
the child needed for the descent can be obtained by P = C + int(P ∗ 2). The new
starting location within the child node is computed by P = (P ∗ 2) − Q. From the
new starting location the oct-tree descent continues until the ray reaches the desired
oct-tree level.

3.4. GigaVoxel High Quality Filtering. The GigaVoxel rendering
technique obtains realistic results by computing the volume rendering integral using
a Riemann sum method computed along a simulated cone traced per pixel out in the
direction of the camera [22]. Cone tracing is a more accurate method to determine
the color of a pixel because a pixel has an area much larger than that of a single
ray and the voxels that a˙ect it’s color should not be limited to those that are
intersected by a single ray, but by the voxels encompassed by the cone extending
from the camera through the edges of the pixel [13]. Standard ray tracing algorithms
simulate cone tracing via multi-sampling, that is, generation of multiple rays per pixel
with slightly di˙erent o˙sets within the pixel and traversing the voxel data with all
of the rays. This method, however, has a large negative impact on performance and
memory consumption and is still not as accurate as cone tracing [22]. The GigaVoxel
technique simulates the cone with a single ray by using quadri-linear interpolation
technique when sampling voxels from the oct-tree bricks. Quadri-linear interpolation
is accomplished frst by representing each level of the oct-tree at a progressively
lower resolution, aka a 3D MIP-map pyramid. Each ray samples from a brick using
the graphics hardware’s built-in bi-linear interpolation capability. Furthermore, the
traversal of the oct-tree stops at the level of the tree appropriate for the current view
point (see section 3.3). If the projected size of the voxel at the selected level lies

42

somewhere between the size of a voxel at the current level of the oct-tree and the size
of a voxel at parent level then both levels are traversed and the sampled values are
averaged together to provide quadri-linear fltering. This quadri-linear fltering results
in highly accurate output images devoid of aliasing artifacts that would normally be
present in images rendered from extremely high resolution voxel data [13].

3.5. GigaVoxel Ray Guided Cache Updates. Each GPU ray drives the
loading of the texture pools. Each ray descends down the oct-tree structure until
it reaches the node at the required level of detail. The ray then adds the XYZ
index of the fnal node reached to the node usage list. The node usage list provides
a mechanism for the rays to communicate back to the rendering system the list of
nodes that were and/or are needed for rendering. If a node is added to the node
usage list this communicates to the Texture Pool Manager that the node is active
and should be kept in the node pool. If the required level of detail cannot be reached
because a node’s children have not been loaded into the node pool then, in addition
to the node’s XYZ index, the node sets a bit in the node usage list indicating that
the node’s children should be loaded into the Node Pool texture. It is up to the Node
List Processor(s) to communicate to the Texture Pool Manager the list of nodes from
the node list and the ancestors of these nodes (i.e the parents, grand-parents, etc. of
the node list nodes) so that the nodes and bricks needed by the rendering system are
available in the appropriate texture pools. Furthermore, during the descent each ray
keeps track of the most recently encountered node, whose brick is currently loaded in
the Brick Pool, and the node’s parent so that if the required LOD cannot be reached
or if the brick of the node at the required LOD is not currently loaded into the
Brick Pool, then the ray can traverse the brick that came from higher up in the tree
instead. This guarantees that some output color will be produced by all rays, while
the Texture Pool Manager works to get the needed LOD loaded. Lastly, it should be
noted that the Texture Pool Manager ensures that each oct-tree’s root node brick is
always present in the brick pool so that a ray always has access to at least one brick
for generating an output image.

The node list is implemented using three extra render targets (note that the
frst render target is reserved for the output image). The three extra render targets are
RGBA 32 bit unsigned integer textures attached to an OpenGL FrameBu˙erObject.
Using 10 bits per XYZ component each texel of the node list texture can encode
four XYZ node indexes along with an extra bit used to encode the need for more
detail. Thus the three textures together can encode up to twelve node indexes per
ray. However, twelve nodes is not suÿcient for tracking the ray’s full traversal. In
order to encode more than twelve nodes, the algorithm takes advantage of the spatial
coherence of neighboring rays by having each block of 2x2 rays encode di˙erent sets of

43

nodes. The upper left ray in each 2x2 block encodes the frst twelve visited nodes, the
upper right ray encodes the second twelve, the lower left ray encodes nodes 25 to 36,
and the fnal ray encodes nodes 37 to 48. Furthermore, each frame, a rolling update
scheme is used, on even frames the frst 48 traversed nodes are recorded, then on odd
frames nodes 48 to 96 are recorded. Generally, 96 is enough to track the traversal of
most oct-trees because the majority of rays do not have to traverse across the entire
oct-tree because of early ray termination due to opacity saturation. However, should
that not be the case, the rolling window can be extended to more frames.

3.6. GigaVoxel Node List Compaction. After the rays fnish generating
the node list it would be impractical to read back the list from the video memory
into system memory because the amount of data would be too large to transfer while
still maintaining a consistent frame rate. Thus, eÿcient compression of the node list
data is essential. The GigaVoxel technique uses a multi-pass compression algorithm
utilizing multiple pixel shader invocations driven by near plane proxy geometry.
The frst compression pass removes duplicate node indexes from neighboring pixels.
Removal of duplicate node indexes is optimized to take advantage of spatial and
temporal coherence of neighboring pixels/rays, which is possible due to the fact that
neighboring texels of the node list texture most likely will have have a signifcant
amount of duplicate indexes because neighboring rays will visit many of the same
nodes. Furthermore, neighboring rays will also likely visit each node in nearly the
same order. Therefore, the duplication reduction process only compares nearby items
in the node list of neighboring texels. Specifcally, for the i’th element in the list only
the (i-1)’th, the i’th, and the (i+1)’th elements in the neighbor’s list are compared.
Neighbors are defned as the texels to the left, upper left, directly above, and upper
right of the each texel. If, for the i’th element, a match is not found in the neighboring
list then the output is a single set bit in the i’th element of the output pixel. The
output pixel is a 32 bit unsigned RGBA texture. This output pixel then becomes the
bit vector that is used as the selection mask input to the HistoPyramid algorithm,
which is a data compaction algorithm specifcally designed to take advantage of the
highly parallel architecture of the GPU (refer to [75] for a detailed description of
the HistoPyramid algorithm). After the duplication removal and the HistoPyramid
reduction, the node list usually contains only 2 to 3 entries, which allows the fnal
compacted texture to ft into a single low resolution 32 bit RGBA texture [12]. This
smaller texture can then be downloaded from the GPU to main system memory more
eÿciently.

44

4. GigaVoxel Extensions

In order to better support rendering of a large scale paged voxel terrain, several
enhancements to the base GigaVoxel oct-tree rendering algorithm were implemented.
The enhancements included the development of an OpenSceneGraph inspired, scene
graph based, view frustum culler and a database pager thread [5]. Furthermore, to
compensate for the increased workload of multiple oct-trees the processing of the node
lists is handled in multiple background Node Usage List Processor threads. Lastly, the
base rendering algorithm was augmented to handle blending of multiple intermediate
images, generated from the ray casting of multiple oct-trees, into a single fnal image
(as opposed to the standard GigaVoxel algorithm where there is only a single oct-tree
and thus a single output image).

4.1. View Frustum Culler. The view frustum culler’s purpose is to ensure
that only the visible oct-trees are processed by the rendering system. The culler is
implemented according to the visitor pattern described by Gamma, et al. [24] and is
similar in implementation to the OpenSceneGraph’s culling system [5]. The culling
visitor visits each node in the scene graph, which is constructed, by the database
pager, from the oct-tree grid XML fle described in chapter 5. When it visits an
OctTree node whose bounding sphere overlaps or is contained in the current view
frustum then it either adds it to its render list or, if the oct-tree referenced by the
node needs to be loaded from disk, then it submits a load request to the database
pager thread. Furthermore, upon visitation, the culler updates the node’s last access
frame-stamp. The last access frame-stamp is used to identify and unload stale oct-
trees from main memory. At the conclusion of the traversal the render list is passed
to the rendering system for drawing.

4.2. Database Pager. The database pager thread’s purpose is to assist
the culler in loading into system memory the minimal set of oct-trees required for
rendering. The culler sends load requests that go into a priority queue sorted by
distance from the camera. To compensate for camera movement, the culler continually
recomputes and updates this distance while the oct-tree load request is in the load
request queue. After loading an oct-tree, the database pager adds it to the pending
load list. Every frame the primary (renderer) thread transfers the items in the pending
load list to the the scene graph.

4.3. Node List Processors. The rendering system draws multiple oct-trees
each frame and each oct-tree generates its own node usage list. In order to process the
node usage lists of all them, without impacting the frame-rate, the node list processing
is done in several background threads. The number of background processor threads

45

is dynamically computed at startup such that as many of the CPU cores as possible
are used, while still leaving at least two cores for the primary rendering thread and
the database pager thread.

At the conclusion of each frame, the render thread reads back each active oct-
tree’s node usage list from GPU memory and adds each one to one of the Node List
Processor thread’s pending queue. The Node List Processor threads process their
pending queue in LIFO order. LIFO order is used because the most recently added
lists are more immediately relevant to the current camera view. Furthermore, in
keeping with the strategy of processing newer lists frst, the pending queue size is
capped so that older lists are kicked out by newer lists.

Each Node List Processor iterates through its current node list and submits
load requests to the Texture Pool Manager or if a node in the list has already been
loaded into a pool it simply notifes the Texture Pool Manager that the node is active
(i.e. needed for rendering). This prevents the node from being replaced by a new
node being loaded into the pool.

The Texture Pool Manager maintains a sorted list of the nodes currently loaded
in its pool textures. The list is sorted such that the most recently active nodes are
frst and less active or inactive nodes are at the end of the list. It maintains this sort
order by moving a node, when notifed by the node list processor, from its current
location on the pool list to the front of the list. This keeps the front of the active list
populated by the active nodes and the stale nodes will naturally migrate to the end
of the list so that their spot in the texture pools can be used for new nodes that need
to be loaded.

4.4. Asynchronous Upload and Download. The addition of multiple
rendered oct-trees heightened the need for optimal use of the limited bandwidth
between the system’s main memory and the graphics hardware’s memory. In order
to maintain a consistent frame rate all uploads to the GPU texture memory and
downloads from the GPU memory are implemented using asynchronous transfer via
dual and/or triple bu˙ered OpenGL Pixel Bu˙er Objects (PBO). This increases the
amount of main system memory required by the rendering system, but only by a small
fraction of the total size of the memory required overall by the rendering system.
Dual and tripled bu˙ered, ping pong style asynchronous PBO upload and download
is implemented by requesting the upload or download to the target PBO in frame
N and then not attempting to access that data directly until frame N+1, for dual
bu˙ered PBO, or frame N+2 for tripled bu˙ered PBOs. This prevents the graphics
hardware from stalling in order to satisfy an upload or download request.

All of the uploads required by the system (i.e. uploading nodes and bricks to a
texture pool texture on the GPU) are implemented with dual bu˙er PBOs, however

46

analysis of the performance of the system revealed that triple bu˙ering the download
PBO for the node usage list data prevented the readback of that data from stalling
the rendering pipeline and becoming the bottleneck in the performance of the system.
The triple bu˙ered system thus provided enough separation between the download
request and the access/reading of the PBO (via glGetBu˙erSubData) so that the
graphics system had time to fnish with its rendering tasks before having to perform
the transfer.

4.5. Rendering Modifcations. The fnal modifcation made to the base
GigaVoxel rendering algorithm was to implement blending of each oct-tree’s individual
output image together with the other oct-tree output images. This is accomplished
by rendering the oct-trees in front to back order. The sorting of the oct-trees
is accomplished by the view frustum culler, which sorts the oct-trees by distance
from the near plane while it is building the render list. The oct-trees are rendered
in this order using the OpenGL blending mode: glBlendFunc(GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA) [22].

CHAPTER 4

Results

The results presented in this section describe the run-time rendering
performance and resource utilization of the prototype GigaVoxel paged terrain
rendering system implemented as described in chapter 3. The tests were performed
on two distinct regions of terrain taken from a source data set that consisted of a TIN
terrain skin generated from a 0.3m Digital Elevation Model (DEM) and thousands of
terrain detail models (buildings, tree, other structures and vegetation, etc.). The frst
region consisted of terrain and mostly vegetation detail models. The second region
consisted of terrain and mostly buildings models (see fgure 4.1). Both regions covered

Figure 4.1. Source Data Showing Voxelized Regions

about 2km2 and were voxelized using two di˙erent resolutions, 10243and 20483, for the
purpose of comparing performance and data size di˙erences due to voxel resolution.
The tests were performed on an Intel Core i7 3.4GHz CPU with 16GB of RAM and an
NVIDIA GeForce GTX 760 graphics card with 2GB of VRAM. The source data was
an OpenSceneGraph WGS84 geotypical terrain database produced and distributed
for non-commercial use by TrianGraphics (triangraphics.de).

http:triangraphics.de

48

1. Data Size Results

The source data was voxelized at a resolution of 0.1m per voxel. The 10243

oct-trees resulted in an 18x18 grid of oct-trees in the frst region. Several of the
cells in the grid required two oct-trees to be stacked on top of each other in order to
encompass the full extent of the height of the terrain and terrain detail models in the
oct-tree grid cell, which resulted in a total of 357 oct-trees in all. Region 2 required
more oct-trees than the frst because it consisted of several relatively tall building
models. It ended up consisting of 392 oct-trees (18x18 with 68 stacked oct-trees). By
comparison region 1 and 2 both required exactly 9x9 oct-trees at the 20483 resolution
(i.e. zero stacked oct-trees) because the 204.8 meter extents of the oct-tree completely
encapsulated the terrain and building models in almost all cases.

The grid of 10243 oct-trees averaged about 120MB each on disk for region 1
and 160MB for region 2 with a total size of 36GB and 57GB respectively. In contrast
the grid of 20483 oct-trees averaged about 420MB per oct-tree in region 1 and 520MB
per oct-tree in region 2 for a total of 34GB and 42GB respectively.

2. Rendering Results

The rendering performance results were measured using an 800 by 600 pixel

Figure 4.2. Single GigaVoxel oct-tree with majority of rays requiring full traversal

display window. Tests were performed on a small data set initially to determine a

http:totalsizeof36GBand57GBrespectively.In
http:stackedoct-trees).By
http:models.It

49

baseline performance expectation and then on the full data sets. Testing a single
20483 oct-tree and a nearly equivalent 2x2 grid of 10243 oct-trees generated from
terrain in region 1 and region 2 revealed that the performance on small data sets
depends largely on the data and the viewpoint on the data. The test results showed a
performance range between 20 to 30 frames per second in some view confgurations on
up to 60 frames per second depending entirely on the number of pixels that generate
terrain intersecting rays, the depth each ray traversed into the oct-tree(s) before
opacity saturation, and the oct-tree depth each ray descended in order to reach the
required tree LOD for brick traversal. Figure 4.2 shows the rendering performance on

Figure 4.3. Single GigaVoxel oct-tree with no rays requiring full traversal

a single GigaVoxel oct-tree where the majority of the rays intersected the terrain and
required a full traversal down to the leaf nodes or one level above the leaf nodes (one
level above the leaves depicted with blue boxes). Figure 4.3 shows the same oct-tree
rendering at 60 frames per second after moving the camera far enough away such that
none of the rays traverse to a leaf node and most of the rays skip through empty space
or miss the oct-tree entirely. Figure 4.4 shows a screen shot of the NVIDIA OpenGL
debugger after capturing the timing information for a single frame, the thicker blue
bar in the frame event graph corresponds to the ray traversal portion of the rendering
algorithm, clearly indicating that the ray casting stage, as opposed to the usage list
compaction and the usage list download, was the primary bottleneck in the rendering

50

performance. So it was fairly clear that on smaller data sets the rendering performance

Figure 4.4. Screen shot of the NVIDIA OpenGL frame debugger showing timing of
the various stages of the rendering algorithm

is pixel shader bound by the ray cast stage of the pixel shader.
The rendering performance on the full data set consisting of the grid of 10243

or 20483 GigaVoxel oct-trees revealed that 20483 oct-trees were more eÿcient for
longer view ranges than the 10243 oct-trees. Essentially, as the view range increased
the management, on the CPU-side (i.e. culling, unloading, loading, downloading
usage lists, etc.), of the larger number of oct-trees required for the smaller 10243 oct-
trees became the bottleneck in the performance. At a view range of 600 meters the
performance of the 20483 data set averaged around 10 to 15 frames per second, again
depending on the view and data currently in view. Whereas the 10243 data set’s
performance dropped to less than 10 frames per second at the same view range due
to increased CPU time per frame (refer to fgures 4.5 and 4.6). The main bottleneck
in the performance of the 20483 data set varied depending on whether or not the
camera was moving or static. If the camera was moving, resulting in lots of node and
brick uploads, then the bottleneck was the triggering of data transfer to the GPU by
the CPU. If the camera was static, then the bottleneck was, again, the ray casting
stage of the rendering algorithm.

Not surprisingly, the main memory usage was very similar for both data sets
with a 600 meter view range. The 12 active oct-trees required for a view range of

51

Figure 4.5. 20483 Grid of oct-trees with 600 meter view range.

600 meters on the 20483 data set resulted in about 4.7GB of RAM usage. Whereas
the 10243 data set resulted in 47 active oct-trees and about 4.9GB of RAM usage.
In addition, the GPU memory was 1.5GB in both cases. This was the expected
result because the GPU memory usage is determined primarily by the size of the
node pool textures (especially the brick pool texture), whose sizes are specifed as a
confguration parameter at runtime. This amount of GPU memory usage was actually
a little higher than necessary for the 600m view range because the rendering system
only required between 15,000 to 20,000 loaded bricks (i.e. active non-constant nodes),
but the brick pool texture was confgured to hold as many as 32,768 active bricks.

52

Figure 4.6. 10243 Grid of oct-trees with 600 meter view range.

CHAPTER 5

Conclusions & Future Work

The results of this thesis make it clear that the GigaVoxel oct-tree data
structure is a very e˙ective mechanism for compaction of terrain voxel data both
on disk and in memory. The two test regions each covered a space about 1840m x
1840m x 204m in dimension, requiring a 0.1m voxel data set of about 18432 x 18432
x 2048 voxels. A voxel grid of this size that encoded the color and gradient with
8 bit RGBA and an 8 bit XYZ volume texture, would require about 8TB of data
on disk and in memory. The combination of the GigaVoxel oct-tree data structure
and DXT compression e˙ectively compressed the terrain voxel data by two orders of
magnitude. This data compression coupled with lower GPU memory requirements
from ray driven GPU paging make GigaVoxel terrain rendering at least feasible from
a memory usage standpoint, but only when the view range is kept relatively low. A
view range of 600m required about 12 active oct-trees for the 20483 oct-tree grid and
48 active oct-trees for the 10243 oct-tree grid and about 5GB of RAM or about 400MB
and 100MB per oct-tree respectively. A more fne grained disk paging scheme, one
that pages the oct-trees at the granularity of each tree level would allow for longer
view ranges because the majority of the oct-trees beyond 600m would require only
the lowest detail levels of the oct-tree and thus substantially less memory than the
full oct-tree.

The rendering performance results, on the other hand, were less satisfying than
the results of the disk and memory consumption. The test results indicate that the
rendering performance on small data sets is almost entirely view and data dependent
and bound by the pixel shader/ray casting stage. Essentially, for small data sets the
performance depends on how far each ray has to traverse through each oct-tree or
oct-trees until it becomes fully opacity saturated and how deep into the tree it has to
descend to fnd the correct LOD node. For the full large scale terrain the performance
bottleneck is harder to characterize, sometimes the performance is bound by the CPU,
specifcally the upload of new nodes and bricks, this is especially apparent when fying
through the terrain quickly, and sometimes it is bound by the ray casting stage.
However, it should be noted that the performance test hardware (NVIDIA GTX 760)

54

is not, at the time of this writing, the most powerful available consumer grade graphics
hardware. By comparison the NVIDIA GTX 980 performs roughly twice as well on
standard benchmark tests as the GTX 760 according to videocardbenchmark.net and
has roughly double the number of pixel processing cores (1152 to 2048), doubling
the number of pixel processing cores would defnitely improve the performance of a
pixel bound application such as this. So it is possible that consistent interactive to
real-time rendering performance on a GigaVoxel terrain data is not outside the realm
of possibility on the latest hardware or, at worst, on hardware released in the near
future.

That being said, there are several improvements, in addition to the
aforementioned disk paging scheme, that could be added to the implementation
described by this thesis. One improvement that was not explored would be to limit the
amount of time allotted per frame to triggering node and brick uploads to the GPU in
order to prevent the CPU from becoming the bottleneck in the rendering performance.
This might result in a more consistent frame rate because the GPU ray casting stage
would always be the bottleneck, but it would also have the e˙ect of delaying the
update of the scene to the required LOD. Implementation of the GPU paging scheme
described by Cyril Crassin’s PHd thesis [13], which requires no CPU intervention,
would more than likely be a more e˙ective improvement. This advanced GPU paging
scheme drives the loading of the texture pools entirely on the GPU by using paged
locked unifed memory, a feature supported by the latest GPU hardware, and thus
could eliminate the node usage list download step and the CPU side processing of it as
well. In addition, by reducing the CPU workload it would make it possible to support
more active oct-trees and thus longer view ranges. Another possible improvement
that remains to be explored is an adaptive TIN inspired approach to generating each
oct-tree. This would have the potential to improve both the memory usage and
the rendering performance. A TIN inspired approach could allow for variable depth
branches of the oct-tree, whereby any particular branch of an N-level tree could have
it’s leaf nodes at level N-X (where N>X) if it is determined that the resolution at
level N-X is suÿcient to model the data as determined by a specifc error metric,
much like TINs are generated by eliminating vertices in the DEM mesh. This type of
optimization would especially beneft oct-trees that, for example, model fat terrain
with very high resolution tree models. The branches of the oct-tree that encompass
the tree models would require very small, perhaps 1cm voxels, but the branches of
the oct-tree that encompass the terrain could be modeled by much lower resolution
voxels.

Furthermore, the generation system could be improved by adaptive ftting of
the extents of the oct-trees to the terrain data within the oct-tree grid. The system

http:videocardbenchmark.net

55

used for this thesis required homogeneous 10243 or 20483 oct-trees for all oct-trees in
the terrain grid. A more eÿcient solution would allow for variable dimensions in all
three axis and even rotation of the axis in order to best ft the oct-tree to the input
data’s extents. This would prevent unnecessary processing on empty regions of the
input and result in memory consumption eÿciency gains. Furthermore, by creating
a tighter ftting oct-tree it would reduce the ray traversal time, which would result
in rendering performance gains. In addition, implementing a node based approach
to voxelization, as opposed to the chunk based approach, similar to the algorithm
described by [3], and possibly a sparse voxelization approach similar to [14], would
make the generation system simpler and more memory eÿcient. These improvements
would allow for larger voxel grids to be used for GigaVoxel SVO generation.

The objective of this thesis work was to illuminate the feasibility of utilizing
the GigaVoxel rendering algorithm as a basis for a large scale voxel terrain rendering
system. The results revealed some success, specifcally in memory and disk space
compaction, and some challenges for future improvement, specifcally in the rendering
performance. Despite the less than stellar rendering performance, the lessons learned
as a result of this thesis work provide as much if not more value by showing what not
to do and where to go next to eventually make realizing a large-scale real-time voxel
terrain rendering system possible.

REFERENCES

[1] Bar-Zeev, Avi. "Scenegraphs: Past, Present, and Future."
http://www.realityprime.com/blog/2007/06/scenegraphs-past-present-and-
future. 2007.

[2] Benson, David, and Joel Davis. "Oct-tree textures." ACM Transactions on
Graphics (TOG). Vol. 21. No. 3. ACM, 2002.

[3] Baert, Jeroen, Ares Lagae, and Ph DutrÃ…Â©. "Out-of-Core Construction of
Sparse Voxel Octrees." In Computer Graphics Forum, vol. 33, no. 6, pp. 220-
227. 2014.

[4] Burns, Andrew. Ã¢â‡¬ÅfEpic Reveals Stunning Elemental Demo, & Tim
Sweeney On Unreal Engine 4.Ã¢â‡¬Âš Geforce.com Web URL. June 2012.

[5] Burns, Don, and Robert Osfeld. "Open scene graph a: Introduction, b:
Examples and applications." (2004): 265.

[6] Christensen, Per H., and Dana Batali. "An Irradiance Atlas for Global
Illumination in Complex Production Scenes." Rendering Techniques. 2004.

[7] Celniker, George, Indranil Chakravarty, and Jan Moorman. "Visualization
and modelling of geophysical data." Visualization, 1993. Visualization’93,
Proceedings., IEEE Conference on. IEEE, 1993.

[8] Cengiz CELEBI, Omer. “Scientifc Visualization and 3D Volume Rendering.”
http://www.byclb.com/TR/Tutorials/volume_rendering. 2015.

[9] Clark, James H. "Hierarchical geometric models for visible surface algorithms."
Communications of the ACM 19, no. 10 (1976): 547-554.

[10] Clasen, Malte, and Hans-Christian Hege. “Terrain rendering using spherical
clipmaps.” Proceedings of the Eighth Joint Eurographics/IEEE VGTC
conference on Visualization. Eurographics Association, 2006.

http://www.byclb.com/TR/Tutorials/volume_rendering
http://www.realityprime.com/blog/2007/06/scenegraphs-past-present-and

57

[11] Cline, H.E., Lorensen, W.E., Ludke, S., Crawford, C.R., and Teeter, B.C. “Two
Algorithms for the Three-Dimensional Reconstruction of Tomograms.” Medical
Physics, 15(3), 320-327. 1988

[12] Crassin, Cyril, et al. "Gigavoxels: Ray-guided streaming for eÿcient and detailed
voxel rendering." Proceedings of the 2009 symposium on Interactive 3D graphics
and games. ACM, 2009.

[13] Crassin, Cyril. “GigaVoxels: A Voxel-Based Rendering Pipeline For Eÿcient
Exploration Of Large And Detailed Scenes”. Diss. PhD thesis, UNIVERSITE
DE GRENOBLE, 2011.

[14] Crassin, Cyril, et al. "Oct-tree-based sparse voxelization using the gpu hardware
rasterizer." OpenGL Insights (2012).

[15] Crow, Franklin C. "The aliasing problem in computer-generated shaded images."
Communications of the ACM 20.11 (1977): 799-805.

[16] Drebin, Robert A., Loren Carpenter, and Pat Hanrahan. "Volume rendering."
ACM Siggraph Computer Graphics. Vol. 22. No. 4. ACM, 1988.

[17] Decaudin, Philippe, and Fabrice Neyret. "Rendering forest scenes in real-
time."EGSR04: 15th Eurographics Symposium on Rendering. 2004.

[18] Dong, Zhao, et al. "Real-time voxelization for complex polygonal models."
Computer Graphics and Applications, 2004. PG 2004. Proceedings. 12th Pacifc
Conference on. IEEE, 2004.

[19] Duchaineau, Mark, et al. "ROAMing terrain: real-time optimally adapting
meshes." Proceedings of the 8th Conference on Visualization’97. IEEE Computer
Society Press, 1997.

[20] Eisemann, Elmar, and Xavier DÃ…Â©coret. "Fast scene voxelization and
applications." Proceedings of the 2006 symposium on Interactive 3D graphics
and games. ACM, 2006.

[21] Elvins, T. Todd. "A survey of algorithms for volume visualization." ACM
Siggraph Computer Graphics 26.3 (1992): 194-201.

[22] Engel, Klaus, et al. “Real-time volume graphics.” AK Peters, Limited, 2006.

[23] Fang, Shiaofen, and Hongsheng Chen. "Hardware accelerated voxelization."
Computers & Graphics 24.3 (2000): 433-442.

58

[24] Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. “Design
patterns: elements of reusable object-oriented software.” Pearson Education,
1994.

[25] Gao, Yu, Baosong Deng, and Lingda Wu. "Eÿcient view-dependent out-of-core
rendering of large-scale and complex scenes." Proceedings of the 2006 ACM
international conference on Virtual reality continuum and its applications. ACM,
2006.

[26] Gobbetti, Enrico, Fabio Marton, and JosÃ…Â© Antonio Iglesias GuitiÃ…Â¡n.
"A single-pass GPU ray casting framework for interactive out-of-core rendering
of massive volumetric datasets." The Visual Computer 24.7-9 (2008): 797-806.

[27] Gibbs, Jonathan, Devorah DeLeon Petty, and Nate Robins. "Painting and
rendering textures on unparameterized models." ACM Transactions on Graphics
(TOG). Vol. 21. No. 3. ACM, 2002.

[28] Hayward, Kyle. Ã¢â‡¬ÅfVolume Rendering.Ã¢â‡¬Âš Personal blog
graphicsrunner.blogspot.com entries tagged as Ã¢â‡¬ÅfVolume
RenderingÃ¢â‡¬Âš. 2009 through 2010.

[29] Hege, H. C., T. HÃ…Â¶herer, and D. Stalling. "Volume Rendering." (1994).

[30] Herman, G.T., and Liu, H.K. “Optimal Surface Reconstruction from Planar
Contours.” Computer Graphics and Image Processing, 1 - 121. 1979.

[31] Hoppe, Hugues. "Smooth view-dependent level-of-detail control and its
application to terrain rendering." Visualization’98. Proceedings. IEEE, 1998.

[32] Hua, Wei, et al. "Huge texture mapping for real-time visualization of large-scale
terrain." Proceedings of the ACM symposium on Virtual reality software and
technology. ACM, 2004.

[33] KÃ…Â¤hler, Ralf, et al. "GPU-assisted raycasting for cosmological adaptive
mesh refnement simulations." Eurographics/IEEE VGTC Workshop on Volume
Graphics (Boston, Massachusetts, USA, 2006), Machiraju R., MÃ…Â¶ller
T.,(Eds.), Eurographics Association. 2006.

[34] Kajiya, James T., and Timothy L. Kay. "Rendering fur with three dimensional
textures." ACM Siggraph Computer Graphics. Vol. 23. No. 3. ACM, 1989.

[35] Kruger, Jens, and RÃ…Â¼diger Westermann. "Acceleration techniques for GPU-
based volume rendering." Proceedings of the 14th IEEE Visualization 2003
(VIS’03). IEEE Computer Society, 2003.

http:graphicsrunner.blogspot.com

59

[36] Lorensen, William E., and Harvey E. Cline. "Marching cubes: A high resolution
3D surface construction algorithm." ACM Siggraph Computer Graphics. Vol. 21.
No. 4. ACM, 1987.

[37] Levoy, Marc. "Display of surfaces from volume data." Computer Graphics and
Applications, IEEE 8.3 (1988): 29-37.

[38] Levoy, Marc. "Eÿcient ray tracing of volume data." ACM Transactions on
Graphics (TOG) 9.3 (1990): 245-261.

[39] Losasso, Frank, and Hugues Hoppe. "Geometry clipmaps: terrain rendering using
nested regular grids." ACM Transactions on Graphics (TOG) 23.3 (2004): 769-
776.

[40] Lefebvre, Sylvain, Samuel Hornus, and Fabrice Neyret. "GPU Gems 2. chapter
37: oct-tree Textures on the GPU." (2005).

[41] Laine, Samuli, and Tero Karras. "Eÿcient sparse voxel oct-trees." Visualization
and Computer Graphics, IEEE Transactions on 17.8 (2011): 1048-1059.

[42] Lacroute, Philippe, and Marc Levoy. "Fast volume rendering using a shear-warp
factorization of the viewing transformation." Proceedings of the 21st annual
conference on Computer graphics and interactive techniques. ACM, 1994.

[43] Li, Wei, Klaus Mueller, and Arie Kaufman. "Empty space skipping and occlusion
clipping for texture-based volume rendering." Proceedings of the 14th IEEE
Visualization 2003 (VIS’03). IEEE Computer Society, 2003.

[44] Lindstrom, Peter, and Valerio Pascucci. "Visualization of large terrains made
easy." Visualization, 2001. VIS’01. Proceedings. IEEE, 2001.

[45] Luebke, David P., ed. “Level of detail for 3D graphics.” Morgan Kaufmann Pub,
2003.

[46] Meyer, Alexandre, and Fabrice Neyret. "Multiscale shaders for the eÿcient
realistic rendering of pine-trees." Graphics Interface. 2000.

[47] MÃ…Âÿller-Nielsen, Peter. “Sparse voxel oct-tree ray tracing on the gpu.” Diss.
Aarhus Universitet, Datalogisk Institut, 2009.

[48] Nvidia, C. U. D. A. "Programming guide." (2008).

60

[49] Ohno, Nobuaki, and Akira Kageyama. "Scientifc visualization of geophysical
simulation data by the CAVE VR system with volume rendering." Physics of
the Earth and Planetary Interiors 163.1 (2007): 305-311.

[50] Pantaleoni, Jacopo. "VoxelPipe: a programmable pipeline for 3D voxelization."
Proceedings of the ACM SIGGRAPH Symposium on High Performance
Graphics. ACM, 2011.

[51] Pawasauskas, John. Ã¢â‡¬ÅfVolume rendering overview.Ã¢â‡¬Âš Personal
Website. 1997.

[52] Peachey, Darwyn R. "Solid texturing of complex surfaces." ACM SIGGRAPH
Computer Graphics. Vol. 19. No. 3. ACM, 1985.

[53] Perlin, Ken. "An image synthesizer." SIGGRAPH Comput. Graph. 19.3 (1985):
287-296.

[54] Rabinovich, Boris, and Craig Gotsman. "Visualization of large terrains
in resource-limited computing environments." Visualization’97., Proceedings.
IEEE, 1997.

[55] RoupÃ…Â©, Mattias, and Mikael Johansson. "3D-city modeling: a semi-
automatic framework for integrating di˙erent terrain models." Advances in
Visual Computing. Springer Berlin Heidelberg, 2011. 725-734.

[56] RÃ…Â¶ttger, Stefan, Martin Kraus, and Thomas Ertl. "Hardware-accelerated
volume and isosurface rendering based on cell-projection." Proceedings of the
conference on Visualization’00. IEEE Computer Society Press, 2000.

[57] Royan, JÃ…Â©rÃ…Â´me, et al. "Network-based visualization of 3D landscapes
and city models." Computer Graphics and Applications, IEEE 27.6 (2007): 70-
79.

[58] Salemann, Leo, and Roland Cutaran. Ã¢â‡¬ÅfPolygon-free modeling &
simulation.Ã¢â‡¬Âš Simulation Interoperability and Standards Organization.
November 2010.

[59] Scharsach, Henning. "Advanced GPU raycasting." Proceedings of CESCG 5
(2005): 67-76.

[60] Salemann, Leo, Scott Gebhardt, and Eliezer Payzer. “Polygons, point-clouds,
and voxels, a comparison of high-fdelity terrain representations.” Simulation
Interoperability and Standards Organization. November 2010.

work.

61

[61] Silva, Pedro MÃ…Â¡rio, Marcos Machado, and Marcelo Gattass. "3D seismic
volume rendering." 8th International Congress of the Brazilian Geophysical
Society. 2003.

[62] Schwarz, Michael, and Hans-Peter Seidel. "Fast parallel surface and solid
voxelization on GPUs." ACM Transactions on Graphics (TOG). Vol. 29. No.
6. ACM, 2010.

[63] Tanner, Christopher C., Christopher J. Migdal, and Michael T. Jones. "The
clipmap: a virtual mipmap." Proceedings of the 25th annual conference on
Computer graphics and interactive techniques. ACM, 1998.

[64] Van Gelder, Allen, and Kwansik Kim. "Direct volume rendering with shading
via three-dimensional textures." Volume Visualization, 1996. Proceedings., 1996
Symposium on. IEEE, 1996.

[65] Valentino, Daniel J., J. C. Mazziotta, and H. K. Huang. "Volume rendering of
multimodal images: application to MRI and PET imaging of the human brain."
Medical Imaging, IEEE Transactions on 10.4 (1991): 554-562.

[66] Westover, Lee Alan. Splatting: a parallel, feed-forward volume rendering
algorithm. Diss. University of North Carolina at Chapel Hill, 1991.

[67] Wikipedia. CUDA. http://en.wikipedia.org/wiki/CUDA. February 2015.

[68] Wikipedia. Scene Graph. http://en.wikipedia.org/wiki/Scene_graph. January
2015.

[69] Wikipedia. Lidar. https://en.wikipedia.org/wiki/Lidar. July 2015.

[70] Wikipedia. Volume Rendering. http://en.wikipedia.org/wiki/Volume_rendering.
September 2013.

[71] Wikipedia. Triangulated irregular network. http://en.wikipedia.org/wiki/Triangulated_irregular_net
May 2014.

[72] Wrenninge, Magnus, et al. "Volumetric methods in visual e˙ects." ACM
SIGGRAPH. 2010.

[73] Wimmer, Michael, Peter Wonka, and FranÃ…Â§ois Sillion. "Point-based
impostors for real-time visualization." Rendering Techniques 2001. Springer
Vienna, 2001. 163-176.

http://en.wikipedia.org/wiki/Scene_graph

62

[74] Zhang, Long, et al. "Conservative voxelization." The Visual Computer 23.9-11
(2007): 783-792.

[75] Ziegler, Gernot, Art Tevs, Christian Theobalt, and Hans-Peter Seidel. "GPU
point list generation through histogram pyramids." 2006.

	Copyright
	Title Page
	Abstract
	Table of Contents
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1: Introduction
	Why Volume Rendering?
	Objectives
	Contributions
	Organization

	CHAPTER 2: Survey
	Volume Rendering Techniques
	Volumetric Data Models
	Indirect Volume Rendering Techniques
	Direct Volume Rendering Techniques

	Volume Rendering Optimizations
	Performance Optimization
	Memory Optimization

	Terrain Rendering
	Scene Graph Based Rendering
	Sparse Voxel Oct-Tree Generation
	Voxelization
	SVO Generation

	CHAPTER 3: Implementation
	CUDA
	GigaVoxel Sparse Voxel Oct-Tree
	GigaVoxel Run-time Format
	Paged GigaVoxel Scene Graph File Format
	GigaVoxel Oct-Tree File Format
	GigaVoxel Paged Terrain Generation System Overview
	GigaVoxel Paged Terrain Generation

	GigaVoxel Paged Terrain Rendering System
	GigaVoxel Paged Terrain Rendering System Overview
	GigaVoxel Oct-Tree Overview
	GigaVoxel Ray-Casting
	GigaVoxel High Quality Filtering
	GigaVoxel Ray Guided Cache Updates
	GigaVoxel Node List Compaction

	GigaVoxel Extensions
	View Frustum Culler
	Database Pager
	Node List Processors
	Asynchronous Upload and Download
	Rendering Modifications

	CHAPTER 4: Results
	Data Size Results
	Rendering Results

	CHAPTER 5: Conclusions & Future Work
	REFERENCES

