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ABSTRACT 

The paper investigates the feasibility of using the volume rendering technique 
described in the paper, "GigaVoxels: Ray-Guided Streaming for Eÿcient and Detailed 
Voxel Rendering" by Cyril Crassin, as the basis for a large scale terrain visualization 
system. Today’s 3D terrain visualization systems are predominantly textured polygon 
mesh based rendering systems. These systems require geometric surfaces and their 
textures to be modeled at ever increasing resolution in order to achieve photo-realism. 
However, as textured polygon mesh resolution increases so does the amount of aliasing 
in the rendered image. A point is reached where an increase in polygonal and/or 
texture fdelity results in lower quality output. To overcome these shortcomings 
a new approach is needed. The introduction of programmable graphics processing 
units and the rapid increase in their processing power makes it possible to explore the 
use of other rendering data formats that do not have the shortcomings of textured 
polygonal meshes. One such format, that has promise, is a volume based format 
called voxels (e.g. volumetic pixels). This is because voxel data and voxel rendering 
techniques are less prone to aliasing issues than polygonal mesh techniques. Voxel 
rendering, however, requires signifcantly more memory and is generally more diÿcult 
to render at high frame rates. The GigaVoxel voxel rendering technique solves 
both of these problems. However, the GigaVoxel technique, as described by Cyril 
Crassin, concentrates on rendering only a single highly detailed object. Adapting 
and extending the GigaVoxel technique to support the rendering of massive outdoor 
environments that consist of multiple highly detailed voxel objects, which is a problem 
domain to which the GigaVoxel technique has yet to be evaluated against, is the 
focus of this thesis. In addition, in order to demonstrate the GigaVoxel Paged 
Terrain rendering system, this paper describes a unique out-of-core GigaVoxel Terrain 
generation system, which at this time is the only known example of an out-of-core 
GPU voxelization and sparse-voxel oct-tree generation system, implemented with 
NVIDIA’s CUDA GPU programming platform, capable of converting large scale 
polygonal terrain data into a pageable runtime format optimized for rendering with 
the GigaVoxel rendering technique 

v 
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CHAPTER 1 

Introduction 

Volume rendering is a set of techniques by which a 3D discretely sampled 
data set is displayed as a 2D projection. Volume rendering techniques generally 
fall into two categories, indirect and direct rendering[70]. Indirect volume rendering 
techniques rely on the ability to extract surfaces, such as polygons, from the volume 
and rendering them directly using typical 3D surface rasterization techniques. The 
Marching Cubes algorithm is a well known indirect volume rendering algorithm [36]. 
Direct volume rendering generates an image without converting the data to geometric 
primitives. This makes it possible for the entire volume data set to contribute to the 
image. Volume slicing, splatting, shear warp, and volume ray casting fall into this 
category of volume rendering [22, 42, 64, 66]. 

Volume ray casting, in particular, is interesting because, of all the techniques, 
it generates the highest quality images [13], but it is also the slowest. However, rapid 
increase in processing power of programmable GPUs over the past decade plus years 
now makes it possible to achieve very high quality volume rendering at interactive to 
real-time frame rates with volume ray cast rendering techniques [12, 13]. However, 
dealing with the increased memory demands of volume rendering is still an unsolved 
issue that is an active area of research [22, 3, 12, 13, 41]. 

1. Why Volume Rendering? 

As the demand for ever more realistic computer generated images in movies, 
video games, simulation and the like increases traditional textured polygonal mesh 
based rendering systems become limited because in order to increase scene fdelity, 
the polygons must become smaller, to better model the surface geometry and, 
furthermore, the surface detail textures must increase in resolution. However, 
increasing scene fdelity by decreasing polygon and texel size causes a higher 
prevalence of aliasing in the output images [15]. There are several methods for 
dealing with aliasing in textured mesh scenes. To deal with texture aliasing texture 
MIP-mapping is used. However, prefltered MIP-maps do not deal with aliasing 
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on the geometry’s silhouette [15]. Eliminating aliasing on the silhouette or edge 
of geometry requires either multi-sampling or mesh simplifcation or both. Multi-
sampling scales poorly because e˙ectively anti-aliasing smaller and smaller polygons 
requires increasing the number of samples, which increases the memory required and 
decreases the frame rate. Furthermore, multi-sampling, is a static solution that does 
not adapt to the view or scene being rendered, which means that time and memory 
is wasted over-sampling or quality is compromised due to under-sampling [15]. Mesh 
simplifcation has its own drawbacks, such as the loss of essential details when a 
mesh’s polygons are simplifed, especially when simplifed in an automated fashion. 
Automated mesh simplifcation algorithms also do not deal well with non-connected 
or very thin (i.e. trees, fur on an animal, etc.) mesh geometry making them not 
useful for many types of geometry [45]. Non-automated (i.e. artist controlled) mesh 

Figure 1.1. Example of high resolution tree whose non-connected leaf polygons are 
nearly impossible for automatic mesh simplifcation algorithms to handle. 

simplifcation is time consuming, but is often the only solution for many polygonal 
mesh scenes if photo-realistic quality is desired [13]. Additionally, artist controlled 
mesh simplifcation, unlike automated-progressive mesh simplifcation algorithms, 
su˙ers from level of detail popping artifacts that show up when the mesh switches 
between the di˙erent levels of detail (i.e. non-linear detail reduction) [45]. For these 
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reasons, mesh simplifcation alone results in rendered images that are less than photo-
realistic. To combat this, extra texture maps are introduced such as bump maps, 
normal maps, high frequency detail maps, etc. These measures help improve quality, 
but at the cost of even more memory consumption. 

Voxel scenes, on the other hand, due to their uniform grid structure are well 
suited to automated simplifcation, even in cases where mesh simplifcation fails such 
as disconnected and thin geometry. Voxel scenes can be pre-fltered using the same 
MIP-mapping technique used to reduce aliasing in 2D texture images because voxels 
are essentially a 3D texture. Pre-generated, pre-fltered representations (i.e. a 3D 
MIP-map) of the voxel data can be generated and the best resolution for the current 
view dynamically picked at run-time in much the same way that it is done when 
picking a MIP-map level or levels during rasterization of a textured polygon mesh 
[12]. However, because the voxel structure represents the geometry’s structure as 
well as the geometry’s surface details, the 3D MIP-mapping method also e˙ectively 
deals with anti-aliasing the geometry’s silhouette reducing or eliminating the need for 
multi-sampling [12]. 

The challenge with voxel rendering is memory and bandwidth management. 
Memory usage is a problem for textured polygonal mesh based rendering too, but it 
is even more pronounced when dealing with voxel data because voxel data models the 
entirety of an object as opposed to just the surface of the object. Video memory is 
generally less plentiful than the system’s main memory, as such, a brute force upload of 
high resolution voxel data from main memory to the video memory is not a scale-able 
solution. One method for optimizing video memory usage when working with voxel 
data is to encode the data into a Sparse Voxel Oct-Tree (SVO) [2, 27, 41]. An SVO 
optimizes memory by taking advantage of the fact that voxel scenes quite often consist 
of small dense clusters of non-homogeneous space surrounded by large expanses of 
homogeneous or empty space [41]. An SVO hierarchically partitions the space so 
that only the non-homogeneous partitions are stored in memory [41]. Furthermore, 
an SVO optimizes voxel rendering by enabling various other acceleration techniques 
such as empty space skipping and early ray termination [35]. 

Along with being relatively limited in size as compared to the main system 
memory, access to the GPU’s video memory from the CPU is also relatively slow. 
The CPU cannot directly read or write from or to video memory. Changes to the 
video memory data by the GPU must be made in the main system memory and then 
transferred to the video memory. The transfer speed of the data is limited by the bus 
bandwidth available between the two memory systems and as such it is important 
to be very eÿcient when uploading or downloading data to the video memory. Cyril 
Crassin’s GigaVoxel rendering system is an SVO based rendering implementation 
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designed to deal with the memory consumption and the memory bandwidth issues 
via an LOD management and video memory management system driven by GPU 
ray casting. This innovative technique makes it possible to eÿciently render high 
resolution, out-of-core, voxel data sets in order to produce photo-realistic results at 
interactive to real-time frame rates on modern GPU hardware [12, 13]. 

Figure 1.2. Example of GigaVoxel scene. 

The basic supposition that this thesis aims to test is that the GigaVoxel 
rendering technique’s unique ability to support real-time rendering of out-of-core voxel 
data makes it a good ft as the basis of a large-scale voxel terrain rendering system. In 
addition, a GigaVoxel terrain would have the added beneft of being able to seamlessly 
combine the terrain details such as, trees, grass, street signs, buildings, etc. with the 
terrain itself, simplifying the LOD management of the scene and allowing the scene’s 
terrain and terrain details LOD to linearly transition, in lock-step, again resulting in 
higher quality rendered images. Thus, the exploration of the GigaVoxel technique, as 
a basis for a volume terrain rendering system, is the focus of the research and software 
developed for and described by this thesis. 
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2. Objectives 

The goal of this thesis is to build a large-scale terrain rendering system driven 
by the algorithm and data structures described in Cyril Crassin’s paper, "Gigavoxels: 
Ray-guided Streaming for Eÿcient and Detailed Voxel Rendering.", and in doing so, 
answer the following questions: 

1. Is the GigaVoxel technique a feasible basis for the implementation of a large-
scale (i.e. out-of-core) terrain rendering system where the terrain consists of 
the terrain surface and the terrain details? 

2. What extensions to the base GigaVoxel rendering algorithm are required to 
support large-scale terrain rendering? 

3. How would a voxel terrain format that is optimized for use in a GigaVoxel based 
terrain rendering system be designed? 

4. How would a system for generating such a terrain format be designed and 
implemented? 

In answering the questions above, this thesis makes several contributions to the feld 
of volume rendering. 

3. Contributions 

The contributions to the feld of volume rendering provided by this thesis 
include:: 

1. Design of a GPU/CUDA software system that generates a page-able terrain 
format, optimized for rendering in a GigaVoxel terrain rendering system, from 
an out-of-core polygonal terrain data set. 

2. Design of a GigaVoxel page-able terrain format. 

3. Design of GigaVoxel paged terrain rendering system. 

4. Performance results and analysis of prototype implementations of said software 
designs. 

Implementation of a large-scale voxel terrain rendering system based on the GigaVoxel 
rendering algorithm requires the design of a GigaVoxel terrain format that supports 
paging, from disk, multiple oct-trees from a 3D grid of GigaVoxel oct-trees 
representing the terrain and terrain details as well as a system for generating the 
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oct-tree terrain grid. Furthermore, rendering multiple oct-trees, as opposed to a 
single oct-tree, requires extending the GigaVoxel rendering algorithm. 

The design of the generation system and the extensions to the base GigaVoxel 
rendering system described in this paper are based on the latest research in the felds 
of GPU based voxelization and SVO generation and large scale terrain rendering. 
The GigaVoxel terrain generation system incorporates and extends prior work, to 
implement dual out-of-core (i.e. main memory and video memory), GPU based 
voxelization and SVO generation. The core GigaVoxel rendering algorithm is 
extended to also support dual out-of-core terrain rendering using techniques borrowed 
from the latest research in large-scale terrain rendering. 

Furthermore, the performance results of a prototype implementation of the 
GigaVoxel paged terrain rendering system are presented and analyzed. From this 
analysis conclusions about the suitability of the GigaVoxel rendering algorithm as 
a basis for large-scale terrain rendering now and into the future are presented. 
Additionally, this thesis includes a discussion of ways that this work can be extended 
and improved. 

4. Organization 

This thesis consists of fve chapters. Chapter 2 provides a survey of the research 
in the felds relevant to this thesis. Chapter 3 provides a detailed descriptions 
of the GigaVoxel terrain database format, GigaVoxel terrain generation system, 
and the GigaVoxel terrain rendering system respectively. Results of the prototype 
implementations are presented in Chapter 4. Analysis of and conclusions based on 
the results as well ideas for future work are presented in Chapter 5. 



CHAPTER 2 

Survey 

This chapter provides a survey of the relevant research on volume rendering, 
volume rendering optimizations, terrain rendering, scene graphs, and sparse voxel 
oct-tree generation that was used as the basis for the software designs described in 
chapter 3. 

1. Volume Rendering Techniques 

The initial research into volume rendering was driven by the need for detailed 
renderings of volumetric data generated by medical devices such as CT and MRI 
scanners drove the initial research into volume rendering techniques [16, 60, 65, 70]. 
Additionally, geophysical exploration and geologic mapping processes produce large 
3D data sets that require visualization [49, 61]. More recently, the movie and special 
e˙ects industry, in particular, has found value in modeling and rendering highly 
detailed objects with volumetric data, especially objects whose surfaces are not well 
defned and are thus not easily modeled with textured polygons, such as fur, clouds, 
and highly detailed vegetation [17, 34]. 

Volume rendering techniques fall into two categories indirect volume rendering 
and direct volume rendering. An indirect volume rendering algorithms works by 
attempting to ft geometric primitives to the voxels or to generate geometric primitives 
from the voxels and rendering those using conventional rendering techniques. Direct 
volume rendering techniques do not attempt to convert the voxel data to geometric 
primitives and, thus, support semi-transparent voxels, which, unlike indirect methods, 
allow for every voxel to potentially be considered in the fnal rendered image. Direct 
volume rendering algorithms traverse the volume data directly and employ a transfer 
function to translate the voxel data values to a color and opacity value that are 
blended into the fnal rendered image, often taking into account a gradient and 
illumination [22]. 

1.1. Volumetric Data Models. Typically the data produced by CT, MRI, 
and other such 3D scanner devices is a stack of regularly spaced and regularly sized 
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images. Other types of volume generation processes, such as LIDAR, produce a 3D 
point cloud [69]. These types of data are mapped to a 3D array of regularly spaced 
voxels, generally referred to as a voxel data set, voxel grid, or simply voxels. Each cell 
in the voxel data set is a hexahedral (typically cubical) area surrounding a central 
gridpoint [21]. Historically, the voxel data model approach considers the data value 
stored at a single grid point in the grid to be homogeneous within the bounds of the 
grid point’s voxel [21]. Another approach to model 3D volumetric data sets is as a 
3D array of cells. Cell arrays model the volume data as a collection of hexahedra 
whose corners are grid points and whose values, as opposed to voxels, vary (i.e. can 
be interpolated) between the grid points [21]. The choice of whether to model the 
source data with a voxel grid or a 3D cell array comes down to whether or not it 
is appropriate to be able to interpolate when sampling from the data. However, it 
is common practice in the literature to refer to regularly spaced volumetric data as 
simply voxels and to be explicit about the extent to which the data in question can 
vary between grid points. This thesis will use that convention as well. 

1.2. Indirect Volume Rendering Techniques. The best known indirect 
volume rendering algorithm is an isosurface extraction algorithm known as the 
Marching Cubes algorithm [36]. The Marching Cubes algorithm is a variation of 
the Cuberilles or opaque cubes algorithm, which was the frst widely used algorithm 
for visualizing volume data [30]. The basis of the Marching Cubes algorithm is that 
the eight neighbor voxels in a voxel grid can be converted to a planar surface by 
comparing the values of those voxels to an isovalue. If one or more of the voxels 
in the group have a value that is greater than the isovalue and one or more of the 
voxels in the group have a value that is less than the isovalue then a portion of the 
isosurface is constructed by selecting from a group of 15 predefned polygons based 
on which of the voxels are greater than and which are less than the isovalue. Other 
examples of indirect volume rendering algorithms are the Dividing Cubes and the 
Marching Tetrahedra algorithms [11]. Both of these algorithms are enhancements to 
the Marching Cubes algorithm. The Dividing Cubes algorithm eliminates potential 
aliasing issues caused by sub-pixel sized polygons by drawing them as points. The 
Marching Tetrahedra algorithm prevents the erroneous holes sometimes seen with the 
Marching Cubes algorithm due to ambiguities in the pre-defned polygon selection 
process [11]. 

1.3. Direct Volume Rendering Techniques. Direct volume rendering 
techniques are further categorized into object-order and image-order algorithms. 
Object-order algorithms treat each voxel as a separate geometric point primitive that 
is projected and rasterized into the fnal image in much the same way that a triangle 
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Figure 2.1. Marching Cubes Predefned Polygon Cases 

is projected and rasterized in traditional 3D graphics applications [22]. Object-order 
techniques such as the Westover Back to Front Visibility Ordering and the V-Bu˙er 
Traversal Ordering are worth noting for historical perspective as they were some of 
earliest volume rendering algorithms [8]. The most advanced object-order volume 
rendering algorithm is the volume splatting algorithm [8]. The splatting algorithm 
works by more or less throwing each traversed voxel into the output image. The color 
and opacity are accumulated in the output image as the voxels are traversed in front 
to back order. The splatting algorithm starts by traversing from the closest voxel 
on to the farthest voxel and splatting each into the output image. The splatting 
algorithm is summarized below: 

1. Project the voxel’s object-space centroid into image-space. 

2. Project a reconstruction kernel, such as a round Gaussian, into image-space and 
place it at the center of the voxel’s image-space projection. 
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3. Using a transfer function, compute the resultant color and opacity of each pixel 
within the kernel by summing all the voxel contributions for that pixel. 

When the splatting algorithm was originally introduced it provided better 
performance than any other direct volume rendering algorithm, but at the cost of 
quality in the fnal image output [8]. 

Image-order rendering algorithms, on the other hand, are fundamentally 
di˙erent than object-order rendering algorithms in that they start from a pixel in 
the output image and traverse the voxel data set to determine which voxels a˙ect 
that pixel, as opposed to object-order techniques, which start at a voxel and attempt 
to determine which pixels the voxel a˙ects. In general, image order voxel rendering 
algorithms cast a ray, starting at the pixel, in the direction that the camera is pointing 
and march the ray through the voxel data, sampling at regular intervals. Each data 
sample is converted to a color and opacity either at run-time or in pre-processing step 
via a transfer function [37]. The color and opacity is then used in a light interaction 
computation to compute the voxel’s contribution to the fnal color of the pixel. As 
the ray progresses, the color contributed by each sample is accumulated until the ray 
exits the voxel grid [22]. The general fow of the algorithm is described below: 

1. Calculate starting position and direction of each ray. 

2. Step ray through voxel grid at regular intervals, sampling the voxel grid at each 
step. 

3. Convert voxel data value to color and opacity with a transfer function. 

4. Compute gradient. 

5. Compute shading based on gradient and local light sources. 

6. Composite shaded color and opacity into output image. 

The ray casting technique produces the highest quality output images because it 
models the e˙ect of illumination on the volumetric data more accurately than 
object order techniques, such as splatting [22]. This is because the regularly spaced 
stepping and sampling of the voxel data performs a Reimann sum to compute the 
volume rendering integral [22]. The volume rendering integral is the basis for the 
lighting model, known as the emission, absorption model of light transport through 
a participating medium, which is commonly accepted as the most accurate method 
to render volumetric data [22]. 

The paper, “Display of Surfaces from Volume Data.” by Levoy [37] was one of 
the earliest described ray-casting algorithms capable of rendering locally illuminated, 
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high quality images of volumetric data that exhibited smooth silhouettes and very 
little aliasing artifacts. The key component of Levoy’s paper was the introduction of 
a pre-processing step where the voxel data values are converted to a color and opacity 
via a transfer function prior to run-time. By pre-converting the voxel data values to 
colors and opacity it enabled higher order interpolation of the samples taken from the 
voxel grid by a ray during its traversal and thus smoother looking output [37]. 

Image-order rendering techniques produce more accurate results, but are 
generally slower than splatting and other object-order algorithms [13, 70]. However, 
the performance gap between object order and image order techniques is shrinking 
due to the introduction of and continued improvement of hardware accelerated 
rendering via dedicated graphics processing units. The early graphics processing 
hardware, unlike today’s programmable GPU hardware, was designed for the purposes 
of rendering textured polygonal data only. As such, volume rendering researchers 
wanting to utilize the power of this hardware, had to ft their voxel algorithms into 
a textured polygonal mesh paradigm. The volume slicing algorithm is one such 
approach that simulates volume ray casting by using textured polygonal primitives 
in order to harness the power of the graphics hardware [64]. This algorithm works by 

Figure 2.2. Volume Slicing 

generating a stack of parallel planes aligned with the viewport that cut through the 
volume at regular intervals. The voxel grid is stored in a 3D texture map and each 
plane in the stack utilizes texture mapping coordinates to sample from the 3D texture. 
Each plane represents a step taken by a ray marching through the voxels. The left side 
of fgure 2.2 shows the volume slicing technique applied to a voxel grid that models a 
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simple box structure. The left side of fgure 2.2 shows a side view of the slice planes 
after disabling the dynamic update of the volume slice planes, which prevents the slice 
planes from rotating with the camera making the plane primitives that perform the 
volume texture sampling visible. The volume slicing approach is capable of producing 
very high quality images in real-time, but it is not a perfect replication of ray casting 
and thus does not produce as high quality of output because of the fact that the 
planes do not sample the voxel data at regularly spaced intervals (see fgure 2.3). 

Figure 2.3. Volume slicing samples volume at irregularly spaced step sizes 

An improvement on the volume slicing technique is GPU ray casting. GPU 
ray casting algorithms are only feasible to implement on fully programmable graphics 
processing units. Additionally, because of the rapid increases in processing power of 
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GPU hardware it has become possible to render non-out-of-core volumetric data sets 
via GPU ray casting at interactive or even real-time frame rates. Some of the earliest 
implementations of GPU ray casting were demonstrated by Kruger and Westermen 
[35], Rottger et al. [56], and Scharsach [59]. For this technique, the voxel grid is again 
stored in a 3D texture in GPU memory. Proxy geometry, representing either the near 
plane or the eight planes surrounding the voxel grid’s bounding box, is transformed 
along with the camera’s position from world space into the voxel’s 3D texture space 
using a vertex shader program. The pixel shader then computes each ray’s direction 
vector by using the camera’s texture space position and the texture space position of 
the pixel shader’s current pixel. The pixel shader then marches the ray through the 
voxel grid sampling the 3D texture at regular intervals to obtain a color and opacity 
that are composited into the frame bu˙er. Interaction with local lighting sources can 
be computed with gradient vectors, computed on-the-fy via central di˙erencing or in 
a pre-processing step [22] A ray’s exit from the volume is detected when any of the 
components of its position are no longer in the range zero to one. 

2. Volume Rendering Optimizations 

GPU ray casting is very e˙ective at producing high quality output and, on 
smaller data sets, can produce these images at a high frame rate. However, as the 
size of the data set grows, the performance tends to decrease and the amount of 
memory required to hold the larger data sets is often more than what is available 
on even high end GPUs. The next sections describe the latest research into volume 
rendering algorithms that attempt to overcome the performance and memory related 
challenges associated with rendering large volumetric data sets. 

2.1. Performance Optimization. Optimizing the run-time performance of 
volume rendering algorithms, in particular volume ray cast rendering, has lead to the 
development of several optimization techniques including, early ray termination [35], 
empty space skipping, adaptive sampling, and occlusion culling [22, 43]. Early ray 
termination optimizes ray casting by ending a ray’s traversal of the voxels before it has 
fully exited the volume when the pixel shader determines that a suÿcient amount of 
opacity has been reached. This optimization can greatly improve rendering on some 
data sets. Occlusion detection, empty space skipping, and adaptive sampling is made 
possible by frst sub-dividing the voxel data into non-homogenous, homogenous, and 
nearly homogenous regions. Sub-dividing and classifcation of the sub-regions of the 
voxel data is usually accomplished with hierarchical space dividing data structures 
such as BSP trees or oct-trees, which are constructed pre-runtime [22]. Occlusion 
detection queries executed on the GPU can be used to eliminate the need to ray cast 
an entire sub-region of the volume if the sub-region is determined to be completely 
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or substantially occluded. Occlusion queries work by drawing a proxy geometry, 
consisting of a few planes or triangles, representing the voxel’s bounding box or the 
internal structure of the volume (possibly pre-generated by marching cubes) to the 
frame bu˙er and then using a graphics driver API (i.e. OpenGL, DirectX, etc.) to 
perform occlusion queries. The result of the queries provide a way to determine if 
the level of occlusion is large enough to warrant skipping the more expensive ray cast 
rendering of the voxel sub-region in question. This can be an e˙ective optimization 
if the voxel data set has lots of self occlusions or when mixing volume rendering with 
polygonal rendering for applications such as games or simulations [22]. Empty space 
skipping works by allowing completely homogenous regions to be skipped entirely if 
they are completely translucent, or their contribution can be computed procedurally 
[22]. Adaptive sampling is an optimization that enables regions that are nearly 
homogenous to be down sampled to a lower resolution and traversed in fewer steps 
without a˙ecting the accuracy of the results provided that for each step the color 
and opacity is corrected for the larger step size [22]. These optimization techniques 
when applied to rendering on modern GPU hardware further help to make interactive 
and real-time rendering of volume data via GPU ray casting possible. However, they 
do not necessarily address the challenge of dealing with out-of-core volume data, i.e. 
data too large to ft entirely into video memory. 

2.2. Memory Optimization. The biggest obstacle to GPU ray cast 
rendering of large voxel data sets is that the size of the data set often does not even 
ft into the GPU memory. This type of data is referred to as out-of-core. There are 
several techniques described in the literature for dealing with out-of-core volumetric 
data. Scharsach introduced the idea of a texture cache or pool to deal with out-of-core 
volume data[59]. The texture pool is flled with only the regions of the voxel grid 
that are needed in order to render the current view point. A secondary 3D texture is 
used to keep track of which portions of the overall voxel grid are stored in the texture 
pool and where. Additionally, the Sparse Voxel Oct-tree (SVO) data structure is a 
data structure adapted to deal with out-of-core volume data. The SVO concept grew 
out of oct-trees used for solid texturing, which is a 2D texture mapping technique 
designed to deal with distortions caused by surfaces that have no natural texture map 
parameterization [52, 53]. Perlin’s and Peachey’s oct-trees were eventually adapted 
to the GPU [2, 27, 40]. From there voxel researchers realized the potential of oct-tree 
textures as an optimization for voxel rendering [12, 41, 47]. The SVO reduces the 
memory required to store a voxel grid by taking advantage of the fact that voxel data 
often consists of dense patches of non-homogenous space surrounded by large swathes 
of homogeneous space. The SVO thus allows homogenous portions of the voxel grid 
to be stored as a single constant value. SVOs have been shown to have a compression 
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ratio of 600,000 to 1 in data sets consisting of large expanses of terrain [58]. the 
concept of the GPU based SVO was further enhanced by the integration of it with 
the brick map technique frst developed by Christensen and Batali [6]. Combining the 
concept of a brick map with an SVO allows the oct-tree nodes to be stored separately 
from the voxel content, which improves the coherency of the memory accesses. 

The GigaVoxel rendering algorithm combines the texture pool, SVO, and brick 
map concepts into an innovative algorithm that performs real-time ray cast rendering 
of voxel data. To optimize GPU memory usage the SVO structure and the bricks are 
stored in two texture pools [12]. The texture pools guarantee a consistent amount of 
texture memory usage. They are loaded with only the portions of the voxel data that 
are needed for the current viewpoint. As the viewpoint changes the stale, no longer 
needed, SVO nodes and bricks are replaced by new nodes and bricks in an LRU 
fashion. The needed nodes and bricks are identifed by the GPU rays themselves 
without any CPU based traversal of the SVO required [12]. This feature is unique 
to the GigaVoxel technique. Other research has been conducted into eÿcient use 
of the SVO for real-time rendering by Gobetti et al. and Laine et al. [26, 41]. 
However, the GigaVoxel technique, despite being very similar to Gobetti’s technique, 
is more eÿcient in terms of memory usage and also performs better overall because the 
GigaVoxel technique does not require a CPU based traversal of the SVO to determine 
which nodes and bricks to load like Gobetti’s. In addition, the GigaVoxel technique is 
more fexible than Laine’s technique because it focuses solely on dealing with opaque 
object surfaces and is not capable of dealing with objects that consist of both partially 
transparent and opaque voxels [12]. The GigaVoxel technique is described in more 
detail in the 3 chapter. 

3. Terrain Rendering 

Terrain rendering research covers a lot of ground in the 3D visualization world. 
The areas of particular interest to the goals of this thesis are level of detail research 
and out-of-core research. Research on level of detail (LOD) management and, in 
particular, LOD management strategies that support out-of-core paging of terrain 
data from disk to system memory and from system memory to video memory are 
especially relevant. Managing the paging and LOD of large outdoor terrain is very 
complex because terrain data consists of the terrain surface, the static terrain details 
or models (i.e. building models, vegetation models, etc.), the terrain surface texture 
maps, and the static terrain models’ texture maps. All of these data types require 
a di˙erent paging and LOD management strategy. Researchers over the years have 
developed some very complex solutions to the problems associated with this domain. 
These solutions usually start with the basic premise of dividing the terrain up into 
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separately page-able tiles [45]. From that basic premise others have developed more 
complex schemes to optimize paging performance such as Lindstrom and Pascucci’s 
use of terrain data paging via memory mapped fles [44] or Gao’s technique involving 
compression and complex viewer motion prediction with pre-fetching of tiles via a 
background thread [25]. 

In addition to terrain data paging, terrain rendering systems manage terrain 
surface LOD. The earliest algorithms for managing terrain surface LOD involved the 
triangulated irregular network (TIN) data structure and algorithm initially developed 
for terrain rendering by W. Randolph Franklin in 1973 [71]. A TIN of polygons is 
generated from a heightmap such that it models the surface as closely as possible, 
within some error threshold, using as few vertices as possible. Continuous level 
of detail algorithms attempt to do at runtime what TINs do pre-runtime [45]. 
The best known CLOD method are, most likely, the ROAM algorithm developed 
by Duchaineau[19], of which there are many variants [44, 25], as well as Hoppe’s 
progressive mesh refnement technique [31]. CLOD methods are so named because 
they compute and generate the terrain surface mesh at runtime from a heightmap or 
digital elevation map (DEM) and continuously update the number of vertices uses to 
model the surface based on the current viewpoint. 

Run-time paging and LOD management of a terrain’s texture maps are another 
highly active area of research. A basic approach, conceptually the same as the TIN 
method, is to pre-generate multiple di˙erent resolutions of a texture and then use 
a view dependent calculation to pick a specifc resolution for paging [45]. A more 
complex solution to this problem, known as the texture clipmap, dynamically streams 
in only the needed portions of a large out-of-core texture based on a view centered 
rectangular region. This method, originally developed by Tanner et al. [63], has 
been enhanced and extended by many others, including [32, 10]. The texture clipmap 
technique has also been extended to the domain of terrain surface management as 
well, in the form of method known as the geometry clipmap [39], which involves 
streaming the heightmap instead of a texture map. 

As far as LOD management of the terrain detail models like vegetation, 
buildings, etc., the most common practice is to generate multiple representations 
of the models at various levels of detail, either automatically or by hand, and to 
use a distance or projected size metric to switch between the di˙erent resolutions at 
run-time [45, 73]. An individual model’s texture map LOD tends to be tightly bound 
to the model’s geometry LOD, which makes them easier to manage than the terrain 
surface geometry and textures LODs, which are often not directly tied to each other. 

More recently, the idea of managing the LOD of the shader program used to 
render a terrain surface or a terrain detail model has been studied. For instance, 
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the shader program used to render a highly detailed tree model, one that supports 
complex light interactions with leaves, branches, etc. is not necessary and obviously 
too costly to execute when the tree is viewed at a great distance and in great numbers. 
Meyer et al. has proposed use of multiple di˙erent shaders where each shader is 
designed to render at di˙erent resolution from needles on the branches on up to the 
collection of branches and trees that form the canopy of a forest[46]. Clearly, given 
all the research it has generated, large scale terrain paging, LOD management, and 
rendering is a challenging problem. 

4. Scene Graph Based Rendering 

Closely related to the feld of terrain rendering research is the feld of scene 
graph research. A scene graph is data structure commonly used in 2D and 3D graphics 
to organize and optimize the rendering of a scene and the objects in it [68]. One of 
the earliest descriptions of a scene graph comes from Clark in which a scene graph is 
presented as mechanism for LOD management, polygon clipping, data paging based 
on visibility information, and the ability to tightly couple rendering performance with 
scene complexity [9]. In addition to those initially identifed benefts, modern scene 
graphs designed for today’s graphics rendering technology can also beneft from the 
ability of a scene graph to spatially and hierarchically organize a 3D scene. This 
organization makes possible the implementation of common optimization techniques 
such as culling, and render state inheritance, encapsulation, and sorting [1]. By 
spatially organizing the elements of a 3D scene in a scene graph, a culling systems 
can easily identify and collect the currently active set of visible objects in order to 
deliver them to the rendering system for eÿcient drawing on screen. Furthermore, a 
culling system can identify portions of the scene graph that should be loaded from 
disk because it can predict that a portion of the scene graph will soon be coming into 
view [1]. The primary mechanisms used to determine the potential visibility of a scene 
graph branch or leaf node is to detect an overlap between the node’s bounding sphere 
and the view frustum or to detect that the bounding sphere is within some specifc 
distance of the camera. Alternatively, the projected size of a scene graph node’s 
bounding sphere (in pixels) is computed and when the projection becomes larger 
than some pre-confgured amount, the node is collected for rendering or triggered for 
paging [1]. 

Scene graphs also optimize rendering performance of large 3D scenes by 
enabling graphics system state inheritance and encapsulation. Inheritance and 
encapsulation of graphics system state means that the changes to the graphics 
system state, needed to render a particular branch of the scene graph, can be 
stored in a state structure at various levels of the graph and inherited by and 
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overridden by lower levels. This architecture makes it possible to sort the list 
of scene graph nodes collected for rendering such that graphics state switching is 
reduced to only the essential changes and redundant changes are eliminated, which 
greatly optimizes rendering performance on modern hardware [1]. An example of a 
scene graph that supports culling, paging, state encapsulation, and sorting, among 
other things, is the OpenSceneGraph, which is a widely used opensource scene graph 
based rendering toolkit [5]. The OpenSceneGraph provides inspiration for the scene 
graph implemented by the rendering system described in this thesis, in particular the 
OpenSceneGraph’s Group node, the PagedLOD node, and the Drawable node types. 
The Group node provides a way to spatially organize the scene graph by storing a 
bounding sphere of the child nodes of the Group. The PagedLOD node is special type 
of Group whose children are not loaded into the scene graph until the culling system 
determines that they are potentially in view [5]. The culling system initiates the 
loading of the PagedLOD node’s child nodes by submitting a request to a database 
pager thread [5]. A Drawable node is a leaf node that encapsulates a draw-able entity 
[5]. The OpenSceneGraph culling system collects these items in its list of potentially 
visible draw-able items and then sorts them for rendering based on their encapsulated 
graphics state [5]. Furthermore, each PagedLOD node’s last accessed time-stamp is 
tracked so that stale data can be unloaded after a confgurable amount of time [5]. 
These methods are put to use in the paging and culling system for the GigaVoxel 
terrain rendering system described by this thesis. 

5. Sparse Voxel Oct-Tree Generation 

In order to test the feasibility of using the GigaVoxel and related large scale 
terrain rendering research on a large scale voxel terrain, a terrain generation system 
capable of producing a GigaVoxel SVO based terrain is needed. Typically, a real world 
terrain data set designed for 3D visualization is generated by processing the Earth 
measurements obtained from multiple di˙erent types of scanners (Satellite imagery, 
LIDAR, etc.) into a set of catographic data sources (imagery, height map, etc.). The 
cartographic sources are then compiled, by a terrain generation system, into a 3D 
visualization optimized run-time format consisting of the terrain skin, terrain texture, 
and terrain details (building models, tree models, etc.) [60, 58]. In general, most 3D 
terrain visualization systems are designed to run on data that is in a textured polygon 
format and most of the existing software tools that generate 3D terrain visualization 
data target textured polygons as the output format. Ideally, a voxel based terrain 
generation system would go directly from Earth measurements to voxel data, but 
developing the tools to do this is beyond the scope of this thesis. As such, the 
input to my GigaVoxel terrain generation system is a textured polygon mesh terrain 
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generated by a typical 3D terrain generation system. 

5.1. Voxelization. The frst step in generating GigaVoxel terrain is to 
voxelize the polygonal terrain. Fortunately there is a fair amount of research on 
voxelization of polygonal data. Hardware accelerated voxelization executed on the 
GPU is of particular interest because voxel data, being essentially a 3D array, maps 
nicely to the parallel architecture of a GPU making it an optimal computing platform 
for generation and computation of voxel data. Pantaleon’s VoxelPipe is one of the best 
examples of a GPU based voxelization system [50]. VoxelPipe is based on previous 
work by Schwarz and Seidel [62], Zhang et al. [74], Eisemann and Decoret [20], Dong 
et al. [18], and Fang and Chen [23], among others. The key building block of the 
VoxelPipe software is its triangle/box overlap test that determines if a polygon should 
contribute to a particular voxel. This test, which stems from the 2D version of the test 
frst described by Moller and Aila [47] and later extended to 3D by Schwarz and Seidel 
[62], works by frst executing an inexpensive test to determine whether the triangle 
plane intersects the box. Then a more expensive test is performed. The expensive 
test comes in two variants, a thin voxelization variant, and a conservative voxelization 
variant. The thin variant checks for intersection of the 2D projections of the triangle 
and the voxel’s bounding box along the dominant axis of the triangle’s normal. The 
conservative variant checks for intersection along all three axis [50]. The thin variant 
is faster, but can incorrectly produce holes in certain situations. The conservative test 
is more accurate, but takes more time and can produce a voxelization that appears 
to be more chunky. Prior to executing the fne grained overlap test the VoxelPipe 

Figure 2.4. Thin and conservative voxelization example 

algorithm performs several pre-processing steps, including: 

1. Coarse Grained Triangle Prep - these steps assign a single GPU thread to each 
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triangle in order to obtain a coarse grained sort of the triangles assigned to tiles 
(tiles are 3D sub-region within the full voxel grid). 

(a) Pre-compute integer bounding box and dominant axis (these values are 
used in box/triangle overlap test) generating a list of triangles and their 
associated data. 

(b) Perform coarse sorting to assign trangles to voxel tiles. This process 
generates an unsorted list consisting of the triangle-id and tile-id. 

(c) Sort the triangle-id, tile-id list by tile-id. 

(d) Split the per tile lists up into smaller chunks (this is done for better load 
balancing). 

2. Fine Grained Process - these steps perform the voxelization with a single GPU 
thread per triangle where triangles are grouped by tile. 

(a) Execute triangle plane overlap test. 

(b) Execute triangle axis test. 

(c) Write data to tile/voxel output. 

5.2. SVO Generation. After voxelization of polygonal data is complete an 
SVO can be generated from the voxel grid. Parallel to my own implementation of GPU 
based SVO generation Crassin et al. and Baert published papers describing similar 
techniques for SVO generation. Crassin et al. describes an algorithm for GPU based 
SVO generation in an article written for the book OpenGL Insights [14]. Crassin’s 
algorithm makes use of the latest features of OpenGL, including image load/store 
and atomic counters, to generate an SVO from a high resolution mesh in real-time. 
This technique is somewhat similar to the approach of my implementation, but less 
memory intensive and faster. Their algorithm is described here: 

1. Compute voxelization of highest resolution nodes (i.e. leaf nodes). 

2. Identify non-homogenous nodes using voxelization data from step 1. 

3. Compute MIP-maps for lower resolution levels using node data from step 2 and 
voxelization data from step 1. 

The frst step voxelizes each triangle of the input mesh. Crassin does not use the 
triangle/box overlap test and instead uses the GPUs rasterization capabilities to 
orthographically project each triangle along the dominant axis of its normal in order 
to maximize it’s projected area into the output image. The output image is confgured 
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to be the size of the lateral size of the desired voxel grid’s resolution (i.e. 5122 if 
the desired voxel resolution is 5123). The projected triangle produces a set of 2D 
fragments that indicate the potential for an intersection between the triangle and 
a particular voxel. The pixel shader then uses the interpolated depth of each 2D 
fragment and the screen space derivatives to compute the list of voxels in the 2D 
fragment region that are actually intersected. This list of voxels is then added to a 
pre-allocated bu˙er using the image load/store and atomic operations introduced by 
OpenGL 4.2 capabilities. The list of voxel intersections is then used to generate an 
oct-tree by traversing from the root of the tree down to the leaf node that contains 
each of the intersected voxels. Finally, the brick for each node is created by traversing 
back up the tree and flling in each brick by computing a MIP-map from the higher 
resolution node’s brick. The only shortcoming with this algorithm is the requirement 
for a pre-allocated bu˙er to store the initial list of voxel intersections. If a particular 
set of triangles generates more voxel intersections than can be held by the list then 
they will be lost and the voxelization will be incomplete [14]. 

The algorithm described by Baert et al. in a paper entitled, Out-of-Core 
Construction of Sparse Voxel Octrees, makes the insight that a full voxel grid is not 
needed to compute a branch of the SVO that would contain and model it [3]. As 
such the software is designed to process the source data in chunks corresponding to 
the regions that represent the bounding boxes of the leaf nodes in the SVO. The 
algorithm is in fact very similar to the algorithm that this paper describes for GPU 
SVO generation, but has a few key di˙erences, foremost of which is that Baert’s 
algorithm is not a GPU algorithm [3]. 



CHAPTER 3 

Implementation 

This chapter describes the design of the GigaVoxel terrain renderer and a 
system capable of generating a pageable grid of GigVoxel sparse voxel oct-trees from 
a large polygonal texture terrain. The rendering system is implemented with OpenGL 
and is based on the GigaVoxel rendering algorithm with a few extensions in order to 
support paged SVO terrain. The terrain generator is implemented using NVIDIA’s 
CUDA (Compute Unifed Device Architecture) and is based on the techniques for 
voxelization and SVO generation described in chapter 2. 

1. CUDA 

CUDA is NVIDIA’s parallel computing platform and programming model that 
streamlines the implementation of GPU powered applications on NVIDIA GPUs [67]. 
CUDA was used to implement the terrain generation system because voxelization and 
sparse voxel oct-tree generation from polygonal data, due to the 3D grid nature of 
the voxel and SVO data, is well suited to take advantage of the massively parallel 
architecture of the GPU and CUDA makes harnessing that power for non-graphics 
applications, like a terrain generation system, much easier to accomplish. The CUDA 
programming model is designed around the execution of GPU kernel programs. 
Multiple instances of a kernel program are executed on the GPU in parallel. Each 
kernel program can uniquely identify itself by its thread indexes and its block indexes 
[48]. A kernel instance’s block and thread indexes are essentially global constants that 
a running kernel can obtain via the blockIdx and threadIdx built-in symbol names. 
They are both defned to be of type uint3 aka X, Y, and Z [48]. The dimension 
or number of blocks is referred to as the grid size and the dimension or number of 
threads is referred to as the block size. A GPU, depending on it’s capabilities, can 
support up to a certain number of thread blocks and a certain number of threads per 
block for a single kernel execution. The grid size times the block size equals the total 
number of threads that can execute a particular kernel concurrently. When executing 
a kernel the number of blocks and threads that are spawned is specifed as part of the 
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execution syntax [48]. For example, to execute a kernel with 2 blocks of 2 threads 
one would do: 

• MyKernelFunction<�uint3(2, 0, 0), uint3(2, 0, 0)>�(...) 

The example above would result in the execution of MyKernelFunction on 4 
concurrent GPU threads. 

2. GigaVoxel Sparse Voxel Oct-Tree 

2.1. GigaVoxel Run-time Format. In order to better understand the 
algorithms used to generate a GigaVoxel oct-tree, a detailed description of the 
GigaVoxel oct-tree run-time data structure is required. First o˙, the tree structure 
as described in [12], is not necessarily an oct-tree. The tree structure is actually 

Figure 3.1. GigaVoxel Oct-Tree and Texture Pool Structure 

generalizable into an N3 tree (i.e. each node has N3 uniformly sized children). The 
choice of N o˙ers a trade o˙ between memory eÿciency and traversal eÿciency. A 
smaller N results in a deeper tree, whereas a larger N results in a shallower tree. 
However, in order to simplify the implementation of both the generation system and 
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the rendering system support for N=2 trees is implemented (i.e. an oct-tree). The 
GigaVoxel oct-tree data structure is stored by the rendering system in both main 
system memory and in video/GPU memory. The GPU version of the oct-tree is 
stored in two pool textures. The Node Pool texture stores the nodes of the tree and 
the Brick Pool texture stores the brick for each node in the Node Pool (refer to fgure 
3.1). The Node Pool texture is a 32 bit unsigned integer luminance alpha texture. 

Figure 3.2. Node Pool Texel 

Each node in the tree is stored in a single texel of the Node Pool texture. The frst 
32 bits of the texel are used to store a max subdivision fag, a node type fag, and 
a child pointer. The max subdivision fag, which is stored in the highest order bit 
is used to indicate whether the node is refned to a maximum or whether the node 
has children that are yet to be loaded into the Node Pool. The node type fag stores 
whether the node is a constant or non-constant node. The frst 30 bits, with 10 bits 
per each XYZ component, are used to encode a pointer to the node’s children (i.e. 
an XYZ o˙set within the Node Pool texture). Each node only needs a single child 
pointer because its children are stored in a 2x2x2 contiguous block of the Node Pool, 
thus the siblings of the base child can be addressed via a simple XYZ o˙set from 
the base child. The second 32 bit portion of the node (i.e. the alpha component of 
the luminance alpha texture) stores either a constant color or a brick pointer. The 
constant color is encoded as an 8 bit RGBA value. The brick pointer, like the child 
pointer, is encoded as three 10 bit integers that specify the XYZ o˙set of the brick 
in the Brick Pool texture (refer to fgures 3.1 and 3.2) . 

A node’s brick stores the portion of the voxel grid that corresponds to the area 
within the node’s bounding box. The leaf node bricks contain the color and opacity 
from the highest resolution voxel grid (post transfer function translation from scalar 
to color and opacity). The data stored in the non-leaf node bricks comes from a voxel 
grid generated by, MIP-map style, down sampling of the highest resolution voxel 
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grid. For example, in a two level oct-tree that represents a 16x16x16 voxel grid, the 
root node brick is an 8x8x8 voxel grid generated by computing the MIP-map of the 
16x16x16 voxel grid. In turn, the 16x16x16 voxel grid would be divided amongst the 
8 children of the root node, giving each of them an 8x8x8 brick. Also, note that 
for proper interpolation when sampling, each brick needs to store an extra layer of 
border voxels to ensure that linearly interpolated samples taken around voxels at the 
edge of a node’s extent pull from the voxels that are actually neighboring the node’s 
bounding region, as opposed to whatever voxels happen to be stored in the Brick Pool 
next to the node’s brick. 

2.2. Paged GigaVoxel Scene Graph File Format. Ultimately, the 
generation system needs to generate a 3D grid of GigaVoxel oct-trees, where each 
oct-tree represents a chunk of the terrain and terrain details. The oct-trees need 
to be in a format that can be quickly loaded from disk when requested by the 
rendering system. The generation system encodes the 3D grid of page-able oct-
trees in the Paged GigaVoxel Scene Graph XML fle. The Paged GigaVoxel Scene 
Graph XML fle consists of an "OctTrees" node, which is similar in function to the 
OpenSceneGraph’s "Group" node, and a "PagedOctTree" node, which is similar in 
function to the OpenSceneGraph’s "PagedLOD" node [5]. A detailed description of 
each node type and its parameters is described below. 

1. OctTreeGroup - element node that contains OctTree element nodes. 

(a) Parameters: 

i. Compressed - indicates whether or not the OctTrees referenced by this 
XML fle contain compressed brick data. The possible values are YES 
or NO. 

ii. BrickXSize, BrickYSize, BrickZSize - indicate the size in voxels of the 
bricks referenced by the OctTrees in the grid of oct-trees. 

(b) Child Elements: OctTree 

2. PagedOctTree - element node that provides a reference to GigaVoxel oct-tree 
tree and brick data. 

(a) Parameters: 

i. CenterX, CenterY, CenterZ - specifes the center position of the 
OctTree. 

ii. Radius - specifes the radius of the bounding sphere of this OctTree. 
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iii. TreeFile - specifes the path to the XML fle that defnes the nodes of 
the actual OctTree. 

(b) Child Element Nodes: None 

The OctTreeGroup element’s Compressed and BrickXSize, BrickYSize, and 
BrickZSize indicate to the rendering system the dimensions and data type required for 
the Brick Pool texture. The PagedOctTree element’s parameters specify a bounding 
sphere for the oct-tree referenced by the TreeFile parameter, both of which are used by 
the rendering system for on-demand loading of oct-tree data. The TreeFile parameter 
specifes the path to the GigaVoxel Oct-Tree File. 

2.3. GigaVoxel Oct-Tree File Format. The GigaVoxel Oct-Tree File 
specifes the structure of the oct-tree nodes in a single GigaVoxel oct-tree. The 
generation and rendering systems support either an XML format or a more compact 
binary format. The structure of the XML version of the GigaVoxel fle is described 
below. 

1. GigaVoxelsOctTree - contains Node element nodes and specifes oct-tree 
parameters. 

(a) Parameters: 

i. X, Y, Z - specify the X, Y, and Z location in world coordinates of the 
minimum corner of the oct-tree’s bounding box. 

ii. DeltaX, DeltaY, DeltaZ - specify the size in meters of a single voxel 
in the oct-tree. 

iii. VolumeXSize, VolumeYSize, VolumeZSize - specify the size in meters 
of the bounding box of the oct-tree. 

iv. BrickXSize, BrickYSize, BrickZSize - specify the number of voxels in 
the bricks referenced by the nodes of this oct-tree. 

v. Binary - specifes whether or not the brick data referenced by the nodes 
in this oct-tree is stored in a binary format or a text format. Possible 
values for this parameter are YES or NO. 

(b) Child Element Nodes: Node 

2. Node - specifes the parameters for a node in the oct-tree. 

(a) Parameters: 
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i. Type - specifes whether the node is a CONST (i.e. contains a constant 
color), or a NON-CONST (i.e. contains a brick), or a LEAF-CONST 
node. A LEAF-CONST node is a node that is leaf node, but is not 
at the MaxDepth of the oct-tree because it is a CONST and all of its 
children are CONST nodes. 

ii. Brick - specifes the index of this node’s brick in the fle that contains 
the brick data for the node’s at the current level of the tree. 

(b) Child Element Nodes: None 

The GigaVoxelsOctTree element’s X, Y, Z, DeltaX, DeltaY, DeltaZ, VolumeXSize, 
VolumeYSize, and VolumeZSize parameters specify the parameters for the bounding 
box "proxy geometry" that serves as a mechanism for ray generation in the rendering 
system. The BrickXSize, BrickYSize, BrickZSize, and Binary parameters specify 
parameters that describe the brick data referenced by the nodes in the oct-tree. 

The binary format of the GigaVoxel Binary File is optimized to facilitate quick 
loading from disk into the node pool texture, as such, its format closely resembles the 
format of the Node Pool texture. The header of the fle consists of the parameters 
defned by the GigaVoxelsOctTree XML element node, specifcally: 

1. Bytes (0 - 96]: three 32 bit foating point values encoding the X, Y, and Z 
parameters. 

2. Bytes (96 - 192]: three 32 bit foating point values encoding the DeltaX, DeltaY, 
and DeltaZ parameters. 

3. Bytes (192 - 288]: three 32 bit unsigned integers encoding the VolumeXSize, 
VolumeYSize, and VolumeZSize parameters. 

4. Bytes (288 - 1056]: twenty four 32 bit foating point values encoding the vertexes 
of the bounding box of the oct-tree. 

5. Bytes (1056 - 1057]: one bit to encode the Binary parameter. 

6. Bytes (1057 - 1089]: one 32 bit unsigned integer encoding the size of the oct-tree 
node data that follows. 

From there bytes 1089 through the size specifed by the last header parameter contain 
the data for the pixels of the node pool texture starting with the root node. The root 
node inhabits the frst 64 bits of the frst 512 bits starting at o˙set 1089. Recall that 
we need 512 bits for each node because nodes are stored in 2x2x2 blocks in the Node 
Pool texture. The next 512 bits encode the children of the root node. Following that 
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is the 512 bits to encode the frst child of the root node’s children. The children are 
laid out in the fle such that they can easily be loaded into the Node Pool texture via 
a call to glTexSubImage3D. 

The data that is stored starting at o˙set 1090 is loaded by the rendering system 
as a single chunk of contiguous memory. After loading this "oct-tree chunk" into main 
memory, the rendering system, or more specifcally the data paging system, builds 
an oct-tree of nodes where each node has a pointer to the o˙set within the chunk 
corresponding to the node (i.e. the root node points to o˙set zero, the root’s frst 
child points to o˙set 512). Refer to section 3 for more details on the run-time data 
structures used by the rendering system. 

The brick data is stored separately in the Brick Data File and each level of 
the oct-tree has its own Brick Data File. The content of the Brick Data File are the 
RGBA colors of the voxels and XYZ components of the voxel gradients. The brick 
fle contains the bricks in the same order that the nodes are ordered in the node fle 
so that is easy to determine the o˙set within the Brick Data File that a particular 
node’s brick, which is again used at load time by the paging system to build an oct-
tree node structure in main system memory that indexes into the Brick Data File and 
the GigaVoxel Binary File. Each brick is stored such that it can easily be loaded into 
the Brick Pool texture with glTexSubImage3D. The format of the fle’s header is as 
follows: 

1. Bytes (0 - 192]: encodes the dimensions of each brick (width, height, depth). 

2. Bytes (192 - 193]: a bit indicating if the data in the brick is compressed or not. 

After the header each node’s brick data is encoded in the fle with the RGBA portion 
leading and the XYZ gradient portion following. Each RGBA portion is preceded 
by a 32 bit integer specifying the size of the RGBA brick data to follow. The XYZ 
gradient portion is also preceded by a 32 bit integer specifying the size of the XYZ 
brick data to follow. The bricks are in the same order that the NON-CONST nodes 
appear in the node defnition fle. 

2.4. GigaVoxel Paged Terrain Generation System Overview. The 
generation system takes as input both the terrain skin and terrain details, such as tree 
and building models, in the form of an OpenSceneGraph runtime terrain database 
and outputs a 3D grid of GigaVoxel oct-trees and a scene graph with references to the 
oct-trees that are used for paging/loading the oct-trees at run-time by the rendering 
system. The primary challenge of the system is to maintain a minimal memory 
footprint while dealing with out-of-core terrain data and to quickly convert large 
amounts of polygonal terrain and imagery into GigaVoxel oct-trees. Figure 3.3 is a 
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fow chart showing the major components of the system and the inputs and outputs 
of each. The major components and the inputs and outputs are described in more 

Figure 3.3. GigaVoxel Paged Terrain Generation System Data Flow 

detail below: 

1. Terrain Loader - this component loads the polygonal terrain and it’s imagery 
and maintains a grid/list of the parameters describing the oct-trees that have 
been generated by the CUDA Generator component. 

2. CUDA Voxel and Octree Generator - this component consists of a series of 
CUDA kernels responsible for converting polygonal data into GigaVoxel oct-
tree data (listed below). 

3. GigaVoxel Paged Terrain Writer - this component manages the fle output 
operations. 
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2.5. GigaVoxel Paged Terrain Generation. The frst step of the 
generation process is to determine the 2D layout of the 3D grid of GigaVoxel oct-
trees, by dividing up the bounding box of the input data by the desired oct-tree output 
dimensions in order to compute the number of oct-trees, in the X and Y directions, 
required to encompass the input terrain’s extents. 

Input terrain that uses round Earth coordinate systems are handled by 
transforming the input polygons into a local coordinate system at the centroid of 
the input data with the the Y axis pointing towards the North pole, the X axis 
pointing due West, and both of them tangent to the Earth’s gravity vector at the 
centroid. 

Once the X and Y position and the width and height of each oct-tree grid cell 
has been determined then the Z dimension for the grid and the Z position for the 
oct-tree in each XY grid cell is computed based on the input data’s height in that 
cell. The Z position is chosen such that the number of oct-trees required to encompass 
the height of the input terrain’s polygons is minimized and such that the oct-tree is 
centered on the portion of the terrain that it encompasses. Figure 3.4 shows a side 
view of an example terrain to illustrate the dynamic nature of the Z positioning of 
each oct-tree in the grid. The positioning algorithm is described in more detail below. 

Figure 3.4. Terrain Profle Showing Stacking of Oct-Trees 

1. Load required subset of input data - the 2D bounding region of the grid cell is 
used to load only the triangles, and the textures used by the triangles, contained 
or overlapped by the cell. The loading system maintains a fxed size LRU cache 
of previously loaded data to reduce redundant loading of data for neighboring 
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oct-tree’s that require an overlapping set of input fles. The triangles and texture 
color imagery are loaded into GPU memory in groups organized by texture. 

2. For each oct-tree grid cell determine the number of oct-trees in the Z dimension 
that are required to encompass the input data’s height. 

3. For each oct-tree determined by step 2. 

(a) Compute Z component of centroid of oct-tree. 

(b) Generate GigaVoxel Oct-tree. 

The fnal step, Generate GigaVoxel Oct-tree, is implemented as a series of 
CUDA kernels. The frst kernel performs some pre-processing to setup the triangle 
groups for further processing by the voxel and oct-tree kernels. After the pre-
processing step, the full resolution voxel grid for each oct-tree is generated in N3 

chunks, where N can be any power of 2 that is less than (or equal) to the full resolution 
voxel grid. The value chosen for N depends on the amount of memory that the GPU 
provides. 

1. ComputeChunkLists - for each triangle group assign each triangle to a chunk 
list (i.e. the list of triangles that overlap each chunk). 

2. For each N3 chunk of the total voxel grid. 

(a) For each triangle group. 

i. ComputeVoxelization 
ii. ComputeVoxelColorsAndGradients 

(b) ComputeMipMaps 

(c) ComputeOctTreeNodeConstColor 

(d) ComputeOctTreeNodeType 

3. CollapseConstantBranches 

The ComputeChunkList kernel uses a single GPU thread per triangle to 
compute the bounds (in voxels) of each triangle and assign the triangle to one or 
more chunk lists. The bounds of each triangle are written to an array corresponding 
to the order of the triangles in the triangle group list. The triangle bounds are used 
in the ComputeVoxelization kernel for the voxel-triangle overlap test. The chunk lists 
consist of one array of triangle indexes per N3 chunk of the full voxel grid. The 
chunk lists ensure that only the triangles that are defnitely overlapping a chunk 
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are processed by the voxelization kernels. The number of items in each chunk list 
is computed via the CUDA atomic add function and stored in a chunk list count 
array, that, which is read back to main system memory prior to execution of the 
voxelization kernels in order to drive the dimensional confguration and launching of 
the voxelization kernels. 

After the bounds and chunk list setup, the voxel and oct-tree data is 
generated one N3 chunk at a time by the two voxelization kernels, which are named 
ComputeVoxelization and ComputeVoxelColorsAndGradients. 

The ComputeVoxelization kernel performs the triangle voxel overlap test for 
each triangle and each voxel in the voxel grid chunk. The dimensions of the 
ComputeVoxelization kernel are confgured such that the cube root of the max number 
of threads per block supported by the GPU is used for all three dimensions of the 
block size, in order to assign one GPU thread to each voxel. The grid size is confgured 
such that there are total of N2 threads spread across as many blocks as required in 
the XY dimension. The Z dimension of the grid is set to the number of triangles in 
the current chunk list. For example, if the GPU supports 512 max threads per block 
and there are 128 triangles in the chunk list then ComputeVoxelization kernel would 
be invoked like so: 

ComputeV oxelization < uint3(32, 32, 128), uint3(8, 8, 8) > (...); 

Each instance of the ComputeVoxelization kernel is responsible for testing for overlap 
of a single triangle on the voxel at cell X, Y, and Z, which are computed: 

T riangleIndex = CurrChunkList[blockIdx.z] 

X = (blockIdx.x ∗ blockDim.x) + threadIdx.x 

Y = (blockIdx.y ∗ blockDim.y) + threadIdx.y 

and the column of eight voxels starting at Z: 

Z = zOffset + threadIdx.z 

where zO˙set is an outer loop variable that is input to the ComputeVoxels kernel 
and is used to iterate the entire N 3 voxel grid from the minimum Z, in voxels, of the 
triangle group’s bounding box to its maximum Z. In order to optimize for triangle 
groups whose bounding regions are larger in the Z dimension, for instance tree or 
building models, the algorithm selects the smallest of the three dimensions to use for 
the loop (i.e. zO˙set could be yO˙set if the smallest dimension of the triangles being 
processed is in the Y dimension). The triangle index within the triangle group for 
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each GPU thread is the blockIdx.z parameter, that is, each thread block processes a 
single triangle. 

Each ComputeVoxelization kernel instance uses the box overlap test described 
previously to detect if a voxel overlaps a triangle. If it does then the triangle’s index 
is added to the triangle overlap list for the voxel. The triangle overlap list is stored 
in 12 bits of a 3D array of 64 bit integers depending on the number of triangles in the 
chunk list. Each element of the array represents a list that can encode triangle indexes 
of up to 5 triangles. Supporting only 4 to 8 overlaps per voxel might seem like not 
enough to store all of the overlaps for each voxel, but the fact that the triangles are 
grouped into small groups by texture, which are further paired down by the chunk 
list, and the fact that the voxel size is very small, in practice, this results in 1 to 
2 overlaps per triangle group. Each thread synchronizes writes to the list by using 
a second 3D array, the triangle overlap count list, to keep track of the number of 
items in each voxel’s overlap list. When a GPU thread detects an overlap, it uses the 
CUDA atomicAdd function to obtain the write index for the current overlap and to 
increment the count for the next overlap write index. 

The triangle overlap count list and the 3D array that tracks the 
list of triangle indexes that overlap each voxel is used in the next kernel, 
ComputeVoxelColorsAndGradients, to compute the voxel color and gradient. For this 
kernel a single GPU thread is assigned to each voxel in the N3 chunk by spreading the 
threads evenly across the available blocks in the grid and maximizing the number of 
threads per block using the same cube root method used by the ComputeVoxelization 
kernel. The X, Y, and Z indexes of each thread’s voxel is computed as such: 

X = (blockIdx.x ∗ blockDim.x) + threadIdx.x 

Y = (blockIdx.y ∗ blockDim.y) + threadIdx.y 

Z = (blockIdx.z ∗ blockDim.z) + threadIdx.z 

Each thread loops through the the list of overlapping triangles stored in the triangle 
overlap list. For each triangle the color is looked up from the color texture using the 
input texture map and texture map coordinates. The interpolated texture coordinates 
are computed by projecting the overlap triangle along the dominant axis of the its 
face normal and then computing the barycentric coordinates of the voxel’s center 
with respect to the 2D projection of the triangle. The barycentric coordinates of the 
voxel’s center are then used to compute the interpolated texture coordinates to use 
for texture lookup via the following equation: 

V = (uvB − uvA) ∗ baryY 
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U = (uvC − uvA) ∗ baryX 

interpUV = uvA + U + V 

Where uvA, uvB, and uvC are the texture coordinates associated with the three 
vertices of the overlapped triangle and baryX and baryY are the barycentric 
coordinates of the voxel’s center. The same computation is used to compute the 
voxel’s gradient if the triangle has per vertex normals. The color from each triangle 
is added to a N3 array of RGBA values. Similarly the voxel gradient is added to a 
N3 array of XYZ values. After adding the contribution of color and gradient for each 
overlapping triangle the triangle overlap count is used to compute the average color 
and gradient respectively. One thing to note is that if the texture lookup results in a 
color that is completely translucent (i.e. alpha is zero) then it is does not contribute 
to the color or gradient computation. 

After the contribution of all the triangles in every triangle group is computed 
and stored in the two N3 arrays, then, for each level of the oct-tree, a MIP-map 
is computed. This is handled by a kernel function called, ComputeMipMap, that 
takes as input the parent level’s color and gradient data and writes it’s output to 
a 3D voxel grid that is half the dimensions of the parent’s. Each GPU thread is 
assigned a single voxel in the ouput voxel grid and uses a custom box flter to compute 
a weighted average from the parent voxels. The weight for the weighted average 
computation comes from the alpha component of the parent voxels, that is, a higher 
alpha component carries more weight than a lower alpha. Furthermore, for MIP-map 
levels 2 and above, the output is actually computed from the parent level that is 
two levels higher than the current level. This results in much better accuracy in the 
MIP-map computation. So for level N=1 the weighted average comes from the 8 
(2x2x2) voxels at N=0 (i.e. root level). However, for N >= 2 the weighted average 
comes from the 64 (4x4x4) voxels of the level N-2 voxel grid. Additionally, the alpha 
average is computed in a way that prevents the translucent voxels from causing the 
object modeled by the voxels from fading inordinately fast: 

alphaAvg = alphaSum/sumCount 

alphaAvgP ow = pow(alphaAvg, 1 − alphaAvg) 

Where the alphaSum is the sum of the alpha components from the parent or grand-
parent voxels and sumCount is the number voxels from the parent (i.e. 8) or grand-
parent (i.e. 64). By using the pow function the alpha component fades out more 
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Figure 3.5. Di˙erence between standard box flter and enhanced box flter 

slowly as the amount of completely translucent voxels (i.e. voxels with no overlaps) 
mix with the non-translucent voxels. If this pow() function is not used then the e˙ect 
is that the voxelized object appears to shrink and become inordinately translucent in 
the lower resolution MIP-maps. By applying the pow() function it causes the lower 
resolution MIP-maps to appear fuzzier, which is the desired e˙ect. 

The last operation performed on each N3 chunk is to compute the node type 
and constant color for each node in the portion of the oct-tree corresponding to 
the current chunk of full voxel grid. The levels of the oct-tree are traversed one 
at a time from leaf to root using recursion on the CPU. At each recursion/oct-
tree level a ComputeOctTreeNodeConstColor kernel function is used to determine 
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the constant color that would be used to represent each node if it is determined 
to be a constant node. Then the ComputeOctTreeNodeType kernel uses this 
value to determine whether a node is or is not a constant node. For the 
ComputeOctTreeNodeConstColor, each GPU thread is assigned a node in the current 
level of the oct-tree. The X, Y, and Z index of the node in the oct-tree is computed 
as such: 

X = nodeXOffset + ((blockIdx.x ∗ blockDim.x) + threadIdx.x) 

Y = nodeY Offset + ((blockIdx.y ∗ blockDim.y) + threadIdx.y) 

Z = nodeZOffset + ((blockIdx.z ∗ blockDim.z) + threadIdx.z) 

where nodeXO˙set, nodeYO˙set, and nodeZO˙set are computed based on 
the o˙set of the current N 3 chunk within the full voxel grid. The 
ComputeOctTreeNodeConstColor kernel function uses the X, Y, Z of the oct-tree 
node to sample a single value from the set of voxel colors corresponding to the 
area covered by the oct-tree node. The thread stores that value in 3D array of 
RGBA values whose dimensions correspond to the dimension of the current level 
of the oct-tree (i.e. 1x1x1 at level 0, 2x2x2 at level 1, etc.). This array then 
becomes the input to the ComputeOctTreeNodeType kernel function, which, like 
the ComputeVoxelColorsAndGradients kernel function, assigns a single GPU thread 
to each voxel in the N3 chunk. In this case each kernel instance is responsible for 
detecting that its oct-tree node is non-constant by comparing the node’s constant 
color to the voxels assigned to it. Each GPU thread determines which oct-tree node 
it is responsible for by the following equation: 

brickX = fullV oxXY Z.x/brickDim.x 

brickY = fullV oxXY Z.y/brickDim.y 

brickZ = fullV oxXY Z.z/brickDim.z 

where fullVoxXYZ is equal to the XYZ o˙set of thread’s assigned voxel relative to 
the full voxel grid. Each GPU thread/kernel instance uses the brickX, brickY, and 
brickZ to look up the constant color computed by ComputeOctTreeNodeConstColor 
to compare it to its assigned voxel. If the values are di˙erent then the node is classifed 
as a non-constant node by writing a 1 to 3D array whose dimensions, like the constant 
color 3D array, correspond to the dimensions of the oct-tree at the current level of the 
oct-tree. Thus, if any of the GPU threads detect a di˙erence between the constant 
color and the color of the voxel that they are assigned, then they mark the oct-tree 
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node as non-constant. There is a special case for brick border voxels. Voxels at the 
border of a brick also require checking for non-const-ness for the oct-tree nodes whose 
bricks share the particular border. So in those cases the GPU thread compares the 
constant color of those neighboring nodes to its assigned voxel’s color as well. After 
the node type is computed then each non-constant node’s brick is dumped into the 
brick fle. 

After the full voxel grid has been traversed in N3 chunks then the fnal CUDA 
kernel, CollapseConstantBranches, identifes constant branches of the oct-tree that 
can be eliminated. A constant branch is one where the root of the branch is a constant 
node and the root’s children, grand-children, etc. are all constant nodes. The input to 
this function is the node type 3D array computed by ComputeOctTreeNodeType. The 
output is another 3D array of integers, where like the constant color 3D array, each 
element corresponds to a node in the oct-tree. The integer for each node indicates 
if a particular node is a constant branch, where a value of zero indicates that the 
node is the root of a constant branch and a value of one indicates that it is not. The 
constant branch array is initialized to zero to indicate that all nodes in the tree start 
o˙ as constant branch root nodes. The CollapseConstantBranches kernel is called 
recursively at each level of the oct-tree starting at the bottom of the tree (i.e. leaf 
node level). Each GPU thread is assigned to a particular node in the oct-tree at the 
current level of the tree. The algorithm is described below. 

1. Look up my node’s type in the node type array. 

2. If my node’s type is constant then do nothing 

3. Else if it is non-constant then write 1 to my parents node’s cell in the constant 
branch 3D array. 

The CollapseConstantBranches kernel produces a list of nodes whose children can 
be omitted from the oct-tree because they can be accurately represented as a single 
constant color. The fnal step in the generation process is to use the 3D array of node 
types, constant colors, and the constant branch array to dump the oct-tree node data 
to a fle. 

3. GigaVoxel Paged Terrain Rendering System 

The GigaVoxel Paged Terrain Rendering System design builds o˙ the data 
structures and algorithms described by Cyril Crassin in the paper "Gigavoxels: Ray-
guided streaming for eÿcient and detailed voxel rendering." [12] with enhancements 
adapted from the felds of large scale terrain rendering and scene graph rendering 
(see chapters 3 and 4. This section gives an overview of the rendering system as a 
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whole. The next section reviews, in detail, the base GigaVoxel algorithms and data 
structures. Finally, the last few sections detail the extensions to the base algorithms 
and data structures. 

3.1. GigaVoxel Paged Terrain Rendering System Overview. Figure 
3.6 depicts the major components of the rendering system along with the data 
fow through the rendering system components. The components and data fow are 
described in more detail below. 

Figure 3.6. GigaVoxel Paged Terrain Rendering System Overview 

1. GigaVoxel Renderer 

(a) Identifes the list of oct-trees needed for rendering. 

(b) Manages OpenGL state for execution of pixel shaders and blending of oct-
tree output images. 

(c) Manages read back of compressed node usage lists. 

(d) Submits load requests to Disk Pager. 
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2. Disk Pager - loads individual oct-trees from disk into system memory. 

3. Ray Cast Shader 

(a) Renders oct-trees to an image. 

(b) Generates list of traversed oct-tree nodes. 

4. Node Usage List Compression Shader - compresses the node usage list generated 
by the Ray Cast Shader. 

5. Node Usage List Processor 

(a) Iterates compressed node usage lists. 

(b) Submits usage and upload requests to Texture Pool Manager. 

6. Texture Pool Manager - uploads oct-tree nodes and voxel bricks to the GPU. 

The primary components and their logic, data structures, and algorithms are 
described in more detail in the sections that follow. 

3.2. GigaVoxel Oct-Tree Overview. The GigaVoxel rendering algorithm 
relies on an oct-tree data structure stored in both the main system memory and the 
GPU memory. The main system memory stores the full oct-tree, that is, the entire 
oct-tree including all the nodes and all the bricks. The GPU data structure stores 
only the portions of the oct-tree needed for rendering the current viewpoint. The 
in-view nodes and bricks of the oct-tree are copied from main system memory into 
the Node Pool texture and the Brick Pool texture respectively. The pool textures 
ensure that the amount of GPU memory used by the rendering system is limited to a 
constant pre-runtime confgured amount. Section 2.1 describes in detail the format of 
the texture pools. The oct-tree and MIP-map brick pyramid data structures stored 
in the texture pools allows the view rays to drive the loading of the required oct-tree 
nodes and bricks from main system memory into GPU memory and to render realistic 
images from out-of-core voxel data. The oct-tree consists of either constant nodes or 
non-constant nodes (refer to 2.1 for more detail). Non-constant nodes have a pointer 
to a brick, which is encoded as an XYZ o˙set into the Brick Pool texture. Constant 
nodes, on the other hand, do not require a brick and can be represented by a single 
color and opacity. The non-constant nodes from each level of the oct-tree point to 
bricks that come from the corresponding level of a 3D MIP-map generated from the 
full resolution voxel grid upon which the oct-tree is based (see fgure 3.1 and fgure 
3.7). 
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Figure 3.7. GigaVoxel Oct-tree with MIP-map Pyramid 

3.3. GigaVoxel Ray-Casting. Rendering an image from a GigaVoxel oct-
tree consists of marching a single view ray for each pixel in the output image through 
the oct-tree structure. Each ray computes the color and opacity of its pixel in the 
output image by sampling from non-constant node bricks or, for constant nodes, 
by computing the node’s color and opacity contribution computationally. The rays 
originate from proxy geometry that encompasses the bounding box of the oct-tree 
or, if the camera is inside the bounding box, a pair of triangles representing the near 
view plane. The OpenGL stencil bu˙er is used to determine which of the two ray 
origination methods takes precedence over the other. This is done by frst drawing 
the bounding box geometry, with back face culling on, and then drawing the near 
plane geometry. the stencil bu˙er test allows only the fragments from the closest of 
two proxy geometries to execute the pixel shader stage and thus only those rays a˙ect 
the output image. 

Each ray marches across the oct-tree’s volume by traversing down the oct-tree 
until it arrives at a node with the correct level of detail. To determine which level 
of the tree to stop at, the projected size of a voxel at the current oct-tree level is 
compared to the size of a pixel in the output image. If the projected size is less 
than or equal to one pixel then the correct level has been reached. The ray can now 
start computing the node’s contribution to the output color and opacity via brick 
sampling or via constant color computation. Because each level of the oct-tree, from 
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the root down to the leaf node level, represents the voxel data at progressively higher 
resolution each ray’s traversal across the brick is optimized because the sampling rate 
is adjusted accordingly based on the voxel size at each level, i.e. lower resolution 
voxels are sampled at a lower rate [22]. After the ray computes the contribution of 
the node then the exit point from the node is used as the new starting point for 
another descent of the oct-tree node hierarchy. This process repeats until the entire 
oct-tree has been traversed by each view ray or until the opacity of the output pixel 
has become suÿciently saturated. 

Descent of the tree is simple because the ray’s current location within a node 
converts easily into a pointer to the root’s child that should be visited next in order 
to continue the downward traversal. For example, given a ray position in the root 
node’s local coordinate system P ∈ [0, 1]3 the o˙set to the child node containing P 
is simply Q = int(P ∗ 2). This is because the children of each node are stored in a 
contiguous 23 block in the node pool texture. Each node has an XYZ index to its 
lower left child, in the node pool. Given a child pointer C, the XYZ coordinates of 
the child needed for the descent can be obtained by P = C + int(P ∗ 2). The new 
starting location within the child node is computed by P = (P ∗ 2) − Q. From the 
new starting location the oct-tree descent continues until the ray reaches the desired 
oct-tree level. 

3.4. GigaVoxel High Quality Filtering. The GigaVoxel rendering 
technique obtains realistic results by computing the volume rendering integral using 
a Riemann sum method computed along a simulated cone traced per pixel out in the 
direction of the camera [22]. Cone tracing is a more accurate method to determine 
the color of a pixel because a pixel has an area much larger than that of a single 
ray and the voxels that a˙ect it’s color should not be limited to those that are 
intersected by a single ray, but by the voxels encompassed by the cone extending 
from the camera through the edges of the pixel [13]. Standard ray tracing algorithms 
simulate cone tracing via multi-sampling, that is, generation of multiple rays per pixel 
with slightly di˙erent o˙sets within the pixel and traversing the voxel data with all 
of the rays. This method, however, has a large negative impact on performance and 
memory consumption and is still not as accurate as cone tracing [22]. The GigaVoxel 
technique simulates the cone with a single ray by using quadri-linear interpolation 
technique when sampling voxels from the oct-tree bricks. Quadri-linear interpolation 
is accomplished frst by representing each level of the oct-tree at a progressively 
lower resolution, aka a 3D MIP-map pyramid. Each ray samples from a brick using 
the graphics hardware’s built-in bi-linear interpolation capability. Furthermore, the 
traversal of the oct-tree stops at the level of the tree appropriate for the current view 
point (see section 3.3). If the projected size of the voxel at the selected level lies 
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somewhere between the size of a voxel at the current level of the oct-tree and the size 
of a voxel at parent level then both levels are traversed and the sampled values are 
averaged together to provide quadri-linear fltering. This quadri-linear fltering results 
in highly accurate output images devoid of aliasing artifacts that would normally be 
present in images rendered from extremely high resolution voxel data [13]. 

3.5. GigaVoxel Ray Guided Cache Updates. Each GPU ray drives the 
loading of the texture pools. Each ray descends down the oct-tree structure until 
it reaches the node at the required level of detail. The ray then adds the XYZ 
index of the fnal node reached to the node usage list. The node usage list provides 
a mechanism for the rays to communicate back to the rendering system the list of 
nodes that were and/or are needed for rendering. If a node is added to the node 
usage list this communicates to the Texture Pool Manager that the node is active 
and should be kept in the node pool. If the required level of detail cannot be reached 
because a node’s children have not been loaded into the node pool then, in addition 
to the node’s XYZ index, the node sets a bit in the node usage list indicating that 
the node’s children should be loaded into the Node Pool texture. It is up to the Node 
List Processor(s) to communicate to the Texture Pool Manager the list of nodes from 
the node list and the ancestors of these nodes (i.e the parents, grand-parents, etc. of 
the node list nodes) so that the nodes and bricks needed by the rendering system are 
available in the appropriate texture pools. Furthermore, during the descent each ray 
keeps track of the most recently encountered node, whose brick is currently loaded in 
the Brick Pool, and the node’s parent so that if the required LOD cannot be reached 
or if the brick of the node at the required LOD is not currently loaded into the 
Brick Pool, then the ray can traverse the brick that came from higher up in the tree 
instead. This guarantees that some output color will be produced by all rays, while 
the Texture Pool Manager works to get the needed LOD loaded. Lastly, it should be 
noted that the Texture Pool Manager ensures that each oct-tree’s root node brick is 
always present in the brick pool so that a ray always has access to at least one brick 
for generating an output image. 

The node list is implemented using three extra render targets (note that the 
frst render target is reserved for the output image). The three extra render targets are 
RGBA 32 bit unsigned integer textures attached to an OpenGL FrameBu˙erObject. 
Using 10 bits per XYZ component each texel of the node list texture can encode 
four XYZ node indexes along with an extra bit used to encode the need for more 
detail. Thus the three textures together can encode up to twelve node indexes per 
ray. However, twelve nodes is not suÿcient for tracking the ray’s full traversal. In 
order to encode more than twelve nodes, the algorithm takes advantage of the spatial 
coherence of neighboring rays by having each block of 2x2 rays encode di˙erent sets of 
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nodes. The upper left ray in each 2x2 block encodes the frst twelve visited nodes, the 
upper right ray encodes the second twelve, the lower left ray encodes nodes 25 to 36, 
and the fnal ray encodes nodes 37 to 48. Furthermore, each frame, a rolling update 
scheme is used, on even frames the frst 48 traversed nodes are recorded, then on odd 
frames nodes 48 to 96 are recorded. Generally, 96 is enough to track the traversal of 
most oct-trees because the majority of rays do not have to traverse across the entire 
oct-tree because of early ray termination due to opacity saturation. However, should 
that not be the case, the rolling window can be extended to more frames. 

3.6. GigaVoxel Node List Compaction. After the rays fnish generating 
the node list it would be impractical to read back the list from the video memory 
into system memory because the amount of data would be too large to transfer while 
still maintaining a consistent frame rate. Thus, eÿcient compression of the node list 
data is essential. The GigaVoxel technique uses a multi-pass compression algorithm 
utilizing multiple pixel shader invocations driven by near plane proxy geometry. 
The frst compression pass removes duplicate node indexes from neighboring pixels. 
Removal of duplicate node indexes is optimized to take advantage of spatial and 
temporal coherence of neighboring pixels/rays, which is possible due to the fact that 
neighboring texels of the node list texture most likely will have have a signifcant 
amount of duplicate indexes because neighboring rays will visit many of the same 
nodes. Furthermore, neighboring rays will also likely visit each node in nearly the 
same order. Therefore, the duplication reduction process only compares nearby items 
in the node list of neighboring texels. Specifcally, for the i’th element in the list only 
the (i-1)’th, the i’th, and the (i+1)’th elements in the neighbor’s list are compared. 
Neighbors are defned as the texels to the left, upper left, directly above, and upper 
right of the each texel. If, for the i’th element, a match is not found in the neighboring 
list then the output is a single set bit in the i’th element of the output pixel. The 
output pixel is a 32 bit unsigned RGBA texture. This output pixel then becomes the 
bit vector that is used as the selection mask input to the HistoPyramid algorithm, 
which is a data compaction algorithm specifcally designed to take advantage of the 
highly parallel architecture of the GPU (refer to [75] for a detailed description of 
the HistoPyramid algorithm). After the duplication removal and the HistoPyramid 
reduction, the node list usually contains only 2 to 3 entries, which allows the fnal 
compacted texture to ft into a single low resolution 32 bit RGBA texture [12]. This 
smaller texture can then be downloaded from the GPU to main system memory more 
eÿciently. 
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4. GigaVoxel Extensions 

In order to better support rendering of a large scale paged voxel terrain, several 
enhancements to the base GigaVoxel oct-tree rendering algorithm were implemented. 
The enhancements included the development of an OpenSceneGraph inspired, scene 
graph based, view frustum culler and a database pager thread [5]. Furthermore, to 
compensate for the increased workload of multiple oct-trees the processing of the node 
lists is handled in multiple background Node Usage List Processor threads. Lastly, the 
base rendering algorithm was augmented to handle blending of multiple intermediate 
images, generated from the ray casting of multiple oct-trees, into a single fnal image 
(as opposed to the standard GigaVoxel algorithm where there is only a single oct-tree 
and thus a single output image). 

4.1. View Frustum Culler. The view frustum culler’s purpose is to ensure 
that only the visible oct-trees are processed by the rendering system. The culler is 
implemented according to the visitor pattern described by Gamma, et al. [24] and is 
similar in implementation to the OpenSceneGraph’s culling system [5]. The culling 
visitor visits each node in the scene graph, which is constructed, by the database 
pager, from the oct-tree grid XML fle described in chapter 5. When it visits an 
OctTree node whose bounding sphere overlaps or is contained in the current view 
frustum then it either adds it to its render list or, if the oct-tree referenced by the 
node needs to be loaded from disk, then it submits a load request to the database 
pager thread. Furthermore, upon visitation, the culler updates the node’s last access 
frame-stamp. The last access frame-stamp is used to identify and unload stale oct-
trees from main memory. At the conclusion of the traversal the render list is passed 
to the rendering system for drawing. 

4.2. Database Pager. The database pager thread’s purpose is to assist 
the culler in loading into system memory the minimal set of oct-trees required for 
rendering. The culler sends load requests that go into a priority queue sorted by 
distance from the camera. To compensate for camera movement, the culler continually 
recomputes and updates this distance while the oct-tree load request is in the load 
request queue. After loading an oct-tree, the database pager adds it to the pending 
load list. Every frame the primary (renderer) thread transfers the items in the pending 
load list to the the scene graph. 

4.3. Node List Processors. The rendering system draws multiple oct-trees 
each frame and each oct-tree generates its own node usage list. In order to process the 
node usage lists of all them, without impacting the frame-rate, the node list processing 
is done in several background threads. The number of background processor threads 
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is dynamically computed at startup such that as many of the CPU cores as possible 
are used, while still leaving at least two cores for the primary rendering thread and 
the database pager thread. 

At the conclusion of each frame, the render thread reads back each active oct-
tree’s node usage list from GPU memory and adds each one to one of the Node List 
Processor thread’s pending queue. The Node List Processor threads process their 
pending queue in LIFO order. LIFO order is used because the most recently added 
lists are more immediately relevant to the current camera view. Furthermore, in 
keeping with the strategy of processing newer lists frst, the pending queue size is 
capped so that older lists are kicked out by newer lists. 

Each Node List Processor iterates through its current node list and submits 
load requests to the Texture Pool Manager or if a node in the list has already been 
loaded into a pool it simply notifes the Texture Pool Manager that the node is active 
(i.e. needed for rendering). This prevents the node from being replaced by a new 
node being loaded into the pool. 

The Texture Pool Manager maintains a sorted list of the nodes currently loaded 
in its pool textures. The list is sorted such that the most recently active nodes are 
frst and less active or inactive nodes are at the end of the list. It maintains this sort 
order by moving a node, when notifed by the node list processor, from its current 
location on the pool list to the front of the list. This keeps the front of the active list 
populated by the active nodes and the stale nodes will naturally migrate to the end 
of the list so that their spot in the texture pools can be used for new nodes that need 
to be loaded. 

4.4. Asynchronous Upload and Download. The addition of multiple 
rendered oct-trees heightened the need for optimal use of the limited bandwidth 
between the system’s main memory and the graphics hardware’s memory. In order 
to maintain a consistent frame rate all uploads to the GPU texture memory and 
downloads from the GPU memory are implemented using asynchronous transfer via 
dual and/or triple bu˙ered OpenGL Pixel Bu˙er Objects (PBO). This increases the 
amount of main system memory required by the rendering system, but only by a small 
fraction of the total size of the memory required overall by the rendering system. 
Dual and tripled bu˙ered, ping pong style asynchronous PBO upload and download 
is implemented by requesting the upload or download to the target PBO in frame 
N and then not attempting to access that data directly until frame N+1, for dual 
bu˙ered PBO, or frame N+2 for tripled bu˙ered PBOs. This prevents the graphics 
hardware from stalling in order to satisfy an upload or download request. 

All of the uploads required by the system (i.e. uploading nodes and bricks to a 
texture pool texture on the GPU) are implemented with dual bu˙er PBOs, however 
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analysis of the performance of the system revealed that triple bu˙ering the download 
PBO for the node usage list data prevented the readback of that data from stalling 
the rendering pipeline and becoming the bottleneck in the performance of the system. 
The triple bu˙ered system thus provided enough separation between the download 
request and the access/reading of the PBO (via glGetBu˙erSubData) so that the 
graphics system had time to fnish with its rendering tasks before having to perform 
the transfer. 

4.5. Rendering Modifcations. The fnal modifcation made to the base 
GigaVoxel rendering algorithm was to implement blending of each oct-tree’s individual 
output image together with the other oct-tree output images. This is accomplished 
by rendering the oct-trees in front to back order. The sorting of the oct-trees 
is accomplished by the view frustum culler, which sorts the oct-trees by distance 
from the near plane while it is building the render list. The oct-trees are rendered 
in this order using the OpenGL blending mode: glBlendFunc(GL_SRC_ALPHA, 
GL_ONE_MINUS_SRC_ALPHA) [22]. 



CHAPTER 4 

Results 

The results presented in this section describe the run-time rendering 
performance and resource utilization of the prototype GigaVoxel paged terrain 
rendering system implemented as described in chapter 3. The tests were performed 
on two distinct regions of terrain taken from a source data set that consisted of a TIN 
terrain skin generated from a 0.3m Digital Elevation Model (DEM) and thousands of 
terrain detail models (buildings, tree, other structures and vegetation, etc.). The frst 
region consisted of terrain and mostly vegetation detail models. The second region 
consisted of terrain and mostly buildings models (see fgure 4.1). Both regions covered 

Figure 4.1. Source Data Showing Voxelized Regions 

about 2km2 and were voxelized using two di˙erent resolutions, 10243and 20483, for the 
purpose of comparing performance and data size di˙erences due to voxel resolution. 
The tests were performed on an Intel Core i7 3.4GHz CPU with 16GB of RAM and an 
NVIDIA GeForce GTX 760 graphics card with 2GB of VRAM. The source data was 
an OpenSceneGraph WGS84 geotypical terrain database produced and distributed 
for non-commercial use by TrianGraphics (triangraphics.de). 

http:triangraphics.de
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1. Data Size Results 

The source data was voxelized at a resolution of 0.1m per voxel. The 10243 

oct-trees resulted in an 18x18 grid of oct-trees in the frst region. Several of the 
cells in the grid required two oct-trees to be stacked on top of each other in order to 
encompass the full extent of the height of the terrain and terrain detail models in the 
oct-tree grid cell, which resulted in a total of 357 oct-trees in all. Region 2 required 
more oct-trees than the frst because it consisted of several relatively tall building 
models. It ended up consisting of 392 oct-trees (18x18 with 68 stacked oct-trees). By 
comparison region 1 and 2 both required exactly 9x9 oct-trees at the 20483 resolution 
(i.e. zero stacked oct-trees) because the 204.8 meter extents of the oct-tree completely 
encapsulated the terrain and building models in almost all cases. 

The grid of 10243 oct-trees averaged about 120MB each on disk for region 1 
and 160MB for region 2 with a total size of 36GB and 57GB respectively. In contrast 
the grid of 20483 oct-trees averaged about 420MB per oct-tree in region 1 and 520MB 
per oct-tree in region 2 for a total of 34GB and 42GB respectively. 

2. Rendering Results 

The rendering performance results were measured using an 800 by 600 pixel 

Figure 4.2. Single GigaVoxel oct-tree with majority of rays requiring full traversal 

display window. Tests were performed on a small data set initially to determine a 

http:totalsizeof36GBand57GBrespectively.In
http:stackedoct-trees).By
http:models.It
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baseline performance expectation and then on the full data sets. Testing a single 
20483 oct-tree and a nearly equivalent 2x2 grid of 10243 oct-trees generated from 
terrain in region 1 and region 2 revealed that the performance on small data sets 
depends largely on the data and the viewpoint on the data. The test results showed a 
performance range between 20 to 30 frames per second in some view confgurations on 
up to 60 frames per second depending entirely on the number of pixels that generate 
terrain intersecting rays, the depth each ray traversed into the oct-tree(s) before 
opacity saturation, and the oct-tree depth each ray descended in order to reach the 
required tree LOD for brick traversal. Figure 4.2 shows the rendering performance on 

Figure 4.3. Single GigaVoxel oct-tree with no rays requiring full traversal 

a single GigaVoxel oct-tree where the majority of the rays intersected the terrain and 
required a full traversal down to the leaf nodes or one level above the leaf nodes (one 
level above the leaves depicted with blue boxes). Figure 4.3 shows the same oct-tree 
rendering at 60 frames per second after moving the camera far enough away such that 
none of the rays traverse to a leaf node and most of the rays skip through empty space 
or miss the oct-tree entirely. Figure 4.4 shows a screen shot of the NVIDIA OpenGL 
debugger after capturing the timing information for a single frame, the thicker blue 
bar in the frame event graph corresponds to the ray traversal portion of the rendering 
algorithm, clearly indicating that the ray casting stage, as opposed to the usage list 
compaction and the usage list download, was the primary bottleneck in the rendering 
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performance. So it was fairly clear that on smaller data sets the rendering performance 

Figure 4.4. Screen shot of the NVIDIA OpenGL frame debugger showing timing of 
the various stages of the rendering algorithm 

is pixel shader bound by the ray cast stage of the pixel shader. 
The rendering performance on the full data set consisting of the grid of 10243 

or 20483 GigaVoxel oct-trees revealed that 20483 oct-trees were more eÿcient for 
longer view ranges than the 10243 oct-trees. Essentially, as the view range increased 
the management, on the CPU-side (i.e. culling, unloading, loading, downloading 
usage lists, etc.), of the larger number of oct-trees required for the smaller 10243 oct-
trees became the bottleneck in the performance. At a view range of 600 meters the 
performance of the 20483 data set averaged around 10 to 15 frames per second, again 
depending on the view and data currently in view. Whereas the 10243 data set’s 
performance dropped to less than 10 frames per second at the same view range due 
to increased CPU time per frame (refer to fgures 4.5 and 4.6). The main bottleneck 
in the performance of the 20483 data set varied depending on whether or not the 
camera was moving or static. If the camera was moving, resulting in lots of node and 
brick uploads, then the bottleneck was the triggering of data transfer to the GPU by 
the CPU. If the camera was static, then the bottleneck was, again, the ray casting 
stage of the rendering algorithm. 

Not surprisingly, the main memory usage was very similar for both data sets 
with a 600 meter view range. The 12 active oct-trees required for a view range of 
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Figure 4.5. 20483 Grid of oct-trees with 600 meter view range. 

600 meters on the 20483 data set resulted in about 4.7GB of RAM usage. Whereas 
the 10243 data set resulted in 47 active oct-trees and about 4.9GB of RAM usage. 
In addition, the GPU memory was 1.5GB in both cases. This was the expected 
result because the GPU memory usage is determined primarily by the size of the 
node pool textures (especially the brick pool texture), whose sizes are specifed as a 
confguration parameter at runtime. This amount of GPU memory usage was actually 
a little higher than necessary for the 600m view range because the rendering system 
only required between 15,000 to 20,000 loaded bricks (i.e. active non-constant nodes), 
but the brick pool texture was confgured to hold as many as 32,768 active bricks. 
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Figure 4.6. 10243 Grid of oct-trees with 600 meter view range. 



CHAPTER 5 

Conclusions & Future Work 

The results of this thesis make it clear that the GigaVoxel oct-tree data 
structure is a very e˙ective mechanism for compaction of terrain voxel data both 
on disk and in memory. The two test regions each covered a space about 1840m x 
1840m x 204m in dimension, requiring a 0.1m voxel data set of about 18432 x 18432 
x 2048 voxels. A voxel grid of this size that encoded the color and gradient with 
8 bit RGBA and an 8 bit XYZ volume texture, would require about 8TB of data 
on disk and in memory. The combination of the GigaVoxel oct-tree data structure 
and DXT compression e˙ectively compressed the terrain voxel data by two orders of 
magnitude. This data compression coupled with lower GPU memory requirements 
from ray driven GPU paging make GigaVoxel terrain rendering at least feasible from 
a memory usage standpoint, but only when the view range is kept relatively low. A 
view range of 600m required about 12 active oct-trees for the 20483 oct-tree grid and 
48 active oct-trees for the 10243 oct-tree grid and about 5GB of RAM or about 400MB 
and 100MB per oct-tree respectively. A more fne grained disk paging scheme, one 
that pages the oct-trees at the granularity of each tree level would allow for longer 
view ranges because the majority of the oct-trees beyond 600m would require only 
the lowest detail levels of the oct-tree and thus substantially less memory than the 
full oct-tree. 

The rendering performance results, on the other hand, were less satisfying than 
the results of the disk and memory consumption. The test results indicate that the 
rendering performance on small data sets is almost entirely view and data dependent 
and bound by the pixel shader/ray casting stage. Essentially, for small data sets the 
performance depends on how far each ray has to traverse through each oct-tree or 
oct-trees until it becomes fully opacity saturated and how deep into the tree it has to 
descend to fnd the correct LOD node. For the full large scale terrain the performance 
bottleneck is harder to characterize, sometimes the performance is bound by the CPU, 
specifcally the upload of new nodes and bricks, this is especially apparent when fying 
through the terrain quickly, and sometimes it is bound by the ray casting stage. 
However, it should be noted that the performance test hardware (NVIDIA GTX 760) 
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is not, at the time of this writing, the most powerful available consumer grade graphics 
hardware. By comparison the NVIDIA GTX 980 performs roughly twice as well on 
standard benchmark tests as the GTX 760 according to videocardbenchmark.net and 
has roughly double the number of pixel processing cores (1152 to 2048), doubling 
the number of pixel processing cores would defnitely improve the performance of a 
pixel bound application such as this. So it is possible that consistent interactive to 
real-time rendering performance on a GigaVoxel terrain data is not outside the realm 
of possibility on the latest hardware or, at worst, on hardware released in the near 
future. 

That being said, there are several improvements, in addition to the 
aforementioned disk paging scheme, that could be added to the implementation 
described by this thesis. One improvement that was not explored would be to limit the 
amount of time allotted per frame to triggering node and brick uploads to the GPU in 
order to prevent the CPU from becoming the bottleneck in the rendering performance. 
This might result in a more consistent frame rate because the GPU ray casting stage 
would always be the bottleneck, but it would also have the e˙ect of delaying the 
update of the scene to the required LOD. Implementation of the GPU paging scheme 
described by Cyril Crassin’s PHd thesis [13], which requires no CPU intervention, 
would more than likely be a more e˙ective improvement. This advanced GPU paging 
scheme drives the loading of the texture pools entirely on the GPU by using paged 
locked unifed memory, a feature supported by the latest GPU hardware, and thus 
could eliminate the node usage list download step and the CPU side processing of it as 
well. In addition, by reducing the CPU workload it would make it possible to support 
more active oct-trees and thus longer view ranges. Another possible improvement 
that remains to be explored is an adaptive TIN inspired approach to generating each 
oct-tree. This would have the potential to improve both the memory usage and 
the rendering performance. A TIN inspired approach could allow for variable depth 
branches of the oct-tree, whereby any particular branch of an N-level tree could have 
it’s leaf nodes at level N-X (where N>X) if it is determined that the resolution at 
level N-X is suÿcient to model the data as determined by a specifc error metric, 
much like TINs are generated by eliminating vertices in the DEM mesh. This type of 
optimization would especially beneft oct-trees that, for example, model fat terrain 
with very high resolution tree models. The branches of the oct-tree that encompass 
the tree models would require very small, perhaps 1cm voxels, but the branches of 
the oct-tree that encompass the terrain could be modeled by much lower resolution 
voxels. 

Furthermore, the generation system could be improved by adaptive ftting of 
the extents of the oct-trees to the terrain data within the oct-tree grid. The system 

http:videocardbenchmark.net
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used for this thesis required homogeneous 10243 or 20483 oct-trees for all oct-trees in 
the terrain grid. A more eÿcient solution would allow for variable dimensions in all 
three axis and even rotation of the axis in order to best ft the oct-tree to the input 
data’s extents. This would prevent unnecessary processing on empty regions of the 
input and result in memory consumption eÿciency gains. Furthermore, by creating 
a tighter ftting oct-tree it would reduce the ray traversal time, which would result 
in rendering performance gains. In addition, implementing a node based approach 
to voxelization, as opposed to the chunk based approach, similar to the algorithm 
described by [3], and possibly a sparse voxelization approach similar to [14], would 
make the generation system simpler and more memory eÿcient. These improvements 
would allow for larger voxel grids to be used for GigaVoxel SVO generation. 

The objective of this thesis work was to illuminate the feasibility of utilizing 
the GigaVoxel rendering algorithm as a basis for a large scale voxel terrain rendering 
system. The results revealed some success, specifcally in memory and disk space 
compaction, and some challenges for future improvement, specifcally in the rendering 
performance. Despite the less than stellar rendering performance, the lessons learned 
as a result of this thesis work provide as much if not more value by showing what not 
to do and where to go next to eventually make realizing a large-scale real-time voxel 
terrain rendering system possible. 
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