Authorization
DigiPen Institute of Technology is authorized by the Washington State Higher Education Coordinating Board (HECB) and meets the requirements and minimum educational standards established for degree-granting institutions under the Degree Authorization Act. This authorization is valid until May 15, 2012*, and authorizes DigiPen Institute of Technology to offer the following degrees:

- Bachelor of Arts in Game Design
- Bachelor of Fine Arts in Digital Art and Animation
- Bachelor of Science in Game Design
- Bachelor of Science in Computer Engineering
- Bachelor of Science in Real-Time Interactive Simulation
- Master of Science in Computer Science

Any person desiring information about the requirements of the Act or the applicability of these requirements to the Institute may contact the HECB by mail at P.O. Box 43430, Olympia, WA 98504-3430, or by calling (360) 753-7800.

*DigiPen Institute of Technology has been authorized since 1996 and strictly adheres to the biennial authorization renewal process.

Accreditation
DigiPen Institute of Technology is accredited by the Accrediting Commission of Career Schools and Colleges (ACCSC). The ACCSC is a recognized accrediting agency by the U.S. Department of Education.

Copyright Notice
Copyright © 2010 DigiPen (USA) Corp. and its owners. All rights reserved.

No parts of this publication may be copied or distributed, transmitted, transcribed, stored in a retrieval system, or translated into any human or computer language without the express written permission of DigiPen (USA) Corp., 9931 Willows Road, Redmond, WA 98052.

Trademarks
DigiPen® is a registered trademark of DigiPen (USA) Corp.

ProjectFUN® is a registered trademark of DigiPen (USA) Corp.

All other product names mentioned in this booklet are trademarks or registered trademarks of their respective companies and are hereby acknowledged.

Important Notices
All items including, but not limited to, application forms, transcripts, reference letters, resumes, software, and any accompanying documentation or works of art (collectively “the Items”), forwarded to DigiPen by any person (the “Sender”) whether at the request of DigiPen or otherwise, become the exclusive property of DigiPen unless otherwise agreed to in writing by DigiPen, and the Institute** shall be under no obligation whatsoever to return the Items to the Sender. At DigiPen’s discretion, the Items may be destroyed after being reviewed.

DigiPen Institute of Technology reserves the right to make changes to the curricula and calendar without any prior notice.

The course offerings and requirements of DigiPen Institute of Technology are under continual examination and revision. This catalog is not a contract; it merely presents the offerings and requirements in effect at the time of publication and in no way guarantees that the offerings and requirements will not change. The Institute specifically reserves the right to change requirements for any major during any particular year. The individual student assumes full responsibility for compliance with all current academic requirements. Current course offerings may be obtained from the Office of the Registrar. Current major and degree requirements may also be obtained from the Office of the Registrar. For the most current information, visit DigiPen’s official course catalog online at www.digipen.edu/academics/course-catalog.

** Please note that “Institute” (when used in this book) means “DigiPen Institute of Technology.”
## Table of Contents

### RULES AND POLICIES FOR THE ACADEMIC YEAR 2011-2012

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Information</td>
<td>10</td>
</tr>
<tr>
<td>Name of the School</td>
<td>10</td>
</tr>
<tr>
<td>Contact Information</td>
<td>10</td>
</tr>
<tr>
<td>Degree Authorization</td>
<td>10</td>
</tr>
<tr>
<td>Accreditation</td>
<td>10</td>
</tr>
<tr>
<td>History of DigiPen</td>
<td>10</td>
</tr>
<tr>
<td>Awards and Recognition</td>
<td>11</td>
</tr>
<tr>
<td>Continuing Education Program</td>
<td>12</td>
</tr>
<tr>
<td>DigiPen Outreach</td>
<td>12</td>
</tr>
<tr>
<td>Mission of Institution</td>
<td>13</td>
</tr>
<tr>
<td>Notice of Non-Discrimination</td>
<td>13</td>
</tr>
<tr>
<td>Student Right to Know Act &amp; Campus Crime Act Disclosure Notice</td>
<td>13</td>
</tr>
<tr>
<td>Programs of Study Offered</td>
<td>13</td>
</tr>
<tr>
<td>About DigiPen’s Facilities</td>
<td>13</td>
</tr>
<tr>
<td>Description of the Library Facilities and Internet Access</td>
<td>14</td>
</tr>
<tr>
<td>Important Dates 2011-2012</td>
<td>15</td>
</tr>
<tr>
<td>Institutional Calendar</td>
<td>15</td>
</tr>
<tr>
<td>Deadlines</td>
<td>16</td>
</tr>
<tr>
<td>Tuition and Fees</td>
<td>17</td>
</tr>
<tr>
<td>Enrollment Application Fee</td>
<td>17</td>
</tr>
<tr>
<td>Registration Fee</td>
<td>17</td>
</tr>
<tr>
<td>Tuition Fee Payment</td>
<td>17</td>
</tr>
<tr>
<td>Washington State Residency Policy</td>
<td>17</td>
</tr>
<tr>
<td>Late Registration Fee</td>
<td>17</td>
</tr>
<tr>
<td>Books &amp; Supplies</td>
<td>17</td>
</tr>
<tr>
<td>Tuition</td>
<td>18</td>
</tr>
<tr>
<td>Parking</td>
<td>18</td>
</tr>
<tr>
<td>Administrative Fee</td>
<td>18</td>
</tr>
<tr>
<td>Technology Fee</td>
<td>18</td>
</tr>
<tr>
<td>Graduation Fee</td>
<td>18</td>
</tr>
<tr>
<td>Cap-and-Gown Fee</td>
<td>18</td>
</tr>
<tr>
<td>Transfer and Waiver Fees</td>
<td>18</td>
</tr>
<tr>
<td>Replacement Diploma Fee</td>
<td>18</td>
</tr>
<tr>
<td>Transcript Fee</td>
<td>18</td>
</tr>
<tr>
<td>Course Fees</td>
<td>19</td>
</tr>
<tr>
<td>Additional Courses</td>
<td>19</td>
</tr>
<tr>
<td>Cancellation and Refund Policies 2011-2012</td>
<td>19</td>
</tr>
<tr>
<td>Tuition Refund Schedule</td>
<td>19</td>
</tr>
<tr>
<td>Tuition Account Reimbursement</td>
<td>20</td>
</tr>
<tr>
<td>Termination Date</td>
<td>20</td>
</tr>
<tr>
<td>Special Cases</td>
<td>20</td>
</tr>
<tr>
<td>Application of Policy</td>
<td>20</td>
</tr>
<tr>
<td>Financial Assistance</td>
<td>21</td>
</tr>
<tr>
<td>The Role of the Financial Aid Office</td>
<td>21</td>
</tr>
<tr>
<td>Federal Pell Grant Program</td>
<td>21</td>
</tr>
<tr>
<td>Washington State Need Grant Program (WSNG)</td>
<td>21</td>
</tr>
<tr>
<td>Direct Loans</td>
<td>21</td>
</tr>
<tr>
<td>Direct Stafford Loans for Undergraduate and Graduate Students</td>
<td>22</td>
</tr>
<tr>
<td>Other Loans</td>
<td>22</td>
</tr>
<tr>
<td>Scholarship Information</td>
<td>23</td>
</tr>
<tr>
<td>Institutional Scholarship Information</td>
<td>23</td>
</tr>
</tbody>
</table>
Bachelor of Arts in Game Design ................................................................. 79
  Program Overview ...................................................................................... 79
  BAGD Degree Requirements ...................................................................... 80
  Recommended Course Sequence ............................................................... 80
  Recommended Course Sequence Chart (BAGD) ........................................... 81

Minors ........................................................................................................... 82
  English Minor ............................................................................................... 83
  Game Design Minor ..................................................................................... 83
  Mathematics Minor ..................................................................................... 83
  Physics Minor ............................................................................................... 83

Master of Science in Computer Science ...................................................... 84
  Program Overview ...................................................................................... 84
  Computer Science Degree Requirements .................................................... 86
  Length Restrictions .................................................................................... 86
  Program Transfer ......................................................................................... 86
  Graduation Requirements ........................................................................... 87
  Thesis Options ............................................................................................. 87
  Full-Time Status ......................................................................................... 88
  Part-Time Status ......................................................................................... 88
  Graduate Student Grading System ............................................................. 89
  Satisfactory Progress .................................................................................. 89
  Transfer Credits ......................................................................................... 90
  MS in CS Program Curriculum .................................................................... 90
  Recommended Course Sequence Chart for Full-Time MS CS ................. 91
  Recommended Course Sequence Chart for Part-Time MS in CS (3-year plan) 91
  Recommended Course Sequence Chart for Part-Time MS in CS (4-year plan) 92

Course Descriptions for the Academic Year 2011-2012 ............................... 93

Department of Computer Science ............................................................... 95
  Computer Science ....................................................................................... 95

Department of Computer Science ............................................................... 100
  Electrical and Computer Engineering ......................................................... 100

Department of Fine Arts and Animation ..................................................... 102
  Animation .................................................................................................... 102
  Art ................................................................................................................ 103
  Computer Graphics ...................................................................................... 105
  Film .............................................................................................................. 107
  Projects ........................................................................................................ 107

Department of Game Software Design and Production ............................. 109
  Game Software Design and Production ..................................................... 109
  Game Application Techniques ................................................................. 111

Department of Humanities and Social Sciences ......................................... 113
  Communications ......................................................................................... 113
  Economics .................................................................................................. 113
  English ....................................................................................................... 113
  History ....................................................................................................... 115
  Japanese ..................................................................................................... 116
  Law .............................................................................................................. 116
  Management ............................................................................................... 116
  Philosophy ................................................................................................ 116
  Psychology ................................................................................................. 116
Social Sciences ........................................................................................................... 116
Department of Life Sciences .................................................................................. 117
  Biology .................................................................................................................... 117
Department of Mathematics .................................................................................... 117
  Math .......................................................................................................................... 117
Department of Physics ............................................................................................. 120
  Physics ...................................................................................................................... 120
Faculty ...................................................................................................................... 123
Staff ............................................................................................................................ 128
RULES AND POLICIES FOR
THE ACADEMIC YEAR

2011-2012
General Information

Name of the School
DigiPen Institute of Technology

Contact Information
DigiPen Institute of Technology
9931 Willows Road NE
Redmond, WA
USA 98052

Telephone: (866) 478-5236 or (425) 558-0299
Facsimile: (425) 558-0378
Email: info@digipen.edu
Web: www.digipen.edu

Degree Authorization
DigiPen Institute of Technology is authorized by the
Washington State Higher Education Coordinating Board
(HECB) and meets the requirements and minimum
educational standards established for degree-granting
institutions under the Degree Authorization Act. This au-
thorization was first received in 1996. HECB authorizes
the DigiPen Institute of Technology to offer the following
degree programs:

- Bachelor of Science in Real-Time Interactive Simulation
- Bachelor of Science in Computer Engineering
- Bachelor of Science in Game Design
- Bachelor of Arts in Game Design
- Bachelor of Fine Arts in Digital Art and Animation
  (formerly Production Animation)
- Master of Science in Computer Science

Any person desiring information about the requirements
of the Act or the applicability of those requirements to
the Institute may contact the HECB office at P.O. Box
43430, Olympia, WA 98504-3430.

Accreditation
DigiPen Institute of Technology is accredited by the Ac-
crediting Commission of Career Schools and Colleges
(“ACCSC”, or “the Commission”), a national accrediting
agency recognized by the United States Department of
Education.

Important dates in DigiPen’s accreditation history are as
follows:

- 2002: DigiPen received initial accreditation by
  ACCSC.
- 2005: DigiPen received a renewal of accreditation by
  ACCSC.
- 2006: DigiPen was granted approval for its Master
  of Science in Computer Science degree program by
  ACCSC.
- 2008: DigiPen was granted approval for its Game
  Design (BA) and Game Design (BS) degree programs
  by ACCSC.
- 2010: DigiPen was granted approval for its relocation
to its current facility by ACCSC.

History of DigiPen
DigiPen was founded in 1988 by Mr. Claude Comair as
a computer simulation and animation company based in
Vancouver, B.C. As DigiPen’s business grew, the company
struggled to find qualified animators to keep up with
demand and began its own training program focused
on 3D computer animation. When DigiPen’s leaders saw
that companies in the rapidly expanding video game in-
dustry faced a similar shortage of well-trained animators,
they approached Nintendo of America with the idea of
working together to establish a post-secondary program
for those interested in video game programming and
animation. The result was the DigiPen Applied Computer
Graphics School, also based in Vancouver, B.C., which
in 1994 accepted the first class of students into its two-
year art and science degree program in 2D and 3D Video
Game Programming. That same year, DigiPen began
offering game programming and animation workshops
to primary and secondary students in what would later
become part of the school’s ProjectFUN initiative. In
1995, DigiPen introduced a revised two-year 3D com-
puter animation program.
Around this time, the video game industry underwent a paradigm shift from dealing primarily with 2D graphics and gameplay to fully 3D worlds that players could freely explore. As games became more complex, so did the tasks of programming, designing, and animating them. To adapt to these changes, DigiPen developed a four-year bachelor’s degree program that would further prepare students for careers in the video game industry.

In 1996, the Washington State Higher Education Coordinating Board (HECB) granted DigiPen the authorization to award Associate and Bachelor of Science degrees in Real-Time Interactive Simulation. Two years later, in 1998, DigiPen Institute of Technology opened its doors in Redmond, WA. In 1999, the school began offering an associate’s degree in Applied Arts in 3D Computer Animation, and on July 22, 2000, DigiPen held its first commencement ceremony, where it awarded six graduates Associate of Science degrees and five graduates Bachelor of Science degrees.

By this time, DigiPen had phased out its educational activities in Canada and consolidated its programs in Redmond. DigiPen Institute of Technology in Redmond, WA, was granted accreditation from the Accrediting Commission of Career Schools and Colleges in 2002. In 2004, DigiPen began offering three new degrees: Bachelor of Science in Computer Engineering, Bachelor of Fine Arts in Production Animation, and Master of Science in Computer Science; and in the fall of 2008, DigiPen added two more: Bachelor of Science in Game Design and Bachelor of Arts in Game Design.

To help meet the global demand for video game and animation education, in 2008 DigiPen partnered with Singapore’s Economic Development Board to open its first international branch campus, offering the following degrees**: Bachelor of Science in Real-Time Interactive Simulation, Bachelor of Fine Arts in Production Animation (now Bachelor of Fine Arts in Digital Art and Animation), Bachelor of Science in Game Design, and Bachelor of Arts in Game Design.

In 2009, DigiPen revised its master’s program, adding a part-time option to make the program more accessible to working professionals and allowing part-time students to choose between a three- or four-year degree completion track.

In 2010, DigiPen announced plans to open its first European campus in Bilbao, Spain, in partnership with the Bilbao Chamber of Commerce. DigiPen-Bilbao will offer two degrees**: Bachelor of Science in Real Time Interactive Simulation, and Bachelor of Fine Arts in Digital Art and Animation.

To encourage greater cooperation between students of different degree programs and allow the school to expand its enrollment, in the summer of 2010 DigiPen relocated both its Main and Art campuses to the school’s current location at 9931 Willows Road Northeast in Redmond, WA. In addition to unifying all of DigiPen’s programs under one roof, the 100,000 square foot building provides more spaces for students to meet, collaborate, and continue to create award-winning games.

**Awards and Recognition**

DigiPen students are among the most celebrated in the video game industry, earning some of the most prestigious awards that game development has to offer. Since 2001, the Independent Games Festival, part of the annual Game Developers Conference in San Francisco, California, has selected 23 DigiPen student games for its Student Showcase, the most of any college and nearly three times as many as the runner-up. DigiPen students have also won three of the four “Best Student Game” accolades the IGF has awarded since 2007. DigiPen isn’t just competitive with other academic institutions, however: It is the only college whose students have been nominated for – and won – awards in the IGF’s professional categories, including “Innovation in Game Design” and “Excellence in Visual Arts.”
DigiPen students' games have made waves outside of the IGF as well, winning awards in the other major independent game development competitions, from the Slamdance Guerilla Gamemaker Competition to the IndieCade Festival, the PAX 10, and the Indie Game Challenge.

DigiPen's students aren't the only ones earning recognition from the industry, however. In 2010, The Princeton Review ranked DigiPen No. 2 in its “Top 50 Undergraduate Degrees in Game Design.” DigiPen has also distinguished itself as a world-class provider of simulation technology, winning the “Supplier of the Year in Technology” award from Boeing in 2008 among a field of nearly 11,000 contenders.

*ACCSC granted approval for this degree in 2006.

**DigiPen Singapore is approved by ACCSC as a branch campus of the Redmond main school. DigiPen Europe-Bilbao) does not fall within the scope of ACCSC accreditation.

**Continuing Education Program

Authorized by the Washington Workforce Training Board to grant Continuing Education Units, DigiPen Institute of Technology offers a series of continuing education courses each semester and during the summer session. These courses are for individuals looking to explore the world of digital interactive entertainment production or to enhance their overall knowledge in game development topics such as programming, production art, and game design. Courses are taught at DigiPen's Redmond campus and some are also offered online. Please visit www.digipen.edu/academics/continuing-education/ for more information about specific courses offered, cost, admissions information, and registration. DigiPen's Continuing Education Program does not fall within the scope of ACCSC accreditation. Please note that the continuing education courses are not transferable to any of DigiPen's degree programs.

**DigiPen Outreach

In addition to its post-secondary degree programs, DigiPen offers opportunities for primary and secondary students to learn about the process of video game and 3D animation production. Now branded as part of DigiPen's ProjectFUN Initiative, DigiPen has several programs, which support art, science, and math education.

**ProjectFUN Workshops

Since 1994, DigiPen has been offering highly engaging one-week and two-week workshops that give students a first taste of what is involved with programming games, producing 3D animations, and working with robotic vehicles. These workshops are taught at DigiPen's Redmond, WA, campus during the summer and are also offered across the U.S.A. as well as in Canada, Jamaica, New Zealand, and Norway.

**ProjectFUN Technology Academies

In 2000, DigiPen began teaching a computer science program in the U.S.A. for junior and senior high school students who are interested in taking a serious computer science program. There are currently ProjectFUN Technology Academy sites in Washington, other states, and foreign countries. Starting Fall 2007, DigiPen began offering an online version of the Technology Academy to students in Washington State. This online program now includes students from across the nation.

**ProjectFUN Online

In May 2006, DigiPen launched its newest outreach effort, taught live online by DigiPen instructors. This allows students to participate in this program year-round from the comfort of their own homes and communities. The content is similar in nature to that taught in the workshops and is another option for those unable to attend a workshop.
Mission of Institution
To provide an exemplary education and to further research in digital media, simulation, and interactive computer technologies by teaching the academic fundamentals and applied theory necessary for our students to lead, innovate, and advance these industries. Through the work of our students, faculty and staff, we strive to empower and inspire these industries on a global level.

Building on a strong foundation rooted in academics and industry experience, we challenge our students to apply their knowledge towards the creation of real-world products for the ever-advancing demands of a technological society. Embracing teamwork and creative exploration, our mission is to produce highly qualified leaders and originators who will instigate growth, productivity, innovation, and success in their professions and industries.

Notice of Non-Discrimination
DigiPen Institute of Technology is committed to maintaining a diverse community in an atmosphere of mutual respect and appreciation of differences.

DigiPen Institute of Technology does not discriminate in its educational and employment policies on the basis of race, color, creed, religion, national/ethnic origin, sex, sexual orientation, age, or with regard to the basis outlined in the Veterans’ Readjustment Act and the Americans with Disabilities Act.

Programs of Study Offered
Currently, the Institute offers the following degree programs:

- Bachelor of Science in Real-Time Interactive Simulation
- Bachelor of Science in Computer Engineering
- Bachelor of Science in Game Design
- Bachelor of Arts in Game Design
- Bachelor of Fine Arts in Digital Art and Animation
- Master of Science in Computer Science

About DigiPen’s Facilities
DigiPen’s campus (9931 Willows Road NE, Redmond, WA 98052) encompasses over 100,000 square feet with a library, cafeteria, and three auditoriums; computer labs for students; art studios as well as additional classrooms for lectures and instruction.

Weekly student access to the DigiPen campuses is from 8:00 A.M. to midnight, Monday through Friday, and from noon to 8 P.M. on Saturday and Sunday. Core office hours for the Administration staff run from 8:00 A.M. to 5:00 P.M., Monday through Friday.

Major equipment items include microphones and LCD high-definition projection systems in many of the classrooms. Various presentation formats are also available, including DVD players, VCRs, document cameras, and CD players. The majority of the student computers currently range from Core2 duo - 3GHz systems with 2GB RAM to Intel I3 with 4GB RAM. All computers are on an internal network and have access to printers, servers, and archival media. DigiPen upgrades the computer equipment on a periodic basis.

DigiPen classrooms vary in size from lecture halls accommodating up to 154 students to small classrooms of 16 students. DigiPen labs also vary in size from those accommodating 30 students to smaller ones seating 16 and 12. DigiPen also has an open production area that seats approximately 200 students.
Description of the Library Facilities and Internet Access

Library Services

DigiPen’s library aims to support the Institute’s curriculum, students, and faculty. Students have access to a variety of resources like sound effects and reference books relevant to their program of study. The library also subscribes to a selection of major journals and magazines related to the fields of gaming, simulation, computer engineering, and animation. Furthermore, the DigiPen library allocates an annual budget for updating the contents of the library. The 1,100 square-foot library currently holds over 2,500 books, subscriptions to over 50 different magazines (print and electronic), and more than 120 console and computer games. In addition to these curriculum-related resources, the library has a collection of career-oriented materials, including books on resumes, cover letters, and interviews.

The library facilities provide a quiet place to study and areas for small groups to meet and work collaboratively. Library hours change from term to term. For current hours, please refer to the library’s webpage or contact the library staff by email at library@digipen.edu or by phone at (425) 895-4420.

Internet Access

Internet access is a regulated service and is provided for students free of charge. Students may lose this privilege if they do not abide by the Network and Internet Usage Policy.
## Important Dates 2011-2012

### Institutional Calendar

<table>
<thead>
<tr>
<th>Date Range</th>
<th>Event Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 29-Sept. 2, 2011</td>
<td>Orientation - First Year Students</td>
<td></td>
</tr>
<tr>
<td>September 5, 2011</td>
<td>Labor Day</td>
<td>No Classes</td>
</tr>
<tr>
<td>September 6, 2011</td>
<td>Classes Begin - Fall Semester</td>
<td></td>
</tr>
<tr>
<td>November 11, 2011</td>
<td>Veterans’ Day</td>
<td>No Classes</td>
</tr>
<tr>
<td>November 24-27, 2011</td>
<td>Thanksgiving</td>
<td>No Classes</td>
</tr>
<tr>
<td>December 12-16, 2011</td>
<td>Fall Semester Final Exams</td>
<td></td>
</tr>
<tr>
<td>December 16, 2011</td>
<td>Fall Semester Ends</td>
<td></td>
</tr>
<tr>
<td>December 17, 2011-Jan. 8, 2012</td>
<td>Winter Break</td>
<td>No Classes</td>
</tr>
<tr>
<td>January 2-6, 2012</td>
<td>Intersession</td>
<td>No Classes</td>
</tr>
<tr>
<td>January 9, 2012</td>
<td>Classes Begin - Spring Semester</td>
<td></td>
</tr>
<tr>
<td>January 16, 2012</td>
<td>M.L. King Day</td>
<td>No Classes</td>
</tr>
<tr>
<td>February 3, 2012</td>
<td>Founder’s Day</td>
<td>No Classes</td>
</tr>
<tr>
<td>February 20, 2012</td>
<td>Presidents’ Day</td>
<td>No Classes</td>
</tr>
<tr>
<td>T.B.A., 2012</td>
<td>Spring Break</td>
<td>No Classes</td>
</tr>
<tr>
<td>April 23-27, 2012</td>
<td>Spring Semester Final Exams</td>
<td></td>
</tr>
<tr>
<td>April 27, 2012</td>
<td>Spring Semester Ends</td>
<td></td>
</tr>
<tr>
<td>April 30-May 4, 2012</td>
<td>Intersession</td>
<td>No Classes</td>
</tr>
<tr>
<td>T.B.A., 2012</td>
<td>Commencement</td>
<td></td>
</tr>
<tr>
<td>May 7, 2012</td>
<td>Classes Begin - Summer Session</td>
<td></td>
</tr>
<tr>
<td>May 28, 2012</td>
<td>Memorial Day</td>
<td>No Classes</td>
</tr>
<tr>
<td>July 4, 2012</td>
<td>Independence Day</td>
<td>No Classes</td>
</tr>
<tr>
<td>July 23-27, 2012</td>
<td>Summer Session Final Exams</td>
<td></td>
</tr>
<tr>
<td>July 27, 2012</td>
<td>Summer Session Ends</td>
<td></td>
</tr>
</tbody>
</table>

The Institute is closed on all statutory holidays. Exam periods and breaks may be subject to change. The laboratory facilities may be closed for a period of two consecutive days per month for maintenance. It is usually the last two working days of the month unless otherwise posted.

Enrollment occurs twice a year, once in September (all degree programs) and once in January for the Bachelor of Science in Real-Time Interactive Simulation and Bachelor of Science in Game Design programs.
### Deadlines

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>July 1, 2011</strong></td>
<td>Tuition deposit due for Fall 2011 Semester</td>
</tr>
<tr>
<td><strong>July 11, 2011</strong></td>
<td>Last day to submit Request for Change of Major for Fall 2011 Semester, Last day to submit Application for Readmission for Fall 2011 Semester</td>
</tr>
<tr>
<td><strong>August 1, 2011</strong></td>
<td>Tuition balance due for Fall 2011 Semester</td>
</tr>
<tr>
<td><strong>September 5, 2011</strong></td>
<td>Last day to drop Fall 2011 Semester courses for 100% refund</td>
</tr>
<tr>
<td><strong>September 12, 2011</strong></td>
<td>Last day to add classes for Fall 2011 Semester, Withdrawal deadline for 90% refund</td>
</tr>
<tr>
<td><strong>September 16, 2011</strong></td>
<td>Final day to drop classes without academic penalty</td>
</tr>
<tr>
<td><strong>October 1, 2011</strong></td>
<td>Tuition deposit due for Spring 2012 Semester</td>
</tr>
<tr>
<td><strong>October 2, 2011</strong></td>
<td>Withdrawal deadline for 75% refund</td>
</tr>
<tr>
<td><strong>October 28, 2011</strong></td>
<td>Final day to receive a “W” on transcript for Fall 2011 Semester withdrawals, 50% refund, Withdrawals from the Institute after this date will receive “F” grades on transcript, Final day to drop a class</td>
</tr>
<tr>
<td><strong>November 28, 2011</strong></td>
<td>Last day to submit Request for Change of Major for Spring 2012 Semester, Last day to submit Application for Readmission for Spring 2012 Semester</td>
</tr>
<tr>
<td><strong>December 1, 2011</strong></td>
<td>Tuition balance due for Spring 2012 Semester</td>
</tr>
<tr>
<td><strong>January 8, 2012</strong></td>
<td>Last day to drop Spring 2012 Semester courses for 100% refund</td>
</tr>
<tr>
<td><strong>January 15, 2012</strong></td>
<td>Last day to add classes for Spring 2012 Semester, Withdrawal deadline for 90% refund</td>
</tr>
<tr>
<td><strong>January 20, 2012</strong></td>
<td>Final day to drop classes without academic penalty</td>
</tr>
<tr>
<td><strong>February 4, 2012</strong></td>
<td>Withdrawal deadline for 75% refund</td>
</tr>
<tr>
<td><strong>February 29, 2012</strong></td>
<td>Final day to receive a “W” on transcript for Spring 2012 Semester withdrawals, 50% refund, Withdrawals from the Institute after this date will receive “F” grades on transcript, Final day to drop a class</td>
</tr>
<tr>
<td><strong>April 1, 2012</strong></td>
<td>Tuition balance due for Summer 2012 Session</td>
</tr>
<tr>
<td><strong>April 9, 2012</strong></td>
<td>Last day to submit Request for Change of Major for Summer 2012 Session, Last day to submit Application for Readmission for Summer 2012 Session</td>
</tr>
<tr>
<td><strong>July 1, 2012</strong></td>
<td>Tuition deposit due for Fall 2012 Semester</td>
</tr>
<tr>
<td><strong>July 9, 2012</strong></td>
<td>Last day to submit Request for Change of Major for Fall 2012 Semester, Last day to submit Application for Readmission for Fall 2012 Session</td>
</tr>
<tr>
<td><strong>August 1, 2012</strong></td>
<td>Tuition balance due for Fall 2012 Semester</td>
</tr>
</tbody>
</table>
Tuition and Fees

All tuition and fees are in U.S. dollars.

Enrollment Application Fee
A $35.00 application fee must accompany the application form. The application fee is refundable if the applicant is not accepted to the Institute or if the applicant requests a refund within three days after submitting the application fee and cancels his or her application.

Registration Fee
Upon acceptance into a degree program, a $150.00 registration fee must be paid to confirm enrollment. If a student cancels his or her enrollment, he or she may request a refund of the registration fee within three days after signing the enrollment agreement and making an initial payment.

Tuition Fee Payment
Please see the payment schedule in the Student Enrollment Agreement for dates and amounts due. The payment of tuition and all associated fees is the sole responsibility and obligation of the registering student. Tuition increases will be announced six months before taking effect.

Washington State Residency Policy
As of July 1, 2003, Washington State law changed the definition of “resident student.” The law makes certain students, including international students, eligible for resident student status - and eligible to pay resident tuition rates - when they attend public colleges and universities in this state. Although DigiPen Institute of Technology is a private college, it will honor this law under the same terms and conditions. Please note that the law does not make students eligible to receive need-based state or federal financial aid. To qualify for resident status, students must meet the following conditions and complete an affidavit/declaration/certification form found at http://www.hecb.wa.gov/paying/collegecosts/documents/residencycertification-affidavit.pdf

- Resided in Washington State for three years immediately prior to receiving a high school diploma, and completed the full senior year at a Washington high school; or
- Completed the equivalent of a high school diploma and resided in Washington State for the three years immediately before receiving the equivalent of the diploma; or
- Continuously resided in the State since earning the high school diploma or its equivalent.

Students must submit the original copy of the completed affidavit to the Admissions Office or the Registrar’s Office to which they are applying or attending. Faxed or emailed forms, or forms without an original signature, are not acceptable.

Late Registration Fee
Students are responsible for registering for courses and re-registering for courses that need to be retaken each semester by the posted date. All late class registrations will cost an additional $100.00 to cover administrative fees.

Books & Supplies
Estimated cost for textbooks and supplies is $972.00 per year. This cost is not included as a part of the tuition.
Tuition
The flat-rate fee structure for undergraduate students at DigiPen is determined by the number of credit hours the student takes per term. In order for an undergraduate student to complete the degree program in the typical four years, he or she must take an average of 16-20 credits per semester.

For the 2011 Cohort

<table>
<thead>
<tr>
<th>Undergraduate Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Credits</td>
</tr>
<tr>
<td>Fewer than 12 credits</td>
</tr>
<tr>
<td>12 - 15</td>
</tr>
<tr>
<td>16 - 22</td>
</tr>
<tr>
<td>23 &amp; above</td>
</tr>
</tbody>
</table>

Graduate Students

<table>
<thead>
<tr>
<th>No. of Credits</th>
<th>U.S. Citizens and Residents</th>
<th>Non-U.S. Residents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any</td>
<td>$757.00/credit</td>
<td>$833.00/credit</td>
</tr>
</tbody>
</table>

*Tuition is subject to change with six months notice.

Students re-registering for a course that needs to be retaken must pay the regular course fees and are responsible for re-registering in the course.

Students auditing a course must pay the regular course fees.

Parking
On-campus parking is available for $240.00 per academic year. Please see the Administration Office for details regarding parking applications.

Administrative Fee
This fee covers a limited number of transcript requests, add/drop requests, and enrollment verifications. This fee is $40.00 per semester for all students.

Technology Fee
This fee covers paper and toner for the student-use printers and maintenance costs associated with the upkeep of the equipment. This fee is $40.00 per semester for all students.

Graduation Fee
This $75.00 fee covers the cost of the graduation ceremony and processing of the graduation application and degree audit. This fee must accompany the graduation application.

Cap-and-Gown Fee
Students attending the graduation ceremony are required to pay $25.00 for their cap and gown. This is in addition to the Graduation Fee.

Transfer and Waiver Fees
Course transfers and waivers are processed at $25.00 per credit. Waiver exams will cost $100.00.

Replacement Diploma Fee
Replacement diploma requests are processed at $20 per diploma.

Transcript Fee
Official transcripts are processed at $5 per transcript. Unofficial transcripts are processed at $3 per transcript.
**Course Fees**
Some courses may require lab or material fees. Please refer to course descriptions on course registration forms.

**Additional Courses**
Students registered in an undergraduate degree program at DigiPen may register for graduate-level classes. Tuition for these credits will be assessed at the undergraduate rate.

*Note: Please refer to the Master in Science in Computer Science degree program section for more information about transfer credits at the graduate level.*

---

**Cancellation and Refund Policies 2011-2012**

**Tuition Refund Schedule**

**Cancellation Policies**

a. Applicants who have not visited the school prior to enrollment will have the opportunity to withdraw without penalty within three business days following either the regularly scheduled orientation procedures or a tour of the school facilities and inspection of equipment where training and services are provided.

b. All monies paid by an applicant who withdraws will be refunded if requested within three days after signing an enrollment agreement and making an initial payment. An applicant requesting cancellation more than three days after signing an enrollment agreement and making an initial payment, but prior to entering the school, is entitled to a refund of all monies paid minus a registration fee of 15% of the contract price of the program. However, in no event will the school retain more than $150.00.

A student who submits an official withdrawal in writing or who is determined by the Administration to have withdrawn from the Institute:

- Before the beginning of classes: Student will be entitled to a tuition refund of all money paid toward tuition for the upcoming semester.

- Before the close of the seventh calendar day after the beginning of classes: Student must pay 10% of the semester’s tuition. Any portion of tuition paid over this amount will be refunded.

- Before the close of the 27th calendar day of the semester: Student must pay 25% of the semester’s tuition. Any portion of tuition paid over this amount will be refunded.

- Before the close of the 52nd calendar day of the semester: Student must pay 50% of the semester’s tuition. Any portion of tuition paid over this amount will be refunded.

- After the 52nd calendar day of the semester: Student
must pay 100% of the semester’s tuition.

Except for the registration fee, all other assessed fees are refunded on the same schedule as tuition payments.

**Tuition Account Reimbursement**

*Reimbursement Requests*

Except for excess Title IV federal funds, any credit balance left on a student account is applied to future charges unless the student requests a reimbursement check by signing a Reimbursement Request Form. Excess Title IV federal funds are automatically released to the student and/or parent borrower under federal student aid regulations.

*Reimbursement Check*

A reimbursement check is made payable to the student, unless otherwise instructed by him or her on the Reimbursement Request Form. Checks may be picked up from the Main Office or mailed to the address specified on the Reimbursement Request Form. Given that the account carries a reimbursable credit balance at the time of request, a reimbursement check is issued two to four weeks from the date the request was received.

*Inactive Student Accounts*

Any credit balance left on a student account that becomes inactive through graduation, withdrawal, or any other event is automatically reimbursed to the student within 60 days of the account’s change of status. The reimbursement is made in the form of a check and is mailed to the student’s last-known billing address. If a student wishes to have the credit balance returned to a lender of a federal or alternative student loan, the student must complete the appropriate paperwork with the Financial Aid Office at the time of graduation or withdrawal from the Institute.

**Termination Date**

For refund purposes, the termination date for institutional withdrawal is the last date of actual attendance at the Institute by the student. Similarly, the termination date for withdrawal from individual classes is the date of receipt of the appropriate withdrawal form. Notice of cancellation or withdrawal should be given by completing the appropriate withdrawal form, whether it is withdrawal from the Institute or from specific classes for which the student is registered.

If the student’s account remains delinquent for over 30 days, the Institute reserves the right to cancel the student’s registration.

**Special Cases**

In the documented event of prolonged illness or accident, death in the family, or other special circumstances that make it impractical to complete the program in which the student is enrolled, the Institute shall make a settlement that is reasonable and fair to both parties. These will be determined on a case-by-case basis.

**Application of Policy**

Any monies due to the student shall be refunded within 60 days from the last date of the student’s attendance or within 60 days from the date of receipt of payment, in the event that the date of such receipt is after the student’s last date of attendance.

If a student’s financial obligation is not fulfilled, the Institute is authorized to do the following until the owed monies are paid:

- Withhold the release of the student’s academic records or any information based upon the records.
- Withhold the issuance of the student’s transcripts.
Financial Assistance

The Role of the Financial Aid Office
The Financial Aid Office assists students and their parents in meeting basic educational costs. Its goal is to deliver student assistance in a timely manner and to seek financial aid availability for those who qualify.

The primary objective of the Financial Aid Office is to provide adequate financial assistance to the maximum number of eligible students through coordination with and full utilization of all governmental, community, and on-campus resources. DigiPen administers all financial aid programs in accordance with established state, federal, and institutional regulations and policies. Please contact the Financial Aid Office or visit www.digipen.edu for the most up-to-date eligibility criteria and award amounts for the aid programs outlined in this catalog.

The Financial Aid Office endeavors to fully fund students to the maximums provided under the law and strives to eliminate unnecessary steps by simplifying the aid process. The Financial Aid Office attempts to provide individualized services to students. It also provides intervention and liaison support when necessary to resolve problems related to an individual student’s award. Additionally, DigiPen takes a proactive approach to default management and prevention by performing an active role in student loan counseling and delinquency notification procedures.

The U.S. Department of Education has designated DigiPen Institute of Technology as an eligible institution for participation in the following programs:

Federal Pell Grant Program
Federal Pell Grants are the largest source of free government money for college students. These need-based grants are awarded to every undergraduate student who qualifies and has not already earned a bachelor’s degree, master’s degree, or other professional degree. Grants can be used for tuition, fees, and living expenses. The amount a student may receive depends on the financial situation of the student’s family and the student’s enrollment status.

Washington State Need Grant Program (WSNG)
Washington State Need Grants (WSNG) are awarded to every undergraduate student who qualifies. WSNG recipients agree that the Higher Education Coordinating Board (Washington State agency that issues the grant) and DigiPen Institute of Technology reserve the right to withdraw, reduce, or modify the grant due to funding limitations or due to changes in circumstances, which will affect the student’s eligibility for the WSNG. To be eligible you must:

- Be a U.S. citizen.
- Domicile in the State of Washington: be a resident of the State of Washington.
- Provide documentation of residency verification. For required verification, please visit, call, or email the Financial Aid Office.
- Meet satisfactory academic progress (SAP) requirements. Note: the SAP requirements for WSNG recipients are set forth and approved by the State of Washington; these are different than the Institute’s satisfactory progress policy.
- Be enrolled at least as a half-time (6-11 credits) student.
- Apply using the FAFSA and DigiPen Financial Aid Application.
- Not owe a repayment to the WSNG or any other student aid program.
- Not have exceeded either of the following limits: A) ten semesters of WSNG use, B) 125% of the published length of your program.

Direct Loans
Direct Loans are low-interest loans for students and parents to help pay for the cost of a student’s college education beyond high school. The lender is the U.S. Department of Education rather than a bank or other financial institution.
**Direct Stafford Loans for Undergraduate and Graduate Students**

DigiPen participates in the Direct Loan Program. There are two types: Direct Subsidized loans, for which the government pays the interest while you are in college; and Direct Unsubsidized loans, for which you are responsible for paying all the interest on the loans, during college and after. You may receive both types of loans at the same time. To receive loan funds, you must be enrolled at least as a half-time student.

*Direct Subsidized Stafford Loans*

Direct Subsidized Stafford Loans are awarded based on demonstrated financial need. The federal government pays the interest while you are in college and during the six-month grace period after you graduate, leave school, or enroll as less than a half-time student. The government also pays your interest costs during deferment. To qualify, you must meet all the requirements for federal student financial aid and have your eligibility for a Pell Grant determined. Repayment terms may vary from lender to lender.

*Direct Unsubsidized Stafford Loans*

Direct Unsubsidized Stafford Loans are for all eligible students, regardless of their income and assets. You must meet the same requirements as those for the Direct Subsidized Loan except for demonstrating financial need. You are responsible for paying all the interest on the loan, but you can allow it to accumulate while you’re in college and during the grace period. If you do, the interest will be “capitalized” — that is, added to the amount you borrowed when repayment begins and future interest will be based on the new, higher loan amount. The maximum interest rate on an unsubsidized federal Stafford Loan is 8.25 percent.

**Direct Parent Loan for Undergraduate Students (Direct PLUS Loans)**

The Direct Parent Loan for Undergraduate Students (Direct PLUS Loans) enables parents or stepparents to borrow up to the total cost of their dependent child’s education, minus any other aid the student may receive. Direct PLUS Loans are for undergraduate study only and are not based on your family’s income or assets. These loans are always unsubsidized. The maximum interest rate for Direct PLUS Loans is 9 percent.

**Direct Graduate PLUS Loans**

The Direct Graduate PLUS loan is a low-interest, federally backed student loan, guaranteed by the U.S. government. The maximum interest rate for the Direct Grad PLUS loan is 9 percent. The Direct Grad PLUS loan can be used to pay for the total cost of education less any financial aid you’ve already been awarded. Also, like the undergraduate version, eligibility for the Direct Graduate PLUS loan is largely dependent on the borrower's credit rating and history, as opposed to the purely financial need-based Direct Graduate Stafford loan. It also features:

- In-school deferment—meaning students can delay payments until they have graduated
- Easy credit eligibility requirements
- Wide availability since they are federally guaranteed

**Other Loans**

Other financial aid options include private bank loans. Also known as alternative loans, private loans can help you pay for college if you are still short after exhausting all your resources, federal loans, and other college financial aid. Private loans usually carry higher interest rates and fees than federal loans and typically are based on creditworthiness. A number of commercial lenders offer private loans.
Scholarship Information
Scholarships are one form of financial assistance to help students pay for college. It is a good idea to check with employers and local civic groups to see if scholarship opportunities exist. Additionally, many community organizations, foundations, religious organizations, and professional and trade associations offer scholarships. Scholarships may be listed in magazines or on websites devoted to your interests or skills. Start your research with the local organizations in your community, and then browse the scholarship directories on the Internet or in the libraries. Also contact the personnel offices of companies in your area or of your parents’ employers or labor unions to see if they offer scholarships. You may need to write letters and essays or be interviewed as part of the application process, so start your research early.

Private organizations will notify you directly of an award, its requirements, and how you will receive the funds. Keep in mind that colleges must apply any outside scholarship toward your unmet need or reduce other aid - scholarship dollars usually will not replace your Estimated Family Contribution. DigiPen will reduce loan aid rather than grant aid. Be sure to let DigiPen know about any outside awards as soon as you receive them. You can apply for private scholarships and grants throughout your college years.

Institutional Scholarship Information
DigiPen Institute of Technology also offers a number of scholarships to students, and only DigiPen students and applicants are eligible to receive these awards. These scholarships are resources available to qualified students that meet exceptional criteria. A limited number of scholarships are available each year, and interested students are urged to apply at the beginning of the year.

Veterans Affairs Benefits
The Higher Education Coordinating Board's State Approving Agency (HECB/SAA) has approved DigiPen's academic programs for enrollment of persons eligible to receive Veterans Affairs (VA) educational benefits. The following VA educational assistance benefits are available at DigiPen:

- Chapter 30 (Title 38, U.S. Code) - Montgomery GI Bill for Active Duty and Veterans
- Chapter 32 (Title 38, U.S. Code) - Veterans Educational Assistance Program
- Chapter 33 (Title 38, U.S. Code) - Post 9/11 GI Bill
- Chapter 35 (Title 38, U.S. Code) - Dependents of Disabled/Deceased Veterans
- Chapter 1606 (Title 10, U.S. Code) - Montgomery GI Bill for National Guard & Selected Reserves

To be eligible for VA educational benefits, you must be a degree-seeking student with a declared major at DigiPen. Eligibility for the various VA educational benefits programs is determined, in part, by your date of enlistment. In all cases, the Department of Veterans Affairs makes the final determination of eligibility. Application forms for your VA benefits are available at www.va.gov.

If you are a prospective student and believe you might be eligible for educational benefits, contact DigiPen's Financial Aid Office for more information and to begin the application process. The Financial Aid Office may assist veterans in seeking other sources of financial aid in addition to their VA educational benefits.

Please search www.digipen.edu periodically for an up-to-date list of scholarships being offered and for additional information regarding eligibility, selection criteria, and amounts.
Enrollment Requirements

Full-time enrollment for traditional undergraduate students consists of 12 credits per semester; for graduate students, it is 9 credits per semester. At a minimum, an undergraduate student must be enrolled at least half-time (6-11 credits) in order to be eligible for federal financial aid; half-time graduate student enrollment is 6-8 credits. Changes in a student's enrollment may require an adjustment and/or repayment of financial aid funds awarded.

Financial Aid Eligibility

To be considered for financial aid, you must satisfy the following:

- Be a U.S. citizen, national, or permanent resident.
- Have a valid Social Security number.
- Have a high school diploma or GED.
- Make Satisfactory Academic Progress.
- Be enrolled as a regular student in a matriculated program.
- Be at least a half-time (6 or more credits) student.
- Not actively in default of any federal loan program.
- Progress in program does not exceed the allowable limits (150% of your program length).
- Males between the ages of 18-26 must be registered with the Selective Service System.
- Proof of Citizenship

The U.S. Department of Education will attempt to match your immigration status verification with the Department of Homeland Security (DHS). If there is a match, your Student Aid Report (SAR) will reveal that your claim of an eligible immigration status has been confirmed. If there is no match, the Financial Aid Office will need to further obtain confirmation of your immigration status. A decision determination about your Financial Aid eligibility will not be made until you have submitted your immigration documents and they have been confirmed. For additional information, please contact DigiPen's Financial Aid Office.

Deadlines

In order to obtain federal financial aid, the Financial Aid Office must have confirmation that you have completed and finalized your Free Application for Federal Student Aid (FAFSA) and that your FAFSA has been approved by the last day of enrollment. You will not be able to receive any disbursement of federal funding until the Financial Aid Office has determined that your application information, including confirmation of your immigration status, is complete and correct. If you do not meet the above deadlines, you will lose your eligibility to receive federal funding for the current award period.

Satisfactory Academic Progress for Financial Aid

Probation

The history of the student's academics from all periods of enrollment, in spite of enrollment status, will be reviewed at the end of each semester term to determine if the student is maintaining the standards established in the SAP policy. This includes all courses attempted regardless of whether Financial Aid was received. Students who fail to meet the SAP standards will be placed on Financial Aid probation for the next semester term. Students placed on Financial Aid probation are eligible for Financial Aid during the probationary term. If the student does not meet the SAP standards by the next SAP evaluation, future financial aid will be terminated effective with the next term of enrollment. Students whose Financial Aid is terminated may appeal to the Financial Aid Appeals Committee for reinstatement of Financial Aid.
Appeals for Undergraduate and Graduate Students
A student who loses eligibility for financial aid may have opportunity to appeal to the Financial Aid Appeals Committee, aside from the loss of eligibility due to time frame. Appeals must be submitted in writing to the Director of Financial Aid outlining any extenuating circumstance(s) that influenced the student's academic performance. Extenuating circumstances are those events that are beyond the student's control, e.g. serious injury, illness or mental health condition, death of an immediate family member, and other extenuating circumstances beyond the student's control. The appeal should include a description of the extenuating circumstance, documentation of circumstance, and the manner by which the deficiency will be resolved. Each appeal will be considered on a case-by-case basis. Individual cases will not be considered as precedent. Financial aid cannot be reinstated for a prior semester. Your appeal should be submitted within 21 days of the beginning of the semester you want aid reinstated.

The Financial Aid Appeals Committee will review the appeal within two weeks of its receipt to determine whether the financial aid disqualification or suspension is justified. Students filing an appeal will be advised in writing of the decision at the student's home address and/or campus e-mail account. The committee's decision is final, and it cannot be appealed to a higher level. If your appeal is approved, reinstatement of aid is dependent on availability of funds. In addition, a student whose appeal is approved will receive financial aid on probationary status for the next term of enrollment and their academic performance will be reviewed at the end of that term for continued financial aid eligibility. The student is encouraged to take advantage of counseling, tutoring, and the academic support center.

Reestablishing Financial Aid Eligibility
A student whose appeal has been denied for reinstatement of his/her Financial Aid or a student who does not have an extenuating circumstance that warrants an appeal can only regain eligibility by complying with the SAP policy. If the student has resolved the SAP deficiencies that resulted in the termination of Financial Aid eligibility, the student should contact the Financial Aid Office and request a SAP evaluation. The SAP evaluation will be documented and placed in the student's Financial Aid file.

Washington State Need Grant Satisfactory Academic Progress Policy
To be eligible for financial aid, federal regulations require students to make satisfactory progress in an eligible degree or certificate program. Students must be in good academic standing with DigiPen Institute of Technology, and the policy applies to all semesters of enrollment, regardless of receiving financial aid. All credits attempted at DigiPen will be considered when determining students' academic progress.

If students do not meet the requirements, they will be placed on financial aid probation or suspended from financial aid. If placed on probation, students must make satisfactory progress in their next semester of enrollment or their financial aid eligibility will be terminated. Eligibility can be reinstated using one of the options in this policy.

Please note that the Washington State Need Grant Satisfactory Academic Progress Policy operates differently than that of the Financial Aid Satisfactory Academic Progress Policy. For detailed information, please contact the Financial Aid Office or visit www.digipen.edu.
Withdrawal from the Institute
If at any time, a student decides to leave DigiPen Institute of Technology, it is absolutely necessary for him or her to see the Financial Aid Office or to make an appointment with the Financial Aid Office for an exit interview prior to leaving the Institute. This applies to students who are withdrawing and/or transferring to another institution. Failure to meet for an exit interview may increase the risk of defaulting on student loans, as well as incurring a potential liability to DigiPen for not maintaining compliance with a federal requirement. Students who withdraw may be subject to the return of Title IV Funds.

Return of Title IV Funds Policy / Institutional Refund Policy
DigiPen's Institutional Refund Policy operates independently from the Return of Title IV and State Funds' Policy required for all financial aid recipients.

I. Treatment of Title IV Funds
When a recipient of Title IV grant and/or loan withdraws from the Institute during any payment period in which the recipient began attendance, the Institute must determine the amount of Title IV grant and/or loan that the recipient earned as of the student’s withdrawal date. Unearned funds must be returned to the Title IV programs.

II. The Return of Title IV Funds
This policy applies to all Financial Aid recipients who withdraw, drop out, leave without notice, or otherwise fail to complete 60% of the payment period for which they received Title IV funds (grants and/or loans).

1. The term “Title IV Funds” refers to the Federal Financial Aid programs authorized under the Higher Education Act of 1965 (as amended) and includes the following programs administered by the Institution: Unsubsidized Direct Stafford loans, Subsidized Direct Stafford loans, Direct PLUS loans, Direct Grad PLUS loans, and Pell Grants.

2. A student's withdrawal date is the last date of attendance as determined by the Institution's attendance records.

3. The calculation required determines a student's earned and unearned Title IV aid based on the percentage of the payment period completed by the student. The school calculates the amount of Title IV assistance earned by the student by dividing the number of days the student attended in the payment period by the number of days in the payment period.

Calendar days (including weekends) are used, but breaks of at least 5 days are excluded from both the numerator and denominator.

4. Until a student has passed the 60% point of a payment period, only a portion of the student's aid has been earned. A student who remains enrolled beyond the 60% point is considered to have earned all awarded aid for the payment period.

5. In accordance with Federal Regulations refunds are allocated in the following order:
   - Unsubsidized Direct Stafford loans
   - Subsidized Direct Stafford loans
   - Direct PLUS loans
   - Direct Grad PLUS loans
   - Federal Pell Grants

6. Institutional and Student responsibility in Regard to the Return of Title IV Funds:
   The responsibility to repay unearned Title IV aid is shared by the Institution and the student. For example, the calculation may require the Institution to return a portion of the federal funds to the Title IV programs.

Once the Institution has calculated and determined the amount to return, the Institution will return the funds within 45 calendar days. The Institution will return the loan funds via paper check to a) the
original lender or b) a subsequent holder, if the loan has been transferred and the school knows the new holder’s identity.

In addition, the student may also be obligated to return funds based on the calculation. A student returns funds to the Direct Stafford loan programs based on the terms and conditions of the promissory note of the loan. A student who receives a Federal grant may be required to repay 50% of the funds received.

**Institution’s Responsibility**
The Institution makes this policy readily available by request to any enrolled and/or prospective students by request to the Financial Aid Office. In addition, the Financial Aid Office makes readily available the written refund requirements.

- Identifying students who are affected by this policy and completing the Return of Title IV funds calculation for those students
- Returning any Title IV funds that are due to the Title IV programs.

**Student’s Responsibility**
The student’s responsibilities in regard to the Return of Title IV Funds include:

- Returning to the Title IV programs any funds that were disbursed directly to the student and which the student was determined to be ineligible for via the Return of Title IV funds calculation.
- Students who owe funds to a grant program are required to make payment of those funds within 45 days of being notified that they owe this overpayment. During the 45-day period students will stay eligible for Title IV funds. If the student does not take any action within the 45 days of being notified, the Institution will notify the U.S. Department of Education of the student’s overpayment situation. The student will no longer be eligible for Title IV funds until they enter into a satisfactory repayment agreement with the U.S. Department of Education.

7. **Post-Withdrawal Disbursements**
If a student receives less federal student aid than the amount earned the Institution must offer a post-withdrawal disbursement. The institution is required to make a post-withdrawal disbursement within 180 days of the date the institution determines the student withdrew.

Upon completion of the Return of Title IV funds calculation, if it is determined a post withdrawal is due to the student and/or parent the Institution will notify the student and/or parent in writing.

8. DigiPen will make readily available a summary of the Return of Title IV requirements to any enrolled and/or prospective student by request to the Financial Aid Office.

**III. To Officially Withdraw from DigiPen Institute of Technology**
Please refer to the course catalog regarding the withdrawal policy.

**IV. Title IV Refunds and Institutional Refund Example**
You may request an example from the Financial Aid Office

**V. Cancellation and Refund Policies**
Please refer to the section regarding Cancellation and Refund Policies.

If you have any questions or concerns regarding the Return of Title IV Funds, Refund Policy, Overpayment, or would like examples of the Return of Title IV Funds calculations, please contact the Financial Aid Office.
Applying to DigiPen

Visiting DigiPen

DigiPen offers regular information sessions both on-campus and online for the general public. Anyone interested in finding out more about DigiPen Institute of Technology and its programs is welcome to attend. For information on dates and times for these information sessions, please visit our website at www.digipen.edu or email admissions@digipen.edu.

Visitors interested in learning about DigiPen’s admission requirements, application process, and degree programs are encouraged to schedule a one-on-one meeting and school tour with an admissions representative. To schedule an appointment, please contact the Office of Admissions at admissions@digipen.edu at least one week before your intended visit.

One of the best ways to find out what DigiPen is like as a student is to spend a day on campus, attending classes and meeting students, faculty, and staff. During the fall, spring, and summer semesters, the admissions department can help prospective students arrange to shadow a current student. Most visitors will combine a student shadow with a one-on-one admissions or financial aid meeting. Student shadow requests should be made at least one week in advance. To learn more about this program and to schedule a time for your visit, please contact the Office of Admissions.

Undergraduate Application Process

DigiPen Institute of Technology works on a rolling admissions basis and only enrolls new students for the fall semester that begins each September. DigiPen begins accepting applications for the following fall as early as late September, and the Institute will evaluate applications as they are completed and submitted. Applicants normally receive a decision within two to four weeks after their application has been completed.

DigiPen encourages new applicants to apply by February 1 of each year, but the Institute will continue to accept qualified applicants after that date until all programs have reached their maximum enrollment. Applicants should submit all application materials within four weeks of their initial application submission. Applicants who need additional time should request an extension, after submitting their initial application, by contacting the Office of Admissions at admissions@digipen.edu.

Applicants may choose their preferred major at the time of application, however during the review process, DigiPen may determine that an applicant fits more appropriately into another degree program and may admit an applicant into another program. Additionally, DigiPen may sometimes determine that an applicant qualifies for admission to several programs and note this on the acceptance letter.

Except where noted, all undergraduate applicants must submit the following for consideration:

1. DigiPen Institute of Technology Application for Admission. All applications will be given equal consideration; however, submitting applications online is the preferred method.

2. $35.00 application fee. If an applicant is denied admission to the program, DigiPen will refund the application fee.

3. Official high school transcripts or official GED test scores, if applicable. International students should submit attested copies or certified true copies of all academic records. See more about this requirement in the “International (Non-U.S. Resident) Applicants” section if an applicant has transcripts and other official documentation in languages other than English.

- DigiPen requires all applicants to have completed grade 12 or the equivalent with a minimum 2.5 cumulative GPA; for international students, DigiPen will determine the minimum academic
performance standards based on the educational system of the individual applicant.

- Applicants who have earned their GED should submit sealed transcripts for the time that they attended high school, along with their GED test scores to prove high school equivalence.

- For home-schooled applicants, please see the “Home-Schooled Applicant Admission Requirements” section on the following page.

- Applicants who have completed a bachelor’s degree at an accredited institution are not required to submit high school transcripts, but final transcripts from their college or university will be required.

4. Official transcripts from ALL post-secondary institutes attended, if applicable. International students should submit attested copies or certified true copies of all academic records. Again, see more about this requirement in the “International (Non-U.S. Resident) Applicants” section if an applicant has transcripts and other official documentation in languages other than English. This includes transcripts for high school concurrent enrollment programs. Transcripts must be sent by the issuing school directly to DigiPen Institute of Technology. Alternatively, they may be sent by the applicant if they are SEALED in an envelope and stamped over the seal by the Registrar, showing that they have not been opened.

5. Official SAT or ACT exam scores. DigiPen requires completion of the SAT or ACT test and submission of these scores from all undergraduate applicants who have attended high school in the U.S. International applicants are strongly encouraged to submit SAT scores, but they are not mandatory. The writing portion is not required but may be taken into consideration if sent. Applicants to DigiPen’s undergraduate degree programs do not need to submit these if they have already graduated from high school and have at least one year of college experience. However, any applicant coming directly from high school will need to submit SAT/ACT scores regardless of whether or not he or she has taken some college courses. There is no minimum score requirement for either test. SAT or ACT test scores must be sent directly to DigiPen by the issuing organization. DigiPen also accepts them on high school transcripts. SAT code: 4138; ACT code: 6659.

6. Personal statement. Please see the Personal Statement section below for the requirements and recommendations about completing this important component of the application.

7. Letters of recommendation (optional). Two letters of recommendation from individuals familiar with your academic background and/or work ethic, i.e. an instructor, guidance counselor, or employer. Recommendation letters from family members will not be considered. Each letter MUST be sealed, signed, and dated by the author, and each must contain a contact phone number. Recommendation letter templates are available for download online at https://management.digipen.edu/srs-app/. Alternatively, references may write their own letters of recommendation without using the templates. Please note that these letters are NOT REQUIRED for applicants to DigiPen’s undergraduate degree programs.

8. Other official documentation, if applicable. This includes, but is not limited to, TOEFL scores, copy of Permanent Resident card, and a financial responsibility form for international students.

9. Art portfolio. This is only required of applicants to the Bachelor of Fine Arts in Digital Art and Animation (BFA) degree program. Please see the Portfolio section below for complete details about this important component of the application.

10. Optional application components for Game Design applicants:
- BAGD applicants: are portfolio or sketches of level designs.
- BSGD applicants: sketches of level designs, photos of landscapes and urban environments that inspire you, drawings or sketches made by the applicant.

Applicants should not submit electronic games or mods as the Office of Admissions will not install any of these.

**Home-Schooled Applicant Admission Requirements**

DigiPen welcomes applicants from all types of educational backgrounds and encourages home-schooled students to apply. The Office of Admissions evaluates all applicants on an individual basis and considers all aspects of their application materials.

**Home-Schooled Applicants Who Are Washington Residents**

In addition to the standard admission requirements, home-schooled applicants who are from Washington state should submit as much information as possible about their home-schooled experience, including a detailed home-school transcript that provides course titles, a brief description of each course's content, a grade or performance assessment for each course, details about the duration of study, and their graduation or expected graduation date.

**Home-Schooled Applicants from States Other Than Washington**

Due to the diverse nature of home-schooled requirements from one state to the next, DigiPen would prefer:

- Transcripts from a nationally recognized home-school program, OR;
- Detailed home-school transcripts, as described AND passing GED test scores as proof of high school graduation.

Other forms of proof of high school equivalence will be considered on a case-by-case basis; however, these alternative forms of proof should be approved in advance by contacting the Office of Admissions at admissions@digipen.edu.

**Personal Statement**

Your personal statement is an important part of your application for admission to DigiPen Institute of Technology. What you write will help us find out information about you that is not apparent from your application or transcripts.

**Topics**

Please address the following four topics in your personal statement:

1. Reasons for Applying: Discuss your reasons for applying to DigiPen and explain how these reasons relate to your future goals (personal, education, and professional).

2. Demonstration of Analytical Skills: Select from the following two topics and write a cause and effect essay (minimum 500 - maximum 1000 words) about the selected topic. Applicants specifically interested in the Game Design programs must submit the Character or World Analysis, but all other undergraduate applicants may choose to complete either of the following two topics.

   a) **Critique a piece of work:** In less than 500 words, fully describe a game or a piece of artwork (painting, drawing, sculpture, film, etc.) that you disliked. Explain in detail why you disliked it and what you would have done to improve it. Focus on a few key areas, and be specific about your improvements.

   b) **Character or World Analysis:** For this essay, select one of the character or world images (online at www.digipen.edu/gd-images/) to analyze. Keep in mind that the analysis should be written as an essay rather than simply a list of details.
Whether you choose a character or world image to analyze, it is very important that you explain how details in the image led you to your conclusions about the character or world. Consider the following, in no particular order, and feel free to expand on other items that you feel are relevant:

- Type of game that would take place in this world or that the character would be involved in, and reasons for your choice of game type.
- Game play mechanics within the world or that the character is involved in, and why you selected those mechanics.
- Characteristics of the world, such as oceans and amphibian life forms or floating castles and dragons. For a character analysis, describe the characteristics of that individual and compare them to the characteristics of other individuals that would be in the world.
- Time frame and narrative genre: past, present, future; fantasy, science fiction, film noir, etc.

3. Sample of Essay Writing Skills: Select from the following two topics and write an essay (maximum 1000 words) about the selected topic. Game Design applicants must submit a response to the Game Modification Analysis but all other undergraduate applicants may choose either topic:

a) Inspirational Teacher: Teachers can inspire us to do great things. Tell us about a great teacher and what you learned through his or her example or inspiration. You may discuss a schoolteacher, coach, mentor, or someone who taught you something without even realizing it.

b) Game Modification Analysis: Write a two- to three-page (should be more than 700 words but no more than 1000 words) essay about changing the rules for an existing game. In your essay, you must explain the overall goal of your changes. For example, your goal could be (but is not limited to) making the game more compelling, more challenging, easier for new players to understand, or appeal to a broader audience. Be sure to explain in detail each change you made, why you made the change, and how that supports the overall goal. The detailed explanation of why you made each change and how it supports the overall goal is the most important aspect of the essay, not whether your design changes are “correct.”

You will need to make at least three distinct changes to the rules in order to have enough detail for an effective essay. This means that you may not want to pick a sport or game that you are passionate about and do not want to change much -- it is better to pick one to which you want to make significant and interesting changes.

Focus on rule changing for one of the following games:

- Sports: basketball, baseball, hockey, or football (soccer or American football).
- Board Games: Chess, Go, Monopoly, or Settlers of Catan.

4. Optional Essay. Use this optional essay to explain any unusual circumstances or situations that you think may have an impact on your application.

Guidelines for the Personal Statement
Please consider the following:

- Spelling, grammar, and content will be considered, so proofread your personal statement carefully.
- Evaluators will consider the use of correct punctuation, capitalization, use of quotation marks, and sentence structure.
Submission
Applicants may choose to type the answers to the personal statement directly into the online application (in which case, there is an electronic signature and date stamp), to mail a hardcopy to DigiPen’s Office of Admissions, or to email a scanned copy to admissions@digipen.edu where it will be added to the applicant’s file. Those who opt for online submission of the personal statement should be sure to have their answers drafted and prepared before beginning the online application.

Formatting for Hardcopy Submission
Please adhere to the following requirements if submitting the personal statement in hardcopy format:

- Applicant’s name and program to which s/he is applying should be printed at the top of each page.
- Each page should be typed and double-spaced.
- The completed personal statement should be signed and dated on the last page.

Math and Science Requirements and Recommendations for Bachelor of Science Applicants and Bachelor of Arts in Game Design Applicants
In addition to the requirements listed for all undergraduate applicants, those applying to any of the Bachelor of Science programs (RTIS, CE, or GD) must have completed grade 12 or more recent coursework with a recommended “B” average (3.0 GPA) in mathematics.

At a minimum, applicants to any of DigiPen’s Bachelor of Science programs and the Bachelor of Arts in Game Design programs should have completed coursework in Algebra and Geometry. Moreover, Bachelor of Science applicants need to have completed Pre-Calculus -- or be in the midst of completing it -- before we can evaluate their application. Please note that if an applicant is currently enrolled in Pre-Calculus, he or she must submit the first quarter/semester grade for this course.

Admissions will try to evaluate his or her application based on the current grade in Pre-Calculus. Applicants who have not completed pre-calculus or are not currently enrolled in a pre-calculus course should contact admissions@digipen.edu for recommendations on fulfilling this requirement.

Additionally, applicants to the Bachelor of Science programs are encouraged to take Calculus, Physics, Computer Science, and related AP courses before coming to DigiPen.

Portfolio
DigiPen’s intent in reviewing applicants’ portfolios is to ensure that students have appropriate foundational skills relative to the degree program to which they are applying.

Portfolio Requirements for BFA Applicants
Applicants to the Digital Art and Animation (BFA) degree program must submit an art portfolio. This portfolio should contain between 15-20 samples of original artwork by the applicant for review. At least ten pieces of the portfolio must be drawings from direct observation; they may not be from photos or other 2D reference or from the student’s imagination. The rest of the pieces beyond the first ten drawings should demonstrate an applicant’s artistic range and skill. Samples of animation, figure/animal studies, character designs, architectural renderings, landscape studies, sculpture, and painting are preferred for this part of the portfolio. BAGD applicants who choose to submit art portfolios may include sketches of level designs for games. If necessary, DigiPen may request more samples for review.

The portfolio should demonstrate the following:

1. The applicant has adequate foundational drawing skills to handle the rigors of the curriculum. The portfolio should include at least ten drawings directly from live observations, preferably of people and animals (not from an applicant’s imagination or from two-dimensional references such as a photograph or another artist’s work). The drawings should clearly
communicate the structure and three-dimensional form of the subject. The emphasis should be on representational accuracy rather than on cartooning or heavy stylization.

2. The applicant is a serious amateur artist. The portfolio should include five to ten samples of the applicant’s best work regardless of subject matter or medium. Sustained drawings (2-3 hours each) are highly encouraged to demonstrate the applicant’s skill and concentration. This work should be selected with an eye toward quality, design, composition, and a dedication to craft.

Guidelines for All Portfolio Submissions
Please keep the following in mind when submitting your portfolio:

- Applicants are encouraged to use the online submission portal through: https://digipen.slideroom.com

- Applicants who submit their portfolios on CDs or in binders should label portfolios clearly with their full name on the front.

- All artwork should be labeled with the date of completion and medium used.

- Color copies, photocopies, slides, photographs, or work contained on CDs will be accepted, since portfolios will NOT be returned.

- Applicatns who submit hard copies of artwork should contain their portfolios in 8.5x11-inch binders.

- Note: Applicants should avoid including samples of work that rely heavily on Animé characteristics with exaggerated physical features such as large eyes, big hair and elongated limbs. In general, portfolios should not include samples copied directly from Manga, Animé, Disney or the like. These types of work have a very specific visual language and too much mirroring of this nature will hinder one’s growth as an artist. Instead, we would like to see how you draw from observation or your own imagination.

Graduate Application Process
All Master of Science in Computer Science applicants should complete their application by July 1 to guarantee timely evaluation of their application. Any applications completed after July 1 may not be evaluated for the current application year. All graduate applicants must submit the following:

1. DigiPen Institute of Technology Application for Admission. The preferred submission method is online, but all applications will be given equal consideration.

2. $35.00 application fee. If an applicant is denied admission to the program, DigiPen will refund the application fee.

3. Official Graduate Record Examination (GRE) scores for the General Test. All graduate applicants must complete the GRE General Test and arrange for the testing agency to send those scores directly to DigiPen Institute of Technology. GRE code: 4193. Students applying to DigiPen’s Master of Science in Computer Science should note that an acceptable score for the combined GRE verbal and math portions should be at least 1000 or higher. In special cases of highly qualified applicants, we will consider those who do not meet this minimum acceptable score but who have other overriding strengths in the areas of specialization relevant to this program. All applicants with an undergraduate degree in any major other than Computer Science or Computer Engineering are required to submit scores for the GRE Subject Test in Computer Science as well.

4. Official transcripts from ALL colleges and universities attended. International students should submit attested copies or certified true copies of all academic records. See more about this requirement in the “International (Non-U.S. Resident) Applicants” section if an applicant has transcripts and other official documentation in languages other than English.
Applicants must provide evidence of their completion of a bachelor’s degree with a recommended minimum 2.5 cumulative GPA; for international students, DigiPen will determine the minimum academic performance standards based on the educational system of the individual applicant.

- Official transcripts from all colleges and universities attended must be sent directly by the issuing institutions. Alternatively, applicants may send their transcripts if they are SEALED in envelopes and STAMPED across the seal by the Registrar.

5. Two letters of recommendation. These MUST be from individuals familiar with your academic background and/or work ethic, i.e. an instructor, guidance counselor, or employer. Recommendation letters from family members will not be considered. Each letter MUST be sealed, signed, and dated by the author, and each must contain a contact phone number. Please download the recommendation letter templates online at https://management.digipen.edu/srs-app/; alternatively, references may write their own letters without using the templates.

6. Statement of Purpose. Guidelines for the Statement of Purpose will be included on the Application for Admission.

7. Other official documentation, if applicable. This includes, but is not limited to, TOEFL scores, copy of Permanent Resident card, etc.

International (Non-U.S. Resident) Applicants

DigiPen Institute of Technology welcomes students from all countries and cultures. Because of language and educational differences, DigiPen does require some additional information from international applicants in order to ensure a successful experience for students. International applicants are also asked to complete the application process early to allow time to process required documents for the U.S. Immigration and Customs Enforcement (ICE).

In addition to attested copies or certified true copies of all academic records and any other degree-specific requirements found under the undergraduate or graduate admission requirements, all international applicants must meet the following minimum requirements:

1. Proficiency in the English Language (see the section Proof of Proficiency in the English Language)

2. Financial Responsibility: Evidence indicating that sufficient funds are available for the eight-month period of study and living expenses must be submitted to DigiPen and made available to the U.S. ICE upon entry into the United States. The Financial Responsibility Form must be submitted, regardless of whether or not a student is living in the U.S.

International students intending to study at DigiPen must obtain an F-1 visa from the U.S. ICE. An F-1 student is a non-immigrant who is pursuing a full course of study towards a specific educational or professional objective at a school in the United States. Once that objective has been attained, the F-1 student is expected to return to his or her residence abroad. International students should note their citizenship on the application form for admission. If accepted, DigiPen will send you a Form I-20 (Certificate of Eligibility for Nonimmigrant [F-1] Student Status). If you are a foreign citizen and are accepted, but do not receive a Form I-20 in your acceptance packet, please contact the Office of Admissions.
After you receive your I-20 form, take it to the nearest U.S. consulate to obtain a student visa. Please note that the visa process may take several months to complete, so DigiPen recommends that you complete your application process early. You must also take your Financial Responsibility Form and documents to prove that you have sufficient financial resources for your education and stay in the United States. For more information on visas, please consult the U.S. Immigration and Customs Enforcement web page at www.ice.gov. International students transferring to DigiPen from another institution within the U.S. must provide DigiPen with a completed Transfer-In Form to ensure that their I-20s are updated accordingly. Transfer-In Forms can be obtained on DigiPen’s website or by contacting admissions@digipen.edu. International students who will be bringing a dependent with them to the U.S., such as a child or spouse, will need to complete the appropriate sections of the Financial Responsibility Form to ensure that an I-20 can be issued to their dependent.

Applicants who are Permanent Residents of the United States do not need a student visa; however, they must prove their immigration status by submitting a copy of their permanent residency card and marking the appropriate citizenship status on the application for admission. The copy of the permanent residency card confirms that a student is a legal resident and that he or she may pursue studies at DigiPen. Permanent residents are subject to the same rights, services, and rates as U.S. citizens.

Proof of Proficiency in the English Language
Non-native English speakers must provide proof of English proficiency in one of the following ways:

- A minimum Test of English as a Foreign Language (TOEFL) score of 550 (paper exam), 213 (computer exam), or 80 (IBT - Internet-Based Test). TOEFL code: 4138.
- A minimum International English Language Testing System (IELTS) score of 6.5 or higher.
- Completion of four years of high school in the United States at an English-speaking school, or an International School where the primary language of instruction is English.
- Completion of a bachelor’s degree at an English-speaking institution.
- DigiPen may accept other proof of English proficiency, such as through the submission of internationally recognized standardized English test scores, the completion of English preparatory coursework, or internal English assessments on a case-by-case basis.
- DigiPen may use its discretion and own internal assessments in determining sufficient English proficiency for students transferring from one DigiPen campus or program to another.

Admission/Denial to DigiPen’s Programs
DigiPen considers every part of an applicant’s materials and qualifications when evaluating him or her for admission. Meeting the minimum standards is not a guarantee for admission. Applicants who exceed the minimum standards are more likely to be admitted.

International Students with Transcripts in Languages Other than English
You must submit all credentials in both the original language and English. The English translation must be literal, or word-for-word. For information on qualified translators in your area, please contact the American Translators Association (www.atanet.org) or another recognized translation service. Please note that self-translated copies are not acceptable. All transcripts and diplomas must be issued by the degree-granting university. If your university issues official documents in English, an additional English translation is not required.
Accepted undergraduate and graduate applicants will receive an enrollment packet via standard mail. This packet will include a student enrollment agreement, information on financial aid, student affairs information, and, if applicable, a request to furnish proof of high school graduation or completion of a bachelor's degree before the start of classes in the fall. By returning the signed enrollment agreement, proof of graduation, and the enrollment fee, an applicant has confirmed enrollment. Applicants who are accepted and enroll are required to attend an official orientation session prior to the start of the program.

Applicants who are not accepted to the Institute will receive a letter of denial by mail. If an applicant is denied admission to a degree program, the application fee will be refunded. When possible, DigiPen will attempt to provide information about the specific areas in which an applicant needs improvement if he or she wishes to reapply in subsequent years. Please see the section on re-applying for more information.

Reapplication Process
Applicants who are denied admission are encouraged to re-apply for a future year. By improving the areas suggested on the original decision letters (i.e. improving grades by taking community college courses, devoting more time and energy to a new art portfolio, etc.), many of those individuals re-applying for admission are accepted. To re-apply, applicants should submit a new application form and indicate that they have applied previously for admission. The Office of Admissions retains all materials submitted by applicants for a period of five years. Therefore, items such as transcripts, letters of recommendations (optional for applicants to DigiPen's undergraduate degree programs), and test scores can be transferred from an applicant's original file to the new application file. Students who are re-applying need to supply the following materials only:

- New application form. Please submit online.

- $35.00 application fee.

- Any new or updated documents, such as new transcripts, new test scores, etc.

- One additional letter of recommendation if those already on file are more than twelve months old. Please note that letters of recommendation are REQUIRED for applicants to DigiPen's graduate program but are NOT REQUIRED for applicants to the undergraduate degree programs.

- A short essay describing the progress and improvements that the applicant has made in the areas recommended in the original decision letter.

- After submitting their new application, applicants are encouraged to contact the Office of Admissions by email at admissions@digipen.edu to confirm whether any additional materials are needed for the completion of their application.

Readmission Information
Any student who wishes to return to DigiPen after an absence may apply to do so by completing a Readmission Application and submitting a non-refundable application fee, official transcripts from all institutions attended since last attending DigiPen, and other official documentation for specific circumstances as requested below:

Medical Withdrawals
A physician's statement must be included, and it must indicate that you are ready to resume your studies. Additionally, it should describe any special needs you may require upon your return to the Institute.

Readmission after Academic Dismissal
A statement explaining what you have been doing since you last attended the Institute, why you would like to return, and how you plan to be successful by returning should be submitted as part of your application for readmission. Please note that you are not eligible to apply for readmission until at least one year has passed since your formal dismissal from the Institute. It is highly recommended that you take the time away to raise your GPA through college-level coursework in order to boost your chances of being readmitted.
Readmission after Disciplinary Action
Please include a formal appeal for the Disciplinary Committee to review along with your application for readmission. You must receive clearance from the Disciplinary Committee to return.

Readmission for Personal Reasons
There are usually no impediments to returning to the Institute if there is space available; however, an academic plan may need to be developed with your advisor upon re-enrollment, and students requesting readmission after an extended period of time must meet with an academic advisor to determine the viability of completing their degree program.

Readmission after Non-Payment of Account
You must first settle your account before applying for readmission. Once you have settled your account, the policy for readmission follows the same guidelines listed under Readmission for Personal Reasons.

Readmission after Military Service
In compliance with the Higher Education Authorization Act, any student whose absence from the Institute is required by reason of service in the uniformed services shall be entitled to readmission to the Institute if the student (or an appropriate officer of the Armed Forces or official of the Department of Defense) gives advance written or verbal notice of such service to the Registrar’s Office. This is provided that the cumulative length of the absence and of all previous absences from the Institute, by reason of service in the uniformed services, does not exceed five years, and, except as otherwise provided in this section, the student submits a notification of intent to re-enroll in the Institute.

Readmission into a New Degree Program
Readmission applicants who would like to return to DigiPen as a student but enter into a new degree program must submit any additional materials required for entrance into the degree program to which you would like to change (ie. Art portfolio, game modification, character/world analysis, etc.). To review the exact requirements for the program to which you are seeking admission, please view the “Change of Major” information online or in the course catalog or contact the Office of Admissions at admissions@digipen.edu.

Deadline for Readmission Applications
Students interested in applying for readmission must submit their completed applications by the deadlines listed in the academic calendar and on DigiPen’s website, according to the semester they are applying for.

Exceptions to these requirements will only be made on a case-by-case basis at the discretion of the DigiPen Administration.

Submission of Official Transcripts
All readmission applicants to DigiPen must request an official transcript from DigiPen’s Registrar’s Office to be sent to the Office of Admissions as part of their application. If you have taken courses from another college since leaving DigiPen, you must also have any and all official transcripts forwarded to the Office of Admissions from the registrar of each institution attended. The transcripts should show all academic work until the last semester or quarter you completed. If you are approved for readmission with coursework in progress, your admission status will be provisional, pending receipt of your final transcript(s).

Non-Matriculated Studies
Applicants who are interested in taking individual courses that are part of DigiPen’s degree programs may register for them based on each semester’s course offerings and availability. Applicants will be handled on a first-come, first-served basis.

1. Applicants to the Non-Matriculated Studies program
must show proof of graduation from high school and a minimum 2.5 GPA in their most recent studies for acceptance into the program.

2. Upon application, a degree program track must be selected.
   - To follow a Bachelor of Science track, applicants must show a “B” average in math and having completed coursework through a minimum of Pre-Calculus.
   - To follow a Bachelor of Arts or Bachelor of Fine Arts track, applicants must submit an art portfolio.

3. Students must pass or show proof of having passed prerequisite courses before they are able to register for more advanced courses. Waiver exams may be administered if the student feels he or she has achieved proficiency.

4. Students must earn a “C-” or better to pass courses that are core to their chosen track.

5. Students must maintain a minimum 2.0 GPA in order to remain enrolled in the Non-Matriculated Studies program. Enrollment is on a continuous basis unless students do not register for classes for a given semester.

Please note that courses taken in the Non-Matriculated Studies program do not lead to a degree and are not applicable to earning a professional certificate from DigiPen.

Students may apply for course waivers if they can demonstrate that their knowledge and skills - whether they were gained by formal education, exam, work experience, or life experience - are equivalent to those gained by courses offered at DigiPen Institute of Technology. Credit may be granted through other means: Advanced Placement (AP) Exam scores, International Baccalaureate courses, College-Level Examination Program (CLEP) subject exam scores, or transfer credits from other post-secondary institutions. A maximum of nine credits per semester may be earned by these means. For undergraduate programs, no less than 75% of a student's total program must be taken at DigiPen. Graduate programs allow a maximum of six transfer credits from other colleges and other DigiPen programs. Course transfers and waivers are processed at $25.00 per credit.

Course Waiver Examinations
Students may meet an academic requirement, within specified limits, by passing a waiver examination at least equal in scope and difficulty to a final examination in a course. Successful completion of the examination waives the curricular requirement for a specific course but does not result in credit earned. Waiver credits will not reduce the total number of semester hours required for a degree; however, they will increase the available number of elective hours for a degree. Waiver examinations must be taken prior to the final semester of residence at DigiPen, and they may not be repeated.

Students have the opportunity to waive designated core courses by demonstrating mastery of the material in two steps:

1. A waiver petition to the respective department, indicating prior academic coursework and relevant work experience in the subject area; and

2. Performance on a placement exam offered by the respective department at the beginning of each term.
To petition waiving a core course, the student must complete a waiver request for each course, submit a transcript or photocopy of transcript with relevant coursework highlighted, and submit the requests to the Office of the Registrar. Waiver requests may be completed online through the SRS system. Once submitted, approval of waiver requests are decided by the department appropriate to the courses. For waiver requests received by July 1, students will receive notification by August 1. Waiver requests arriving in the Office of the Registrar after July 1 will be handled on a rolling basis, as faculty schedules allow. Results of waiver requests received after the deadline are not guaranteed to be available before the start of classes.

It is not possible to predict the results of faculty review of core course waiver requests. Core courses generally include intermediate-level material, so a student who has completed only introductory work in a subject is not likely to be granted a waiver. Faculty take many factors into consideration, including the academic caliber of the school where the course was taken, the difficulty of the text, the grade received, and the time elapsed since completion of the course.

The following restrictions apply to all waiver examinations:

1. A student must have an approved waiver request on file before credit by examination can be recorded on the permanent record.
2. A student must be currently enrolled before a waiver examination can be recorded on the permanent record.
3. A maximum of 15 semester hours may be waived toward a bachelor degree.
4. Examinations may not be repeated.
5. Repeat course work and “F” grades are not open to waiver requests.
6. Students may not take waiver examinations on courses they have audited.

**Advanced Placement Examinations**

Course waivers or credit may be granted for satisfactory achievement on Advanced Placement Exams of the College Entrance Examination Board taken within the last ten years. An exam score of four or above earns from three to six course waiver credit hours. No grades will be assigned to the courses, nor will they be figured into a student's grade point average. Courses waived or transferred are entered on students’ transcripts, but no grades or quality points are awarded. Official results must be sent to the Registrar before course waivers or transfers are granted.

A maximum of two courses may be waived or transferred through AP examinations, and these may be applied to satisfy DigiPen’s degree requirements. The examinations and the courses for which waiver hours or credit are granted are listed below. Waivers/credit granted for a specific course count toward the satisfaction of any requirement toward which the listed course counts.

<table>
<thead>
<tr>
<th>AP Exam</th>
<th>Minimum Score</th>
<th>DigiPen Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art - History of Art</td>
<td>4</td>
<td>ART 210</td>
</tr>
<tr>
<td>English - Literature and Composition</td>
<td>4</td>
<td>ENG 110</td>
</tr>
<tr>
<td>English - Language and Composition</td>
<td>4</td>
<td>ENG 110</td>
</tr>
<tr>
<td>History - World History</td>
<td>4</td>
<td>HIS 100</td>
</tr>
<tr>
<td>Japanese</td>
<td>4</td>
<td>JPN 101</td>
</tr>
<tr>
<td>Mathematics - Calculus AB</td>
<td>4</td>
<td>MAT 150</td>
</tr>
<tr>
<td>Mathematics - Calculus BC</td>
<td>4</td>
<td>MAT 150</td>
</tr>
<tr>
<td>Physics B - Physics (Introduction)</td>
<td>4</td>
<td>PHY 115</td>
</tr>
<tr>
<td>Physics C - Physics (Mechanical)</td>
<td>4</td>
<td>PHY 200</td>
</tr>
<tr>
<td>Psychology</td>
<td>4</td>
<td>PSY 101</td>
</tr>
</tbody>
</table>
International Baccalaureate (IB)

In general, three semester credit hours are waived for each Higher Level subject in which a score of five or greater was earned in the last ten years.

The IB course and score listed below is eligible for waiver hours at DigiPen.

<table>
<thead>
<tr>
<th>Course &amp; Level</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>English (A1 &amp; A2) - HL</td>
<td>5, 6, 7</td>
</tr>
</tbody>
</table>

College-Level Examination Program (CLEP)

There are two types of CLEP examinations: General and Subject. DigiPen grants credit or course waivers for Subject Examinations only, and credit will be given only in those areas in which comparable courses are offered at the Institute. Courses waived or transferred are entered on students’ transcripts, but no grades or quality points are awarded. These exams may not be repeated. Examination must be taken prior to the student’s completion of a total of 40 hours of college credit, and official results must be sent to the Office of the Registrar.

CLEP offers a number of subject-matter examinations. Students obtaining the percentiles established by the mathematics, computer science, and humanities and social sciences departments will receive credit toward those basic requirements. Students wishing credit in courses other than those listed above should consult the appropriate departmental chair. DigiPen will grant credit to students who pass the CLEP Subject Examinations approved by the department appropriate to the examination. The score necessary to receive credit through a Subject Examination will be the mean score achieved by C students in the national norms sample. The appropriate department will determine the number of course credits to be given for passing a Subject Examination.

Students should check with the College Board at www.collegeboard.org for further details and information concerning test centers and dates.

Transfer Credit

Credit earned by examination at other colleges or universities in the last ten years may be transferred, provided such credit meets the guidelines used by DigiPen Institute of Technology. The Registrar will evaluate college credits earned elsewhere with respect to graduation requirements at DigiPen. Developmental classes, orientation classes, or classes in which a student receives a “Pass” are not eligible for transfer credit consideration. Courses transferred or waived are entered on transcripts, but no grades or quality points are awarded.

Transfer credit may be accepted subject to the following conditions and restrictions:

1. The course(s) offered for transfer must be taken at an accredited institution, and these courses must appear on official transcripts from the institution.

2. The course(s) must be comparable in academic quality to DigiPen courses; transfer credit will be denied for courses not meeting this standard. Accordingly, current students are strongly urged to seek transfer approval from their advisor and the Registrar using the form provided for this purpose prior to enrollment in any course for which transfer approval might be sought.

3. Transfer credit will be considered for courses in which the grade of “B-” or better is recorded.

4. Courses transferred to a student’s major may also require a validation examination in order to be accepted.

5. “Credit” or “Pass” grades will not be accepted for transfer.
If a course is accepted for credit, it will be counted as a transfer credit. No grade points from such transfer courses will be calculated in the DigiPen grade point average. However, grades transferred for courses taken in residence at institutions with which DigiPen has direct, formal institutional exchange agreements are exempt from this policy and will be recorded. Courses transferred in may not be used to substitute improved grades for passing grades earned at DigiPen.

Articulation Agreements
Credits from a college with an articulation agreement with DigiPen Institute of Technology will be accepted, and grades earned will be included in students’ DigiPen transcripts. Please contact the Registrar for a list of colleges with articulation agreements.

Credit Evaluation Forms
Application forms for challenge and waiver examinations may be obtained from the Registrar or online. A student must have approval for an exam prior to taking it.

Transferability of Credits to Other Institutions
A student wishing to transfer DigiPen credits to another institution may request the Institute to furnish transcripts and other documents necessary to a receiving institution. The Institute advises all prospective students that the courses and credits reflected on their transcript may or may not be accepted by a receiving institution. Students should inquire with the specific receiving institution about the transferability of DigiPen credits.

Granting Credits for Work Experience
DigiPen does not grant credit for work experience.

Standards of Progress

Semester Credit Hour
The semester credit hour is the basic unit of credit awarded at the Institute. The academic value of each course is stated in semester hour credits. As a rule, one semester credit hour of academic credit is given for at least 15 hours of classroom contact, at least 30 hours of supervised laboratory time, at least 30 hours of documented independent study activities, or at least 45 hours of internship or work-related experience. In addition, undergraduate students typically will be expected to spend two hours in preparation outside of class for each hour of lecture. Additional outside work may be required for laboratory or studio classes. During the summer session, the student earns semester credit hours for class contact hours that are equivalent to those provided in the fall and spring semesters. Whenever “semester hour” is used in this Catalog, it is synonymous with “semester credit hour” (SCH). A classroom contact hour is 53 minutes in length.

Grading System
The following system applies to undergraduate students; for information on the grading system for graduate programs, please refer to the Master of Science in Computer Science program section.

The following grading system is in use and, except where otherwise specified, applies to both examinations and term work. The weight of a final examination grade is a matter individually determined by each instructor. See the following Grade Point Average section for additional information.

A Excellent = 4.0 quality points
A- Excellent = 3.7 quality points
B+ Good = 3.3 quality points
B Good = 3.0 quality points
B- Good = 2.7 quality points
C+ Fair = 2.3 quality points
C Fair = 2.0 quality points
C- Fair = 1.7 quality points
D Poor = 1.0 quality points; lowest passing grade; failing grade for major
F Failure = 0 quality points
The following grades do not affect the GPA:

AU - Audit
Indicates that the student attended the course without expectation of credit or grade.

IP - In Progress
Indicates that the grade was not available from the instructor at the time the transcript was printed.

I - Incomplete
This grade is used when circumstances beyond a student's control prohibit the student from taking the final exam or completing course work. It is not a grade given to students who need to retake a course because the student has fallen substantially behind. Students will not be given an “I” grade for unacceptable reasons, including, but not limited to, the need to rewrite a paper, the demands of a time-consuming job, the desire to leave town for a vacation or family gathering, the desire to do well on tests in other courses, etc. Students who want to repeat a course can drop it prior to the end of the eighth week of classes, and they will receive a “W” (see “Withdrawal” below). Otherwise, the instructor will assign the appropriate final grade (“D” or “F,” for example).

Arrangements for the “I” grade and its completion must be initiated by the student and agreed to by the instructor. An Assignment of Final Grade for Completion of an Incomplete (I) Form must be completed each time a grade of “I” is assigned. On the form, the instructor will specify to both the student and the department the work remaining to be done, the procedures for its completion, the grade in the course to date, and the weight to be assigned to work remaining to be done when the final grade is computed.

If make-up work requires classroom or laboratory attendance in a subsequent term, the students should not register for the course again; instead, the student must audit the course and pay audit fees. If the make-up work does not require classroom or laboratory attendance, the instructor and student should decide on an appropriate plan and a deadline for completing the course. When the student completes the course, the instructor will submit a change of grade to the Registrar’s Office. Should the work not be completed within the agreed upon time frame, the Institute will assign a grade of “F.”

These procedures cannot be used to repeat a course for a different grade. An “I” grade will not be assigned to a student who never attended class; instead, instructors may assign a failing grade.

W - Withdrawal
Indicates withdrawal from the course before the end of the eighth week of classes or withdrawal from the Institute. The grade of “W” will not be assigned to any student who has taken the final examination in the course. An instructor may not withdraw a student from a course.

P - Pass
Given for internship, seminar, and thesis courses.

Grade Reports
Reports of the final grade in each course will be made available online to students soon after the close of each semester. However, grade reports may be withheld from students who have delinquent accounts with the Administration Office, Security, or Library.
Satisfactory Progress

Federal Regulations mandate that Institutions of Higher Education create a Satisfactory Academic Progress (SAP) standard for students receiving financial assistance under the federally supported Title IV programs. The point of SAP standards are to measure a student’s progress toward the completion of their education program. The Financial Aid Office is responsible for ensuring that all students receiving federal Financial Aid are meeting these standards by conducting an evaluation at the end of each term.

The SAP standards established in this policy apply to all Title IV Financial Aid programs administered by the Institution. This includes Unsubsidized FFEL loans, Subsidized FFEL loans, FFEL PLUS loans, FFEL Grad PLUS loans, Federal Pell Grant, Federal Academic Competitiveness Grant, and the National Science and Mathematics Access to Retain Talent Grant.

The Institute’s SAP policy is the same for all students, regardless of whether they are receiving federal financial aid or not. To be eligible for any of the types of Financial Aid listed above, a student must be:

1. Matriculated
2. Meeting the terms of the this SAP policy

A SAP policy is comprised of two standards: qualitative and quantitative. The qualitative standard measures academic performance by the cumulative grade point average. The quantitative standard measures the total number of academic credits earned within the specified time periods. Financial Aid recipients must meet all of these standards to qualify for aid.

Grade Point Average

The academic standing of each student is determined on the basis of the grade point average (GPA) earned each semester. The GPA is determined by using the quality points assigned to each course grade a student earns. The quality point value for each grade earned during a semester is multiplied by the number of credit hours assigned to that course as listed elsewhere in this catalog. The sum of these points is the total number of quality points earned during the semester. This sum is divided by the number of credit hours attempted (hours from courses with grades of “A” through “F”) to obtain the GPA.

The cumulative GPA consists of all courses completed at DigiPen. If multiple attempts were made for the same course, only the grades earned in the two most recently completed attempts are calculated in the cumulative GPA. Course grades of “AU,” “I,” “W,” “S,” “U,” and “P” are non-punitive grades, so they are not calculated in the overall GPA since they carry no quality points.

The following example will help you calculate your grade point average:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Grade</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 100</td>
<td>3</td>
<td>A</td>
<td>12.0 (3 x 4.0)</td>
</tr>
<tr>
<td>CS 100L</td>
<td>1</td>
<td>A</td>
<td>4.0 (1 x 4.0)</td>
</tr>
<tr>
<td>MAT 100</td>
<td>4</td>
<td>A-</td>
<td>14.8 (4 x 3.7)</td>
</tr>
<tr>
<td>CS 105</td>
<td>3</td>
<td>B</td>
<td>9.0 (3 x 3.0)</td>
</tr>
<tr>
<td>ENG 110</td>
<td>3</td>
<td>D</td>
<td>3.0 (3 x 1.0)</td>
</tr>
<tr>
<td>CS 120</td>
<td>3</td>
<td>B+</td>
<td>9.9 (3 x 3.3)</td>
</tr>
<tr>
<td>CS 120L</td>
<td>1</td>
<td>A-</td>
<td>3.7 (1 x 3.7)</td>
</tr>
<tr>
<td>Totals</td>
<td>18</td>
<td></td>
<td>56.4</td>
</tr>
</tbody>
</table>

Total grade points divided by total credits equals the cumulative grade point average. Therefore, the grade point average for the above example is 56.4 divided by 18 for a 3.13 GPA.
DigiPen requires students to fully attempt and successfully complete at least 67% of their work attempted by the end of each semester. For full-time students, this should include registration for at least 12 credits per semester and successful completion of 12-14 credits per semester (depending on major). “Full attempt” is defined as the receipt of a final letter grade (“A” to “F”) but not the receipt of a “W” or an “I.” Successful completion is defined as the receipt of a passing letter grade (“A” to “C-” in a degree’s core courses, and “A” to “D” in non-major courses). Core courses and non-major courses are denoted under each individual degree program’s recommended sequence of required classes chart. The Registrar makes decisions on student status.

A program of study must be completed within a reasonable period of time for a student to be eligible for graduation; that is, the credit hours attempted cannot exceed 1.5 times the credit hours or more than 1.5 times the recommended time required to complete the program. The Registrar will withdraw from the Institute full-time students who do not complete their studies during this time frame.

In addition, frequent withdrawals from courses or from the Institution, failed or repeated courses, changes of major, or taking courses that are not related to the student’s degree program could put the student’s financial aid eligibility at risk. All attempted hours at the Institution and accepted transfer credits will count toward the maximum time frame for SAP. Students who have completed sufficient hours to finish their degree program are no longer eligible for financial aid. For financial aid recipients, if it is determined that a student will not be able to complete their degree within the maximum allowable time frame, eligibility for student financial aid may be revoked.

Changing Majors and Satisfactory Academic Progress (SAP)
All courses that are deemed transferable to a student’s new degree program are considered when calculating a student’s satisfactory progress (SAP). Courses that are not part of the new major are not used.

Students should refer to the section Change of Major and Graduation for information about how to change majors.

Undergraduate Students
A student must be in “good academic standing” based on the cumulative grade point average of all courses taken at DigiPen Institute of Technology to meet the qualitative standard. Good academic standing is as follows:

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Minimum GPA Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 50% of program</td>
<td>1.8 or better cumulative GPA</td>
</tr>
<tr>
<td>• 77 attempted credits for RTIS, BSCE, or BSGD</td>
<td></td>
</tr>
<tr>
<td>• 73 attempted credits for BAGD</td>
<td></td>
</tr>
<tr>
<td>• 72 attempted credits for BFA*</td>
<td></td>
</tr>
<tr>
<td>Over 50% of program</td>
<td>2.0 or better cumulative GPA</td>
</tr>
<tr>
<td>• 78-153 attempted credits for RTIS, BSCE, or BSGD</td>
<td></td>
</tr>
<tr>
<td>• 74-146 attempted credits for BAGD</td>
<td></td>
</tr>
<tr>
<td>• 73-143 attempted credits for BFA*</td>
<td></td>
</tr>
<tr>
<td>100% of program</td>
<td>2.0 or better cumulative GPA</td>
</tr>
<tr>
<td>• 154 attempted credits or greater for RTIS, BSCE, or BSGD</td>
<td></td>
</tr>
<tr>
<td>• 147 attempted credits or greater for BAGD</td>
<td></td>
</tr>
<tr>
<td>• 144 attempted credits or greater for BFA*</td>
<td></td>
</tr>
</tbody>
</table>

* An attempted credit is defined as any credit that is awarded a final letter grade (“A” to “F”). Credits earning a “W” or “I” are not considered attempted credits.

Appeals involving extenuating circumstances may be addressed to the Chair of the Student Appeals and Discipline Committee for action and resolution.
Graduate Students
Graduate students who take the undergraduate-level classes to make-up an admission deficiency must earn a “B” (or better) for such a class to meet the minimum requirement. During the course of graduate study at DigiPen, students are required to maintain a cumulative GPA of 3.0 at the graduate level. If the cumulative GPA falls below the required standard, the student will be placed on academic probation. Probationary students must earn 3.0 GPA or better in their graduate-level classes in subsequent semesters until the cumulative GPA reaches 3.0 or above. Students who fail to attain a 3.0 in graduate-level classes during a probationary semester will be academically terminated. Terminated students may apply for readmission after a 12-month suspension.

Graduate students who fail to complete their program within 55 attempted credits will be placed on academic probation. Probationary students shall work with their graduate advisors to develop a completion plan that outlines the quickest path to completion. Failure to meet the terms of this plan will result in academic termination.

Passing Classes and Graduation
Undergraduate Students
All undergraduate students must have a cumulative GPA of at least 2.0 to graduate.

Graduate Students
During their course of study, graduate students must have an overall 3.0 GPA to graduate.

Academic Probation
Students who fail to maintain the required minimum cumulative GPA or who fail to complete their academic program within the maximum attempted credits allowed will be placed on Academic Probation.

Failing to Meet Minimum GPA Requirement
Students who fail to maintain the required minimum cumulative GPA will be placed on Academic Probation the semester following the one where their cumulative GPA falls below the minimum required. Students are removed from Academic Probation as soon as their cumulative GPA is above the minimum required grade point average. Students who earn a 2.0 during their probationary semester but do not raise their cumulative GPA above the minimum requirement will continue Academic Probation until their cumulative average meets the minimum requirement. While on Academic Probation, students will be restricted to a maximum course load of 15 credits of which 50% must be core courses as defined in the course catalog. Probationary students must achieve a GPA of 2.0 or higher during their probationary semester. Failure to satisfy these requirements will result in academic expulsion, and expelled students must wait 12 months before they can reapply for admission.

Students with a cumulative GPA of 0.5 or lower are not eligible for Academic Probation and become academically ineligible to continue. They will not be allowed to re-register for a period of one academic year. Any student in this circumstance may reapply for admission after they have served one year on suspension.

Failing to Complete Program within the Maximum Time Frame
Students who fail to complete their degree program within the maximum time frame, as defined under the satisfactory progress policy, will be placed on Academic Probation to direct them towards completion. Working with their academic advisor, these students will develop a program completion plan that outlines the quickest path to completion. These students will be held to the same conditions of probation as outlined above, with the exception that the maximum credit load per semester is waived.
Grade Changes and Appeals
Only the faculty member who administered the grade may make grade changes. In cases where the faculty is not available to consider a grade change, the department chair, in consultation with the Dean of Faculty, may make such a change.

Grade appeals must be made within 14 days of final grades being issued. Using the Grade Appeal Form, appeals are made in writing to the course instructor or the department chair if the instructor is unavailable. Students may appeal to the department chair and then the Dean if a satisfactory resolution is not achieved.

Repeating Courses
Students may repeat any course in which they did not receive a passing grade (below a “C-” in a core course, below a “D” in a non-core course), as long as they are in good standing with the Institute and eligible to continue their studies. All grades and attempted classes remain on a student’s transcript. However, only the grades earned in the two most recent attempts of a course are calculated in a student’s GPA. Courses in which a student has earned a passing grade may be repeated as audit courses only.

Course Overload
During a given semester, sophomores, juniors, and seniors may be enrolled in a maximum of 21 credits. Freshmen should check their majors for specific semester maximums. Students seeking special permission to take more than the maximum credits in a given semester should use the Override Form and get approval from their academic advisor.

Attendance
Students more than 15 minutes late to class will be marked as absent for that entire class. Students may not leave class early without instructor permission. Students absent from all classes without explanation for a period of two consecutive weeks or more are considered to have withdrawn from the Institute as of their last date of attendance.

Withdrawing from Individual Classes
To withdraw from individual classes, a student must complete the appropriate withdrawal form, either in person or online. Students below the legal age must have a parent or guardian submit the withdrawal notice.

Withdrawing from the Institute
To formally withdraw from the Institute, a student must submit a completed Withdrawal Notice Form to the Office of the Registrar. Withdrawal Notice Forms may be obtained from Student Affairs or Financial Aid. Students below the legal age must have a parent or guardian submit the withdrawal notice.

Upon withdrawing from DigiPen, the student shall immediately return all materials in his or her possession relating to the program, whether created by the student or other students, or provided by the Institute.

Hardship Withdrawal
Students may seek a hardship withdrawal when one of three conditions prevents a student from completing all courses: death of a close family member, catastrophic illness in the family, or injury or illness that incapacitates the student. Hardship withdrawals may be sought any time after the last date to withdraw from classes, as listed in the Academic Calendar, but not after all materials for a course have been completed (i.e., after submitting the final exam or final assignment). The Hardship Withdrawal Form, a personal statement, and appropriate documentation (i.e., death certificate, obituary, letter from a state-licensed physician or mental health professional) must be provided to support all requests to Student Affairs. Once all documents are received, Student Affairs will forward the documents to the Hardship Withdrawal Review Committee.

If the committee grants a hardship withdrawal, the student will receive “W” grades in all classes and is ineligible to receive a grade or an incomplete in any class in that semester. The student will be withdrawn from DigiPen, effective his or her last day of attendance. Regular refund and all Financial Aid policies apply. Students seeking readmission must abide by DigiPen's readmission policy.
The “W” Grade
If a student withdraws from individual classes or the Institute, please note:

- If withdrawing before the end of the second week of instruction, no course entries will appear on the student’s transcript for that semester.

- If withdrawing after the end of the second week of instruction and before the end of the eighth week of instruction, the Registrar will assign a final grade of “W” for each course in which the student was enrolled.

At the end of the eighth week of instruction of the semester, withdrawn students will receive final grades for each course in which they were enrolled.

Dean’s Honor List Requirements
Prepared at the end of each fall and spring semester, the Dean’s Honor List officially recognizes and commends students whose semester grades indicate distinguished academic accomplishment. Both the quality and quantity of work done are considered.

You must meet the following qualifications to be a recipient of this honor:

1. You must be matriculated.

2. You must be registered full-time in credit-bearing courses.

3. Full-time students must complete 12 or more credits in one semester.

4. Only passing grades (“A,” “B,” “C,” and “D”) in credit-bearing courses are counted for eligibility.

5. No failing grades: a grade of “F” in any course makes the student ineligible, regardless of other grades.

6. Minimum GPA of 3.5 is required.

7. Any courses that do not count towards the degree are excluded.

8. AP, Internship, and Independent Study credits are excluded.

9. Pass/Fail credits are NOT to be counted when calculating qualifying credits.

10. Incomplete grades will be evaluated after they are made up. The student must have qualified for the Dean’s Honor List before and after the Incomplete grade was made up.

The student’s cumulative grade-point average is not considered; only the grade-point average for that particular semester is relevant.

Process for Grievances and Appeals
Concerns over Academic Standing
Students who would like to file an appeal against a decision regarding their academic standing in a particular course should discuss the matter with their instructor. If a satisfactory resolution is unattainable, students may file an appeal with the head of the department for that course. If the resultant solution is still unsatisfactory, then students may file an appeal with the Dean of Faculty. Students may appeal grades and review exams no later than two weeks after transcripts are issued. The Administration reserves the right to destroy any examination papers after the two-week appeal period. However, academic records will be kept indefinitely.

Appeal for Refund of Tuition
Students who would like to file an appeal against a decision regarding their tuition refund shall file a written request to the Office of the Registrar. If dissatisfied with the decision of the Registrar, students may file a second appeal with the Chief Operating Officer. If they are still dissatisfied, students may appeal to the President of the Institute. If still unsatisfied with the decision, students may appeal to the Executive Director of the Higher Education Coordinating Board of the State of Washington at:
Other Disputes
Students who feel that they have any other type of dispute with the Institute should file a complaint with the relevant Department Chair or supervisor. A copy of this complaint shall be given to those involved with the dispute. If the student is not satisfied with the decision of the Department Chair or supervisor, a second complaint may be submitted to the Chief Operating Officer. If the student is still dissatisfied with the decision, he or she may appeal to the President of the Institute. If the student remains unsatisfied with the decision, he or she may appeal to the Executive Director of the Higher Education Coordinating Board of the State of Washington.

Schools accredited by the Accrediting Commission of Career Schools and Colleges must have a procedure and operational plan for handling student complaints. If students do not feel that the Institute has adequately addressed a complaint or concern, they may consider contacting the Accrediting Commission. All complaints considered by the Commission must be in written form, with permission from the complainant(s) for the Commission to forward a copy of the complaint to the Institute for a response. The complainant(s) will be kept informed as to the status of the complaint as well as the final resolution by the Commission. Please direct all inquiries to:

Accrediting Commission of Career Schools and Colleges
2101 Wilson Blvd.
Suite 302
Arlington, VA 22201
(703) 247-4212

A copy of the Commission’s Complaint Form is available at the Institute and may be obtained by contacting Meighan Shoesmith, Sr. Vice President of Administration. If you are unsure of whom to speak to regarding a complaint, please contact Meighan Shoesmith at the following address:

Meighan Shoesmith
Sr. VP, Administration
DigiPen Institute of Technology
9931 Willows Road, NE
Redmond, WA 98052
Tel: (425) 558-0299

Transcripts
If a student’s financial obligation is not fulfilled, the Institute is authorized to do the following until the owed monies are paid: withhold the routine release of the student’s academic records or any information based upon the records, and withhold the issue of the student’s transcripts. Should you have any questions, please contact the Administration office at (425) 558-0299.

To request an official transcript, students should complete a transcript request form (available online at www.digipen.edu, or from the front office) and either mail or fax it to the Administration office. Requests are usually processed within three business days. Unofficial grade reports can be viewed or printed anytime using the Student Record System (SRS) online.

Exams
All students are required to be in attendance at the times scheduled by the Institute for final exams. Instructors are not required to make arrangements for individuals to take final exams at a different time than the rest of the class. Should a student miss an exam, it is the student’s responsibility to notify the instructor within 24 hours of the missed exam. In the event that a student fails to provide such notification to an instructor, or if the Institute does not find the reasons for missing an exam justifiable, the student will be given a failing grade for the exam(s).
Should a student miss a final exam and notify his or her instructor within 24 hours of the missed exam, the Registrar shall review the individual circumstances. Only documented emergencies will be considered acceptable reasons for missing exams. Exam retakes shall be allowed at the sole discretion of the Registrar and Department Chair. Examples of unacceptable reasons for missing an exam include the demands of a time-consuming job, the desire to leave town for a vacation or family gathering, the desire to do well on tests in other courses, etc.

A retaken exam shall be different than the original one taken by the students, and the timing of it shall be at the sole discretion of the individual instructor. In all cases, retakes shall be administered no later than one week after the original, missed exam.

**Student Internships**

**Overview of Internships**

Student internships are monitored, on-site work or service experiences for which students earn credit. All registered juniors and seniors are eligible for internships.

Internships can be arranged for any setting related to a student’s career goals. The internship usually takes place in a professional workplace under the supervision of an experienced professional, whereby a high degree of responsibility is placed on the student. Internships can be part-time or full-time, paid or unpaid. They can vary in duration and location. For example, our interns have worked at companies in Washington, California, Texas, and New York. They must be approved in advance by the Institute.

**Objectives of Internship Programs**

Through an internship program, students establish and meet intentional learning goals through actual product development experience, while actively reflecting on what they are learning throughout the experience. The goals for the internship may include:

- Academic learning - applying knowledge learned in the classroom to tasks in the workplace.
- Career development - gaining knowledge necessary to meet minimum qualifications for a position in the student's field of interest.
- Skill development - an understanding of the skills and knowledge required in a specific job category.
- Personal development - gaining decision-making skills, critical thinking skills, and increased confidence and self-esteem.

Since internships have a strong academic component, students are carefully monitored and evaluated for academic credit. As a rule, one semester credit hour of academic credit is awarded for 45 hours of internship/work experience. Typically, a five credit internship taken
during the fall, spring, or summer semester means that
the student will spend no less than 225 hours in the expe-
rience. Students may register for up to two semesters of
internship credit (e.g. R.T.I.S. students may not register
for more than 10 internship credits).

The element that distinguishes an internship from a
short-term job or community service is the intentional
“learning agenda” that the intern brings to the experi-
ence. In support of a positive experience for the student
and the employer, the Internship Coordinator assists in
assuring that the work experience meets both student
and organizational needs, with priority given to the stu-
dent’s interests and to the assurance that the experience
will result in learning outcomes acceptable to his or her
degree program. More detailed information about stu-
dent internships can be found in the Internship Guide-
lines available in the Administration Office.

Change of Major and Graduation

Requesting a Change of Major
Students wishing to change their major are encouraged to
speak with their academic advisor before submitting an
application. To apply for a change of major, the following
steps must be completed:

1. Submit a Request for Change of Major Form to the
   Office of Admissions; forms are available in front of-
   fice or on DigiPen’s website.

2. Submit a Change of Major Statement addressing the
   following topics:
   - Discuss your reasons for requesting a change
     of major, and explain how these reasons relate
     to your future goals (personal, educational, and
     professional).
   - Describe how a change of major will affect your
     academic plan from this point forward, and in-
     clude any steps you will take to ensure a smooth
     transition.

3. Submit any additional materials required for the
degree program to which you would like to change.
Please see the table at right for a list of additional
materials required by program:
Change of Major Material Requirements

<table>
<thead>
<tr>
<th>Current Program</th>
<th>Desired Program</th>
<th>Additional Materials Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTIS or BSCE</td>
<td>BSCE or RTIS</td>
<td>No additional materials required</td>
</tr>
<tr>
<td>RTIS or BSCE</td>
<td>BSGD</td>
<td>Character or World Analysis; Game Modification Analysis</td>
</tr>
<tr>
<td>RTIS or BSCE</td>
<td>BAGD</td>
<td>Game Modification Analysis</td>
</tr>
<tr>
<td>RTIS or BSCE</td>
<td>BFA</td>
<td>Art Portfolio</td>
</tr>
<tr>
<td>BAGD</td>
<td>BFA</td>
<td>Art Portfolio conforming to current requirements</td>
</tr>
<tr>
<td>BAGD or BFA</td>
<td>RTIS or BSCE</td>
<td>Transcripts must show a “B” average in math classes, including pre-calculus</td>
</tr>
<tr>
<td>BAGD</td>
<td>BSGD</td>
<td>Transcripts must show a “B” average in math classes, including pre-calculus</td>
</tr>
<tr>
<td>BFA</td>
<td>BAGD</td>
<td>Game Modification Analysis</td>
</tr>
<tr>
<td>BFA</td>
<td>BSGD</td>
<td>Character or World Analysis; Game Modification Analysis</td>
</tr>
<tr>
<td>BSGD</td>
<td>BAGD</td>
<td>No additional materials required</td>
</tr>
<tr>
<td>BSGD</td>
<td>RTIS or BSCE</td>
<td>No additional materials required</td>
</tr>
<tr>
<td>BSGD</td>
<td>BFA</td>
<td>Art Portfolio</td>
</tr>
</tbody>
</table>

Art portfolios should be submitted in hard copy or electronic format, as originals will not be returned. Detailed information about additional materials and the change of major process can be accessed online at https://www.digipen.edu/current-students/academics/change-of-major.

Once all relevant materials have been received and the application has been evaluated, a decision regarding the change of major will be sent to the student via mail or email. Students approved for a change of major will be given a Student Enrollment Agreement corresponding to the new program. They must sign this agreement and return it to the Office of Admissions before the change can take effect.

Important Information Regarding Change of Major Requests

- Changes of Majors will only take effect on the first day of a new semester. To be considered, requests must be submitted at least fifteen working days before the start of a new semester; otherwise, the request will be considered for the next available semester. Specific deadlines for submitting a request for change of major can be seen on the academic calendar.

- Students requesting a change of major should remember to consider add/drop deadlines. Requesting a change of major does not exempt students from the add/drop policies at DigiPen.

- Students may register for classes in any major prior to the deadline for adding a class, but it is recommended that they speak with their academic advisor if they have not yet had their request for change of major approved.

- Students who change their majors are encouraged to meet with their academic advisor or with the head of the program to which they are transferring to determine what changes need to be made to their schedules or to recommended course sequences.

- Students considering a change of major should speak to the degree program faculty if they have specific questions about the differences between programs. Any questions about the status of a request for change of major or about this process should be
directed to the Office of Admissions or to the Registrar’s Office.

**Important Financial Aid Information**

If you are a recipient of federal financial aid, you could potentially lose some or all of your financial aid eligibility should you change your major. Please notify the Financial Aid office in person as your financial aid will need to be revised.

**Graduation Requirements**

Degrees and certificates will be granted at the end of the semester in which students complete the final requirements. For example, if a student receives an “I” grade in a course required for graduation in his or her final semester, he or she will not graduate until the semester in which the “I” is replaced by a letter grade. During that semester, the student must reapply for graduation.

A program of study must be completed within a reasonable period of time for a student to be eligible for graduation. The Institute defines “reasonable time” as the credit hours attempted cannot exceed 1.5 times the credit hours required to complete the program. Full-time students who do not complete their studies during this maximum time frame will be placed on academic probation and will have to complete their program requirements under the conditions of their academic probation. For more information, please see the section on “Academic Probation.”

**Applying for Graduation**

The Institute sets minimum requirements for all students seeking undergraduate degrees. DigiPen reserves the right to change graduation requirements at any time. Every degree candidate is expected to comply with changes in requirements as they relate to the uncompleted portion of coursework.

Most students will follow the graduation requirements published in the catalog for the year they enter DigiPen. Students who interrupt their attendance may be held to the requirements of the current catalog when they return. Students are responsible for ensuring that all graduation requirements have been completed.

Approximately four to six weeks after students apply for graduation, a degree audit report will be issued. This report identifies courses students have taken to complete their degree requirements. This report is used to assist students in planning future coursework to ensure that all graduation requirements are met. Students should take the degree audit report with them when checking progress toward graduation with their academic advisor and/or the Office of the Registrar. Students are responsible for notifying the Office of the Registrar of any changes in their proposed programs and for resolving any questions prior to registering for their final term at DigiPen.

All Incomplete grades and conditions affecting graduation must be removed from the student’s record by the last regular class period of the term. All credit course work affecting graduation must be completed by the regular class period of the term. A letter of instruction is mailed to degree candidates in March regarding deadlines and procedures for commencement-related activities.

Undergraduate students who feel there is justification for an exception to these graduation requirements may petition the Appeals/Discipline Committee. Information on filing a petition is available at the Registrar’s Office.
Graduation Application Process

1. The student completes the Graduation Application and submits the $75.00 graduation fee by the deadlines stated in the table below:

<table>
<thead>
<tr>
<th>Graduation Date</th>
<th>Graduation Application Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>April</td>
<td>December 1</td>
</tr>
<tr>
<td>July</td>
<td>April 1</td>
</tr>
<tr>
<td>December</td>
<td>April 1</td>
</tr>
</tbody>
</table>

2. The academic advisor or administrator will review the most recent transcript or degree plan to verify progress and will notify the student whether or not he or she has completed all courses satisfactorily to date, and, if upon satisfactory completion of courses for which the student is currently registered, he or she will be eligible for graduation.

3. Final approval will not be made until after final grades are submitted and posted to the student’s record. Degrees will be mailed as soon as possible after that process, which should be from four to six weeks after completion. The student needs to keep the Office of the Registrar informed of address changes so that degrees are mailed to the correct address.

Student Affairs

Student Affairs provides services to students in order to support their academic, professional, and personal development. The Student Handbook provides information on the services and procedures that a student will need in their life at DigiPen and beyond, including:

- Academic Advising
- Academic Support Center
- Alumni Services
- Campus Life
- Dining Services
- Housing
- Lockers
- Parking/Transportation
- Career Services
- Counseling Services
- Disability Support Services
- International Student Services
- Student Activities & Organization
- Student Programs
- First-Year Seminar
- Graduation
- New Student Orientation

The following sections detail some aspects of a few of the services provided by Student Affairs.

Student Advising

DigiPen has adopted a faculty-advisor model to provide academic and career-related advising for students. Your advisor can be either a full-time faculty member from your major or a staff member who is familiar with the requirements of your program. It is recommended that students meet with their academic advisers at least once a year, and when applying for graduation. This ensures that a student is enrolling in the correct classes and is doing well in them. Additionally, students are to meet with
their advisor when preparing to apply to graduate from the Institute. Students should speak to their advisors about issues related to academic and school policies, scheduling and course selection, override forms and alternate schedules, degree audits and graduation, classroom success, career advising, mentoring, and referrals to other resources.

**Placement Assistance**
Advice on career options is available to enrolled students. With the assistance of Student Affairs and faculty members, the Career Services team works to establish relationships with prospective employers on an on-going basis. It offers resume and job-hunting workshops to supplement career education found in the curriculum. The Institute has a career bulletin board, including an electronic bulletin board, and uses an email mailing list to post current job openings in the industry. The Institute also provides placement services in the form of internships that may be available during the summer; the placement program bases its recommendations of students on their academic performance. Additionally, DigiPen hosts an annual career day that attracts employers from around the country to the campus to review student portfolios and conduct interviews. DigiPen also attends industry events, such as the Game Developers Conference, to promote the Institute’s programs and its students. Placement assistance continues beyond graduation as these services are extended to alumni. For further information, please email the Career Services department at careerservices@digipen.edu. Please note that employment upon graduation is not guaranteed, nor is DigiPen obligated to secure employment on behalf of students.

**Disability Support Services**
DigiPen Institute of Technology strives to ensure that all students are provided with an equal opportunity to participate in the Institute’s programs, courses, and activities. Students desiring special assistance should identify themselves to the Disability Support Services Coordinator and provide current documentation supporting their disability. Students must assist in identifying the proper accommodations they need, and they must negotiate these accommodations at the beginning of each semester. As outlined by the Americans with Disabilities Act and Section 504 of the Rehabilitation Act of 1973, DigiPen will provide reasonable accommodations and academic adjustments as long as provisions do not fundamentally alter the nature of the program or the academic requirements that are considered essential to the program of study.

**Graduate Follow Up**
The Institute maintains a database of all graduates, and DigiPen alumni are encouraged to report back regarding changes to their professional status. DigiPen hosts an annual reunion at the Game Developers Conference and extends placement services to all alumni.
Family Educational Rights and Privacy Act (FERPA)

Students Rights to Their Academic Records
The Family Educational Rights and Privacy Act (FERPA) reserves for students certain rights with respect to their education records. These rights are:

1. The right to inspect and review the student’s education records within 45 days of the day the Institute receives a request for access. Students should submit to the Registrar, Dean, or head of the academic department (or appropriate official) written requests that identify the record(s) they wish to inspect. The Institute official will make arrangements for access and notify the student of the time and place where the records may be inspected. If the records are not maintained by the Institute official to whom the request was submitted, that official shall advise the student of the correct official to whom the request should be addressed.

2. The right to request the amendment of the student’s education records that the student believes is inaccurate or misleading. Students may ask the Institute to amend a record that they believe is inaccurate. They should write to the Institute official responsible for the record, clearly identify the part of the record they want changed, and specify why it is inaccurate or misleading. If the Institute decides not to amend the record as requested by the student, the Institute will notify the student of the decision and advise the student of his or her right to a hearing regarding the request for amendment. Additional information regarding the hearing procedures will be provided to the student when notified of the right to a hearing.

3. The right to consent to disclosures of personally identifiable information contained in the student’s education records, except to the extent that FERPA authorizes disclosure without consent. One exception, which permits disclosure without consent, is disclosure to Institute officials with legitimate educational interests. An “Institute official” is defined as a person employed by the Institute in an administrative supervisory, academic, or support staff position; law enforcement officials and health staff; a person or company with whom the Institute has contracted (such as an attorney, auditor, or collection agent); a person serving on the Board of Trustees; or a person assisting another Institute official in performing his or her tasks. An Institute official has a legitimate educational interest if the official needs to review an education record in order to fulfill his or her professional responsibilities.

4. The right to file a complaint with the U.S. Department of Education concerning alleged failures by the Institute in compliance with the requirements of FERPA. The name and address of the Office that administers FERPA is:

   Family Policy Compliance Office
   U.S. Department of Education
   400 Maryland Avenue, S.W.
   Washington, DC 20202-4605
   Phone: 1-800-872-5327

Release of Student Directory Information
The Family Educational Rights and Privacy Act (FERPA) of 1974 protects the privacy of students’ education records. However, the following information is considered public or directory information and may be released to anyone unless a student informs the Office of the Registrar that he or she does not wish any information released:

1. Name
2. Local telephone number
3. Institute email address
4. Major field of studies
5. Dates of attendance
6. Degrees and awards received
7. Full-time or part-time enrollment status
8. Number of credits for which a student is registered each semester.
9. Educational institutions attended
Regulation of Conduct and Disciplinary Procedures

DigiPen Institute of Technology is an academic institution that strives to ensure that all students have a safe and effective workplace free of harassment, that also supports collaborative and cooperative education. To this end, students will comport themselves in a professional manner when dealing with instructors, faculty, administrators, and/or other students. They are expected to dress and manage personal hygiene in a way that does not cause undue offense to other students, faculty, or staff of the Institute, and to refrain from verbal or physical intimidation of others. The Institute has the right to take appropriate disciplinary action warranted by a student’s misconduct. The specific provisions as to offenses, penalties, and disciplinary procedures set out below should not be construed as limiting the general authority of the Institute.

Rules and Regulations

1. It is strictly forbidden to bring in or out of the premises any digital storage and any form of memory sticks or optical media, diskettes, video recorders, etc. other than for academic and approved usages which directly apply to courses being taken by the student during the term of this agreement, or for the required purpose of maintaining back-up copies of student-created projects and assignments. Any use of DigiPen’s computer resources (including all video or audio recording) that violates the Network & Internet Usage Policy is strictly forbidden and may be punished according to the fullest extent of the law. Students are responsible for guaranteeing that any files transferred to and from DigiPen’s equipment are free of malicious viruses or Trojan horses. In respect to the above, students are only allowed to carry in and out of the DigiPen premises data files only and not executable files. This includes student-created executables. Following this policy will greatly reduce the risks of virus infections to the DigiPen network. In order for DigiPen faculty to review and grade projects and assignments, source code must be stored and executables must be generated at DigiPen from the corresponding source code.
2. Students are forbidden from downloading any files from the Internet or installing any software, including but not limited to freeware and/or shareware, without the written approval from a DigiPen faculty member or from DigiPen's IT department. Furthermore, illegal use of the Internet may be prosecuted to the fullest extent of the law.

3. In order to prevent damage to equipment and facilities, food and/or drink are not permitted anywhere within the training areas of the premises.

4. Smoking is not permitted anywhere within the premises, washrooms, elevators, or stairwells.

5. Student ID tags must be worn visibly when on the premises. Lost or stolen ID tags must be reported to Security as soon as possible.

6. All student projects must receive approval from DigiPen's instructors prior to commencement of any production. DigiPen reserves the right to reject ideas or to stop production of any student game, animation, or project for reasons deemed appropriate to DigiPen. The Institute will not allow the production of any student work that contains or makes a direct or indirect reference to any of the following material/subjects:
   - Religious content
   - Religious symbols
   - Pornographic material
   - Excessive violence
   - Sexual and nude content
   - Promotion of illegal substances
   - Promotion of racism or hate
   - Content demeaning to any group of society

7. Plagiarism will not be tolerated. Any student who submits the work of another person as his or her own is considered to have committed plagiarism. Types of work that can be plagiarized include, but are not limited to, source code, artwork, concepts, designs, or other material. Anyone submitting someone else's work without the explicit written permission from the legal owner may have violated the owner's intellectual property rights or copyrights, in addition to committing plagiarism. If any student is unsure as to what constitutes a case of plagiarism, he or she should consult an instructor for clarification.

8. Students shall not submit any work to the Institute that infringes upon the intellectual property rights of a third party. If, during the program, a student submits such work to the Institute, he or she shall indemnify or hold harmless the Institute from and against all loss, damage, cost (including legal fees), and other liability, which the Institute may suffer as a result of the same.

9. Cheating on an examination will not be tolerated. Using any materials other than those authorized by the examiners during an exam is an example of cheating.

10. Submitting false documents, transcripts, or any other academic credentials to gain admission to DigiPen or to obtain any academic benefit is grounds for expulsion without recourse.

11. Disrupting instructional activities, including making it difficult to proceed with scheduled lectures, seminars, examinations, tests, etc., shall be considered an offense.

12. In the interest of maintaining an environment that is safe and free of violence and/or threats of violence for its employees, students, and visitors, possession of a dangerous weapon is prohibited on property owned by or under the control of DigiPen. Weapons and ammunition are potential safety hazards. Possession, use, or display of weapons or ammunition is inappropriate in an academic community for any reason, except by law enforcement officials. No weapons or ammunition shall be worn, displayed, used, or possessed on campus. Any member of the DigiPen
community who violates this policy shall be subject to appropriate disciplinary action up to and including dismissal from DigiPen. Any person who is not a member of the DigiPen community who violates this policy shall be subject to all appropriate procedures and penalties including, but not limited to, the application of the criminal trespass provisions of the law of the State of Washington. Members of the DigiPen community who are aware of any violations of this policy or who have other concerns about safety or weapons should report them to the Student Affairs Director, Dean of Faculty, Senior Vice President of Administration, or the Chief Operating Officer.

13. Evidencing symptoms of alcohol or drug use while on Institute property, or the procurement or possession of alcohol or illegal substances on Institute property, is considered an offense.

14. It is forbidden to damage, remove, or make unauthorized use of the Institute's property or the personal property of faculty, staff, students, or others at the Institute. Without restricting the generality of “property,” this includes information, however it may be recorded or stored.

15. It is strictly forbidden to use any equipment in the premises to produce any commercial work. The equipment is only to be used for homework and training purposes. Any attempt to produce commercial work will result in legal action against the offenders.

16. Public areas and equipment of the building must be kept clean. No tampering, moving, defacing, or otherwise altering the premises, equipment, or the building property is allowed.

17. Graffiti, other forms of mural art, or the posting of signs anywhere in the premises and the building without permission of the Administration is not permitted.

18. Office equipment (photocopier, fax, office phone, etc.) is not available for student use.

19. The assault of individuals, whether verbal or physical, including conduct which leads to the physical or emotional injury of faculty, staff, students, or others at the Institute, or which threatens the physical or emotional well-being of faculty, staff, students, or others at the Institute, is considered an offense.

20. In accordance with applicable law, DigiPen prohibits sexual harassment and harassment between faculty/staff and students and between students and students because of race, sex, color, national origin, ancestry, religion, physical or mental disability, veteran status, age, or any other basis protected by federal, state, or local law. Any such harassment may violate the law and will not be tolerated. DigiPen's policy prohibits inappropriate conduct even though it may not reach the legal standard for harassment.

21. It is forbidden to attempt to engage in, aid and abet others to engage in, or attempt to engage in conduct which would be considered an offense.

22. Failing to comply with any penalty imposed for misconduct is considered an offense.

Penalties

The penalties that may be imposed, singly or in combination, for any of the above offenses may include, but are not limited to, the following:

1. A failing grade or mark of zero for any course, examination, or assignment in which the academic misconduct occurred.

2. Suspension from the Institute for a specified period of time or indefinitely. Students will not receive credit for courses taken at another institution during a suspension.

3. Reprimand, with the letter placed in the student's file.

4. Restitution, in the case of damage to property or
unauthorized removal of property.

5. A notation on the student's permanent record of the penalty imposed.

6. Legal action against the student committing the offense.

Warnings
1. The penalty for plagiarism or for cheating is normally suspension from the Institute.

2. Charges filed under federal or state law or the commencement of civil proceedings do not preclude disciplinary measures taken by the Institute.

Procedures
Any student suspected or apprehended in the commitment of an offense shall be given the opportunity to explain the incident and, if he or she requests, to meet with department heads, a Student Affairs Officer, or other appropriate person, before the alleged offense is reported to the Discipline Committee.

An alleged instance of student misconduct deemed serious enough for action by the Institute shall be referred to the Discipline Committee. After an investigation and hearing at which the student is invited to appear, the committee reports its decision to the Dean of Faculty. If he or she wishes, the student then has the opportunity to meet with the Dean of Faculty to appeal the decision.

Dismissal by the Institute
By written notice to a student, the Institute may, at its sole discretion, dismiss a student at any time if he or she is in default of any of the terms, covenants, or conditions of the Institute. Furthermore, the Institute reserves the right to withdraw a student if he or she is unable to maintain the minimum required GPA in his or her courses at the end of each semester. Upon dismissal, the student shall immediately return to the Institute all materials in his or her possession relating to the program, whether created by the student or other students, or provided by the Institute. In the event of dismissal, tuition and fees, if any, shall be refunded in accordance with the refund schedule, as it may be amended from time to time.

Appeals
A student has the right to dispute a disciplinary decision of the Dean of Faculty. A student who wishes to make an appeal must notify the Chief Operating Officer in writing and must provide a full explanation of the reasons for appealing.

Appeal hearings take place before a committee called together by the Chief Operating Officer. A student is entitled to be represented or assisted throughout the appeal process by an advocate who may be a friend, relative, or legal counsel. The student is entitled to explain the reasons for appealing either orally or in writing, and he or she may call witnesses. The Dean of Faculty is also present and puts forth the reasons for the original decision.

The members of the committee may ask questions of both the student and the Dean of Faculty. As soon as possible after the hearing is completed, the Chief Operating Officer will notify the student of the final decision in writing.
DEGREE PROGRAMS FOR
THE ACADEMIC YEAR

2011-2012
Program Overview

The electronic and digital entertainment industry is one of the fastest growing and most exciting career choices of the future. The video game, movie, and military industries are only a few of those that demand well-trained, enthusiastic programmers, designers, artists, and managers. DigiPen Institute of Technology is a key provider of these individuals, and the Bachelor of Science in Real-Time Interactive Simulation prepares programmers for these industries. Designed and developed by industry experts and DigiPen faculty, the Institute’s four-year RTIS program is a computer science degree that is highly focused on the technical area of graphics and simulations. Participants in the RTIS program specialize in the skills and tools necessary to create real-time simulations of real-world events.

The BS in RTIS program offers extensive training in mathematics and physics as a foundation for the various topics presented in general computer science and computer graphics. Throughout the degree program, RTIS students participate in several team-based projects. These substantial projects are designed to give students concrete experiences in which they apply the theoretical knowledge gained from their courses. Forming the cornerstone of the program, these projects exemplify many of the skills necessary in the video game industry today: teamwork, design, implementation, follow through, and business knowledge, among others. RTIS students gain the experience of designing, programming, and testing a variety of simulations and games, including text-based, scrolling, simulation, and two-dimensional and three-dimensional games.
Students in this degree program work both individually and collaboratively to learn the fundamentals of game design, production, and programming. Additionally, they write game design documents and technical design documents, learn how to schedule tools and techniques, and participate in the full production of several games. These game-oriented productions are a perfect media to present complicated subjects in a format agreeable to students. These productions:

- Are graphics-oriented simulations, including two-dimensional and three-dimensional simulations.

- Can realistically reproduce or simulate natural phenomena and real-life events. Flight simulators are excellent examples of such simulations.

- Are highly interactive, requiring an elaborate and efficient graphical user interface (GUI). The development of a GUI requires the management of windows, menus, dialog boxes, and hardware resources including keyboards, mice, and display monitors.

- React in real time. The implementation of such simulations requires a thorough knowledge of computer hardware and computer languages.

- Are story-based simulations requiring a plot in which game objects must interact intelligently with each other. Therefore, in order to make games challenging and interesting, students must design and implement good artificial intelligence algorithms, which serve as the cognitive processes for the computer-controlled game objects.

- Could be designed for either a single-player or multi-player environment. The development of the latter requires the understanding of subjects such as computer networks, TCP/IP, and Internet programming.

- Are excellent examples of large and complex productions. Teamwork is essential to the successful completion of such productions. Therefore, students are divided into teams and are rigorously trained in object-oriented programming languages, paradigms, and software engineering techniques and practices.

Graduates of this program will gain the skills required to successfully pursue entry-level careers in the rapidly growing world of computer technologies in general, and computer graphics and simulations in particular. This degree prepares students to work in the computer and video game industry as intermediate-level programmers in graphics, artificial intelligence, networking, or general programming; beginning designers; or engineering tool staff members. Some of the job titles that graduates of this program may aspire to are Solutions Architect, Compatibility/Playability Tester, Game Analyst, Quality Assurance Engineer, Quality Assurance Supervisor, Computer or Software Programmer, Software Engineer, Game Programmer, Engine and Tools Programmer, Game Graphics Programmer, Artificial Intelligence Programmer, Audio Programmer, Web Programmer, or Software/Lead Tester.

Rather than attempt to provide a broad, general education, this degree program is an intensive educational experience in a specialized and highly technical area, and it prepares students for a career in several rapidly expanding industries. Staff and faculty are prepared to guide students desiring more general education course work about supplementary opportunities available through other institutions.

**RTIS Degree Requirements**

**Number of Credits & GPA**

The Bachelor of Science in R.T.I.S. requires completion of at least 154 credits with a cumulative GPA of 2.0 or better. The program usually spans eight semesters of fifteen weeks each, or a total of four academic years.

**Humanities and Social Sciences Requirement**

Required courses are ENG 110 and COM 150. Five additional ENG credits are required from ENG 116 and above. Students must take an additional three credits in HIS, PSY, or SOS. (Total: 14 credits)
Art Requirement
Students are required to take ART 210 and two additional credits from the following: ANI 125, ART 400, FLM 115, FLM 151, FLM 275, or ART 410. (Total: 4 credits)

Computer Science Requirement
The following courses are required: CS 100, CS 100L, CS 120, CS 120L, CS 170, CS 170L, CS 180, CS 200, CS 225, CS 230, CS 250, CS 260, CS 280, CS 300, CS 315, CS 330, CS 350, and CS 365. Students must select four more courses (12 credits) numbered higher than 200 or PHY 350. (Total: 60 credits)

Mathematics Requirement
The following courses are required: MAT 140, MAT 150 or MAT 180, MAT 200 or MAT 230, MAT 258, MAT 250, MAT 300, and one MAT elective numbered higher than 300, or MAT 256. (Total: 24 credits)

Physics Requirement
The following courses are required: PHY 200 and PHY 250. (Total: 6 credits)

Game Projects Requirement
The following courses are required: GAM 100, GAM 150, GAM 200, GAM 250, GAT 300, GAM 300, GAM 350, GAM 400, and GAM 450. (Total: 37 credits)

Electives
Complete seven to nine credits of elective courses, which students can choose from any department at DigiPen. (Total: 7-9 credits)

Grade Requirement and Core Courses
Students must receive a grade of “C-” or higher in all core courses for the R.T.I.S. major. (In a non-core course, a grade of “D” or higher is considered passing.) The core courses are all those taken to fulfill the GAM, MAT, and CS requirements as described above. PHY 200 is also a core course.

General Education Courses
The following courses satisfy the general education requirement for the B.S. in Real-Time Interactive Simulation: ART 210 (2), ART elective (2), COM 150 (3), ENG 110 (3), ENG electives numbered ENG 116 or higher (5), a social science elective in HIS, PSY, or SOS (3), MAT 150 or MAT 180 (4), MAT 250 (3), PHY 200 (3), and PHY 250 (3), for a total of 31 credits.

Recommended Course Sequence
Listed on the following page is the recommended course sequence for the Bachelor of Science in Real-Time Interactive Simulation. Please note the following:

▪ Students must achieve a grade of “C-” or higher in the core courses to earn credit toward this degree.

▪ Students must receive special permission (*) from their academic advisor to take more than 20 credits in either of their first two semesters.
### Recommended Course Sequence Chart (RTIS)

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Course Title</th>
<th>Core</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Semester 1</strong></td>
<td>MAT 140</td>
<td>Linear Algebra &amp; Geometry</td>
<td>X</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CS 100</td>
<td>Computer Environment I</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 100L</td>
<td>Computer Environment Lab I</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CS 120</td>
<td>High-Level Programming I - The C Programming Language</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 120L</td>
<td>High-Level Programming I Lab</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>GAM 100</td>
<td>Project Introduction</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENG 110</td>
<td>Composition</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ART 210</td>
<td>Art Appreciation</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td><strong>Total</strong></td>
<td><strong>Total</strong></td>
<td></td>
<td><strong>20</strong></td>
</tr>
</tbody>
</table>

| **Semester 2** | MAT 150 or MAT 180 | Calculus & Analytic Geometry I or Vector Calculus I | X | 4 |
| | CS 170 | High-Level Programming II - The C++ Programming Language | X | 3 |
| | CS 170L | High-Level Programming II Lab | X | 1 |
| | CS 230 | Game Implementation Techniques | X | 3 |
| | GAM 150 | Project I | X | 3 |
| | COM 150 | Interpersonal & Work Communication | | 3 |
| | Humanities Elective | One humanities & social science elective from any three-credit HIS, PSY, or SOS course | | 3 |
| | **Total** | **Total** | | **20** |

| **Semester 3** | MAT 200 or MAT 230 | Calculus & Analytic Geometry II or Vector Calculus II | X | 4 |
| | CS 200 | Computer Graphics I | X | 3 |
| | CS 225 | Advanced C/C++ | X | 3 |
| | CS 180 | Operating System I, Man-Machine Interface | X | 3 |
| | GAM 200 | Project II | X | 4 |
| | PHY 200 | Motion Dynamics | X | 3 |
| | **Total** | **Total** | | **20** |

| **Semester 4** | PHY 250 | Waves, Optics, and Aerodynamics | | 3 |
| | CS 250 | Computer Graphics II | X | 3 |
| | CS 260 | Computer Networks I, Interprocess Communication | X | 3 |
| | CS 280 | Data Structures | X | 3 |
| | GAM 250 | Project II | X | 4 |
| | MAT 250 | Linear Algebra | X | 3 |
| | **Total** | **Total** | | **19** |

| **Semester 5** | CS 300 | Advanced Computer Graphics I | X | 3 |
| | CS 315 | Low-Level Programming | X | 3 |
| | CS 330 | Algorithm Analysis | X | 3 |
| | MAT 258 | Discrete Mathematics | X | 3 |
| | GAT 300 | 3D Computer Animation Production I | X | 3 |
| | GAM 300 | Project III | X | 5 |
| | **Total** | **Total** | | **20** |

| **Semester 6** | MAT 300 | Curves and Surfaces | X | 3 |
| | CS 350 | Advanced Computer Graphics II | X | 3 |
| | CS 365 | Software Engineering | X | 3 |
| | Computer Science or Physics Elective | Any 200-level or higher CS course not required or PHY 350 | X | 3 |
| | GAM 350 | Project III | X | 5 |
| | Elective | An elective of the student’s choice from any department at DigiPen | | 3 |
| | **Total** | **Total** | | **20** |

| **Semester 7** | Art Elective | Select one: ANI 125, ART 400, FLM 115, FLM 151, FLM 275, or ART 410 | 2-3 |
| | English Elective | One English elective chosen from any ENG course, ENG 116 and above | 2-4 |
| | Computer Science or Physics Elective | Any 200-level or higher CS course not required or PHY 350 | X | 3 |
| | Math Elective | MAT 256 or any MAT course greater than 300 | X | 3 |
| | GAM 400 | Project IV | X | 5 |
| | Elective | An elective of the student’s choice from any department at DigiPen | | 3 |
| | **Total** | **Total** | | **18-21** |

| **Semester 8** | English Elective | One English elective chosen from any ENG course, ENG 116 and above | 2-4 |
| | Computer Science or Physics Elective | Any 200-level or higher CS course not required or PHY 350 | X | 3 |
| | Computer Science or Physics Elective | Any 200-level or higher CS course not required or PHY 350 | X | 3 |
| | GAM 450 | Project IV | X | 5 |
| | Elective | An elective of the student’s choice from any department at DigiPen | | 3 |
| | **Total** | **Total** | | **16-18** |

| **Degree Total** | **Total** | | **154 minimum** |

**Note:** Please see the previous page for an explanation of core courses and the [*].
Bachelor of Science in Computer Engineering

Program Overview
The Computer Engineering (CE) degree program at DigiPen educates engineers to understand both sides of the hardware-software interface, from designing circuits to creating operating systems. Multidisciplinary in scope, the CE curriculum integrates the fields of electrical engineering and computer science. This program will uniquely prepare CE graduates to design and develop embedded, digital, and computer systems. Graduates with a degree in Computer Engineering will be highly skilled and ideally suited for twenty-first-century industries, including the games industry.

Like students in DigiPen’s other degree programs, CE students will apply their theoretical learning through a variety of semester-long and year-long projects with critical feedback and evaluation from expert instructors. As they develop through the program, students will have increasingly more creative control over their projects. The CE curriculum and the student projects will focus on embedded systems, a term that refers to any device that uses a microprocessor or microcontroller. Embedded systems appear in a wide array of household, industrial, and military applications, including portable and console game systems, robots, game peripherals, electronic toys, digital cameras, audio/video component systems, and aircraft flight systems.
Applications of the computer engineering knowledge and skills students will gain through this degree include:

<table>
<thead>
<tr>
<th>Technology Areas</th>
<th>Application Domains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Game Systems</td>
<td>Aerospace &amp; Avionics</td>
</tr>
<tr>
<td>Hardware/Electronic Toys</td>
<td>Automotive</td>
</tr>
<tr>
<td>Virtual Reality Hardware</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>Human Interface Devices</td>
<td>Medical Sciences</td>
</tr>
<tr>
<td>Robotics &amp; Automation</td>
<td>Internet</td>
</tr>
<tr>
<td>Artificial Intelligence</td>
<td>Entertainment</td>
</tr>
<tr>
<td>Operating Systems</td>
<td>Military</td>
</tr>
<tr>
<td>Information Systems</td>
<td></td>
</tr>
<tr>
<td>Telecommunications</td>
<td></td>
</tr>
<tr>
<td>Signal Processing</td>
<td></td>
</tr>
<tr>
<td>Control Systems &amp; Instrumentation</td>
<td></td>
</tr>
<tr>
<td>Multimedia</td>
<td></td>
</tr>
</tbody>
</table>

- Strong foundational skills in system design, software engineering, coding, and system integration.
- Extensive skills in applied technology using industry-standard hardware and software.
- Professional attitude and work habits, including the ability to maintain a production schedule and to respond to professional criticism.
- Social perspective and civic accountability relative to the roles that technology plays in society.

The field of computer engineering has a real potential for innovation, and there is a growing demand for skilled graduates. For example, hardware design limits game software development, however CE graduates possess the proficiency to design and implement new hardware interfaces that will expand the bounds of video games and other interactive media.

Students who successfully complete the CE curriculum acquire the following:

- A broad foundation in mathematics, physics, and computer science, which allows students to remain up-to-date in the profession as tools and techniques evolve.
- A foundation in electrical engineering, which includes the principles of circuits with an emphasis on digital electronics, microprocessors, microcontrollers, and embedded systems.
- The ability to work in small teams to design, build, and test prototype systems typical of those currently used in the industry.

Graduates of DigiPen’s Computer Engineering program will have the necessary skills and preparation to work at entry-level positions in computer technologies in general, and embedded systems development in particular. Some of the positions to which graduates from this program may be hired include Software Engineer, Systems Engineer, Embedded Systems Engineer, Design Engineer, Development Engineer, Quality Control Engineer, Computer Architect, Systems Test Engineer, and Video Game Hardware Engineer.

**Computer Engineering Degree Requirements**

*Number of Credits & GPA*

The Bachelor of Science in CE requires completion of at least 154 semester credits with a cumulative GPA of 2.0 or better. The program typically spans eight semesters of fifteen weeks each, or four academic years.

*Humanities and Social Science Requirement*

The following courses are required: ENG 110, ART 210, and ECN 350. Students must also take an additional six semester credits of ENG classes numbered 150 and above, or COM 150. Additionally, students must take three semester credits of SOS courses and an additional three semester credits of ART courses. (Total: 20 credits)

*Computer Science Requirement*

The following computer science courses are required: CS 100, CS 100L, CS 120, CS 120L, CS 170, CS 170L, CS 180, CS 225, CS 260, CS 280, CS 315, CS 365, CS 370, and either CS 380 or CS 381. (Total: 36 credits)
Electrical and Computer Engineering Requirement
The following courses are required: ECE 101L, ECE 200, ECE 210, ECE 220L, ECE 260, ECE 270, ECE 300, ECE 310L, ECE 350, ECE 360L, ECE 400 or ECE 420, ECE 410L, and ECE 460L. (Total: 47 credits)

Mathematics Requirement
The following mathematics courses are required: MAT 140, MAT 150 or MAT 180, MAT 200 or MAT 230, MAT 225, MAT 256, MAT 258, and MAT 340. (Total: 24 credits)

Physics Requirement
PHY 200 and PHY 270 are required. (Total: 6 credits)

Projects Requirement
GAM 100 and GAM 150 are required. (Total: 6 credits)

Electives
Twelve semester credits of electives of any non-ECE or CS courses and three semester credits from any CS, MAT, or PHY course are required. (Total: 15 credits)

Grade Requirement and Core Courses
Students must receive a grade of “C-” or higher in all core courses (or “Pass” for ECE 101L). All required CS, ECE, MAT, and PHY courses are considered core courses. (In a non-core course, a grade of “D” or higher is considered passing.)

General Education Courses
The following courses satisfy the general education requirement for the B.S. in Computer Engineering: ENG 110 (3), ENG electives (6), SOS elective (3), ART 210 (2), ART elective (3), MAT 150 or MAT 180 (4), PHY 200 (3), ECN 350 (3), and a Humanities and Social Sciences elective (3), for a total of 30 credits.

Recommended Course Sequence
Listed on the following page is the recommended course sequence for the Bachelor of Science in Computer Engineering. Please note the following:

- Students must achieve a grade of “C-” or higher in the core courses to earn credit toward this degree.
- Students must receive special permission (*) from their academic advisor to take more than 20 credits their first semester and 18 credits their second semester.
<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Course Title</th>
<th>Core</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAT 150 or MAT 180</td>
<td>Calculus and Analytic Geometry I or Vector Calculus I</td>
<td>X</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CS 100</td>
<td>Computer Environment I</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 100L</td>
<td>Computer Environment I Lab</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CS 120</td>
<td>High-Level Programming I - The C Programming Language</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 120L</td>
<td>High-Level Programming I Lab</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>GAM 100</td>
<td>Project Introduction</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENG 110</td>
<td>Composition</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ART 210</td>
<td>Art Appreciation</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Semester 1 Total</td>
<td></td>
<td></td>
<td></td>
<td>20*</td>
</tr>
<tr>
<td></td>
<td>MAT 200 or MAT 230</td>
<td>Calculus and Analytic Geometry II or Vector Calculus II</td>
<td>X</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ECE 101L</td>
<td>Introduction to Engineering Projects</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CS 170</td>
<td>High-Level Programming II - The C++ Programming Language</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 170L</td>
<td>High-Level Programming II Lab</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CS 180</td>
<td>Operating System I, Man-Machine Interface</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GAM 150</td>
<td>Project I</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHY 200</td>
<td>Motion Dynamics</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td>Semester 2 Total</td>
<td></td>
<td></td>
<td></td>
<td>18**</td>
</tr>
<tr>
<td></td>
<td>MAT 140</td>
<td>Linear Algebra and Geometry</td>
<td>X</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CS 225</td>
<td>Advanced C/C++</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 315</td>
<td>Low-Level Programming</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE 210</td>
<td>Digital Electronics I</td>
<td>X</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ECE 220L</td>
<td>Introduction to Robotics</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHY 270</td>
<td>Electricity and Magnetism</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td>Semester 3 Total</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>MAT 256</td>
<td>Introduction to Differential Equations</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 280</td>
<td>Data Structures</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE 200</td>
<td>Electric Circuits</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE 280</td>
<td>Digital Electronics II</td>
<td>X</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ECE 270</td>
<td>Real-Time Operating Systems</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MAT 258</td>
<td>Discrete Mathematics</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td>Semester 4 Total</td>
<td></td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>CS 260</td>
<td>Computer Networks I, Interprocess Communication</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 380</td>
<td>Artificial Intelligence for Games</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE 300</td>
<td>Embedded Microcontroller Systems</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE 310L</td>
<td>CE Project III: Gaming System</td>
<td>X</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>MAT 225</td>
<td>Calculus and Analytic Geometry III</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>Any course from the Department of Humanities and Social Sciences</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Semester 5 Total</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>MAT 340</td>
<td>Probability and Statistics</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 385</td>
<td>Software Engineering</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 370</td>
<td>Computer Imaging</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE 350</td>
<td>Control Systems</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECN 350</td>
<td>Engineering Economics</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE 360L</td>
<td>CE Project IV: Gaming System</td>
<td>X</td>
<td>5</td>
</tr>
<tr>
<td>Semester 6 Total</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>ECE 400 or ECE 420</td>
<td>Motors and Sensors or Digital Signal Processing</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ART Elective</td>
<td>Any ART course numbered 100 and above</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>English Elective</td>
<td>One ENG elective chosen from ENG 116 or higher, or COM 150</td>
<td></td>
<td>3-4</td>
</tr>
<tr>
<td></td>
<td>ECE 410L</td>
<td>CE Senior Project</td>
<td>X</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>Any elective (excluding ECE and CS courses)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Semester 7 Total</td>
<td></td>
<td></td>
<td></td>
<td>17-18</td>
</tr>
<tr>
<td></td>
<td>English Elective</td>
<td>One ENG elective chosen from ENG 116 or higher, or COM 150</td>
<td></td>
<td>3-4</td>
</tr>
<tr>
<td></td>
<td>ECE 460L</td>
<td>CE Senior Project</td>
<td>X</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Social Science Elective</td>
<td>Any SOS course</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td>Any two electives (excluding ECE and CS courses)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>An elective in CS, MAT, or PHY</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td>Semester 8 Total</td>
<td></td>
<td></td>
<td></td>
<td>20-21</td>
</tr>
<tr>
<td>Semester Total</td>
<td></td>
<td></td>
<td></td>
<td>154 minimum</td>
</tr>
</tbody>
</table>

Note: Please see the previous page for an explanation of core courses and the [*].
Program Overview
As the animation and video game industries mature, there is a noticeable shift by companies to hire employees who demonstrate more than a working knowledge of a specific commercial software package or traditional artistic skills. Industry-quality standards continue to rise, and competition for entry-level positions demands that artists possess sophisticated skill sets before they can even begin their careers. Studios seek artists with a broad and integrated foundation of theoretical, practical, and technical skills in production animation, traditional art, modern computer software, and media story flow. Insight and long-term potential have become increasingly important. The studios also demand professional accountability and consistency.

Despite these changes, digital art and animation remain viable career opportunities. Animation is capable of solving informational, educational, and entertainment challenges no other discipline can resolve. It provides a cornerstone for many industries including cinema, broadcast entertainment, cable television, software development, the Internet, education, simulation, product design, research, forensic science, architecture, telecommunications, advertising, travel and tourism, and video games. The fact that these industries depend upon qualified candidates accentuates the need for quality digital art and animation education.
The broad scope of these demands presents a series of significant academic challenges. Most art students enter collegiate training with little or no substantial background knowledge relative to this field. Many secondary schools have been forced to cut back on the level of arts training that they are able to provide. Consequently, aspiring artists must acquire this foundation while they are also trying to establish their professional focus. The complexity of the individual components of this field demand highly structured curricula and programmed sequencing simply to enable most students to be successful. Some students are capable of the rapid assimilation of the integrated knowledge the studios now require, but most are better served by a deeper and more sequential approach to the material.

DigiPen’s Bachelor of Fine Arts in Digital Art and Animation seeks to address these needs. Examples of student projects can be found in the online gallery at www.digipen.edu. Students who successfully complete this curriculum will possess the following skills and appropriate samples of professional work:

- A broad foundation of production experiences in both 2D and 3D animation. This base allows students to gain an overview of the profession and provides long-term adaptability.

- An area of production specialization and focus. This enables students to target a specific sector of the industry upon graduation. Each student will produce a specialized portfolio to support this focus.

- Strong foundational skills and a thorough grounding in applied drawing. This will include an understanding of how to maintain and continually enhance one's drawing skill throughout his or her career, in addition to building the habits to sustain this growth.

- Strong foundational skills in storytelling. This includes visual storytelling, literary traditions, story through dialog, story through acting, and cinematic conventions.

- Strong foundational skills in applied technology using industry-standard hardware and software. Students will be thoroughly familiar with modern interface and workflow conventions. They will also understand how to learn new software while maintaining a production schedule.

- A solid foundation in professional work habits and attitude. Students will understand how to utilize and integrate professional criticism into their work. Additionally, they will be able to identify and create work that meets professional quality standards. They will also understand production flow and be able to generate and maintain appropriate schedules and production goals for their work. Finally, they will understand the stresses of production and methods for positively managing this stress.

- Social perspective and civic accountability relative to the roles that animation plays in society. Students will explore the long-term ramifications of this industry and be able to intelligently discuss their responsibilities to the betterment of the animation industry and society as a whole.

This degree prepares a graduating student for a career in digital art and digital three-dimensional animation, digital two-dimensional animation, video game or animation pre-production, and video game art asset production. Some of the careers for which graduates of the BFA in Digital Art and Animation are trained include Props and Environment Modelers, Texture Artists, Level Designers, Character Modelers, Character Riggers, Character Animators, 3D Lighting and Camera Design, Effects Animator, Conceptual Illustration and Character Design, and Storyboard Artists.
Digital Art and Animation Degree Requirements

Number of Credits and GPA
The Bachelor of Fine Arts in Digital Art and Animation requires completion of at least 144 credits with a cumulative GPA of 2.0 or better. The program usually spans eight semesters of fifteen weeks each, or four academic years.

Humanities and Social Science Requirements
The following courses are required: LAW 115, SOS 115, ENG 116, and ENG 315. (Total: 14 credits)

Art Requirement
The following art courses are required: ART 101, ART 115, ART 125, ART 151, ART 201, ART 251, ART 300, ART 350, ART 401, and ART 450. (Total: 31 credits)

Animation Requirement
The following animation courses are required: ANI 101, ANI 125, and ANI 151. (Total: 9 credits)

Computer Graphics Requirement
The following computer graphics courses are required: CG 201, CG 225, CG 275, and CG 300. (Total: 12 credits)

Film Requirement
The following film courses are required: FLM 115, FLM 151, and FLM 201. (Total: 9 credits)

Science Requirement
The following courses are required: CS 115, PHY 115, BIO 100, BIO 150, BIO 200. (Total: 15 credits)

Projects Requirement
The following projects courses are required: PRJ 201, PRJ 251, PRJ 300, PRJ 350, PRJ 400, and PRJ 450. Please note that INT 390 and INT 450, internship courses, may be taken in place of PRJ 400 and PRJ 450. (Total: 30 credits)

Electives
Students must take 24 credits from the following: ART 225, ART 228, ART 230, ART 260, ART 301, CG 251, CG 305, CG 350, ANI 300, ANI 350, ANI 400, ANI 450, FLM 250, FLM 275. (Total: 24 credits)

Grade Requirement and Core Courses
Students must receive a grade of “C-” or higher in all core courses for the Digital Art and Animation major. (In a non-core course, a grade of “D” or higher is considered passing.) The core courses are all of the art, animation, computer graphics, film, and projects requirements noted above, except for ART 115, FLM 115, CG 350, ART 401, and FLM 275. BIO 100, BIO 150, BIO 200, ENG 116, ENG 315, CS 115, and SOS 115 are also core courses for this major.

General Education Courses
The following courses satisfy the general education requirement for the BFA in Digital Art and Animation: ART 115 (4), BIO 100 (3), BIO 150 (3), BIO 200 (3), ENG 116 (4), ENG 315 (4), FLM 115 (3), LAW 115 (3), SOS 115 (3), CS 115 (3), and PHY 115 (3), for a total of 36 credits.
<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Course Title</th>
<th>Core</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 1</td>
<td>ANI 101</td>
<td>Introduction to Animation - Theories and Techniques I</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ART 101</td>
<td>The Language of Drawing</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ART 115</td>
<td>Art and Technology</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>BIO 100</td>
<td>Visual Perception</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENG 116</td>
<td>Storytelling</td>
<td>X</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>FLM 115</td>
<td>History of Film and Animation</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Semester Total</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Semester 2</td>
<td>ANI 125</td>
<td>Acting for Animation</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ANI 151</td>
<td>Advanced Animation - Theories and Techniques II</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ART 125</td>
<td>Tone, Color, and Composition</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ART 151</td>
<td>Basic Life Drawing</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIO 150</td>
<td>Human Muscular, Skeletal, and Kinetic Anatomy</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>FLM 151</td>
<td>Visual Language and Film Analysis</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td>Semester Total</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Semester 3</td>
<td>ART 201</td>
<td>Advanced Life Drawing</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIO 200</td>
<td>Animal Muscular, Skeletal, and Kinetic Anatomy</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CG 201</td>
<td>Two-Dimensional Raster Graphics and Animation</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CG 225</td>
<td>Introduction to 3D Animation</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PRJ 201</td>
<td>Two-Dimensional Animation Production</td>
<td>X</td>
<td>5</td>
</tr>
<tr>
<td>Semester Total</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Semester 4</td>
<td>ART 225 or Elective</td>
<td>Three-Dimensional Design and Sculpture or any course from the Elective Requirement list.</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ART 251 or Elective</td>
<td>Character Design</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CG 251</td>
<td>Two-Dimensional Vector Graphics and Animation or any course from the Elective Requirement list.</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CG 275</td>
<td>Three-Dimensional Character Animation</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PRJ 251</td>
<td>Two-Dimensional Vector Animation Production</td>
<td>X</td>
<td>5</td>
</tr>
<tr>
<td>Semester Total</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Semester 5</td>
<td>ANI 300 or Elective</td>
<td>Acting through an Interface or any course from the Elective Requirement list.</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ART 300</td>
<td>Perspective, Backgrounds, and Layouts</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CG 300</td>
<td>Three-Dimensional Environment and Level Design</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENG 315</td>
<td>Story through Dialogue</td>
<td>X</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ART 350</td>
<td>Storyboards</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PRJ 300</td>
<td>Limited-Scope 3D Production</td>
<td>X</td>
<td>5</td>
</tr>
<tr>
<td>Semester Total</td>
<td></td>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Semester 6</td>
<td>ANI 350 or Elective</td>
<td>Voice Acting for Animation or any course from the Elective Requirement list.</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHY 115</td>
<td>Introduction to Applied Math and Physics</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CG 350 or Elective</td>
<td>Graphics for Gaming or any course from the Elective Requirement list.</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>FLM 201</td>
<td>Cinematography</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PRJ 350</td>
<td>Three-Dimensional Animation Production</td>
<td>X</td>
<td>5</td>
</tr>
<tr>
<td>Semester Total</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Semester 7</td>
<td>ART 401</td>
<td>Conceptual Illustration and Visual Development</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>FLM 250 or Elective</td>
<td>Digital Post-Production or any course from the Elective Requirement list.</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>FLM 275 or Elective</td>
<td>Fundamentals of Music and Sound Design or any course from the Elective Requirement list.</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ART 450</td>
<td>Portfolio</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PRJ 400</td>
<td>Capstone Project I</td>
<td>X</td>
<td>5</td>
</tr>
<tr>
<td>Semester Total</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Semester 8</td>
<td>ANI 400 or Elective</td>
<td>Cinematic Animation or any course from the Elective Requirement list.</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SDS 115</td>
<td>Media and Ethics: A Social Science Perspective</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 115</td>
<td>Introduction to Scripting and Programming</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>LAW 115</td>
<td>Introduction to Intellectual Property and Contracts</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PRJ 450</td>
<td>Capstone Project II</td>
<td>X</td>
<td>5</td>
</tr>
<tr>
<td>Semester Total</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Degree Total</td>
<td></td>
<td></td>
<td></td>
<td>144 minimum</td>
</tr>
</tbody>
</table>

Note: Please see the previous page for an explanation of core courses.
Game Design
Degree Programs

Overview
The designers and creators of electronic and digital entertainment fill a unique role that combines art, technology, innovation, storytelling, history, psychology, and many other disciplines. This multidisciplinary program leads to two degrees: the Bachelor of Science in Game Design (BSGD) and the Bachelor of Arts in Game Design (BAGD). At DigiPen, the BSGD is designed to educate students to become technical game designers with the skills necessary to design levels, program, script, and work in this dynamic field. On the other hand, the B.A.G.D. program prepares students to become artistic level designers with the skills to create worlds, levels, and the art for these. Students graduating with either degree will be prepared to begin working in the computer software and video games industries.

Students in the Game Design degree programs will learn how to apply the software, other tools, materials, and processes used in this industry to solve challenging problems that practitioners in the field regularly encounter. They will gain experience in evaluating and creating effective game proposals. Additionally, they will learn and practice verbal communication skills typically used when working in the industry. Like other DigiPen degree programs, the Game Design degrees emphasize the development of effective team-work skills through team projects and self- and peer-evaluations. Senior students will develop and subsequently present capstone team projects to DigiPen faculty and personnel from local, related businesses. Graduates of this program will be capable of designing industry-quality games, which can be submitted to recognized competitions. They will also have attained a level of proficiency expected of students entering graduate-degree programs.
Bachelor of Science in Game Design

Program Overview
This degree program prepares graduates to design electronic and digital entertainment. Graduates will be able to use a variety of languages to program computer software. Additionally, they will gain experience designing, building, and using a range of computer tools. Graduates will be well versed in game design theory, level design, artificial intelligence design, and general programming skills. This interdisciplinary degree also provides them with a grounding in the humanities and social sciences.

The BSGD program stresses the importance of being able to write computer programs in core languages such as C and C++, as well as having an overview of the technology used in game development, including the uses of scripting languages and other tools. The game industry requires versatile and knowledgeable personnel, and most game designer job descriptions list skills that include scripting and tuning as well as art design. At DigiPen, this degree program not only trains students to be programmers, but it also exposes them to the tools commonly used in the industry by artists, designers, and producers. These tools include proprietary scripting languages, level/map editors, and databases. In addition to these tools, students will learn techniques related to interactive storytelling and design documentation.

Graduates of this degree program will be prepared to work in the video and electronic game industry as entry-level programmers, entry-level AI programmers, level designers at the intermediate level, entry-level game designers, and beginning designers. Some of the job titles that graduates of this program can expect to attain are programmer, gameplay programmer, level scripter, level designer, game designer, design director, creative director, tools programmer, and game developer.
BSGD Degree Requirements

Number of Credits and GPA
The Bachelor of Science in Game Design (BSGD) requires completion of at least 154 semester credits with a cumulative GPA of 2.0 or better. The program usually spans eight semesters of fifteen weeks each, or four academic years.

Humanities and Social Science Requirement
The following courses are required: COM 150, ENG 110, ENG 120, and PSY 101. One course (three credits) must be selected from any course in the Humanities and Social Sciences department (SOS, HIS, PHL, PSY, or other) offered at DigiPen. (Total: 15 credits).

Art Requirement
The following courses are required: ART 102, ART 126, ART 260, ART 310, CG 102 and CG 125. (Total: 18 credits).

Projects Requirement
The following courses are required: GAM 100, GAM 150, GAM 200, GAM 250, GAM 302 or GAM 300, GAM 352 or GAM 350, GAM 400, GAM 450, GAT 110, GAT 210, GAT 211, GAT 212, GAT 245, GAT 250, GAT 251, GAT 315, and GAT 316. (Total: 61 credits).

Computer Science Requirement
The following courses are required: CS 101, CS 120, CS 120L, CS 170, CS 170L, CS 180, CS 225, CS230, CS 251, CS 280, CS 330, and CS 380. (Total: 33 credits)

Mathematics Requirement
The following courses are required: MAT 140, MAT 150 or MAT 180, MAT 200 or MAT 230, MAT 258, and MAT 364. (Total: 18 credits).

Physics Requirement
One course is required: PHY 200. (Total: 3 credits).

Electives
Complete six credits (two courses) chosen from any department at DigiPen. Recommended electives include additional courses in CS, game design, humanities/social sciences, art or film, and English or writing. (Total: 6 credits).

Grade Requirements and Core Courses
Students must receive a grade of “C-” or higher in all core courses for the BSGD major. (In a non-core course, a grade of “D” is considered passing.) The core courses are defined as follows: all courses taken to fulfill the Projects, Mathematics, Computer Sciences requirements (GAM, GAT, MAT, and CS courses), as well as ENG 110, and ENG 120.

General Education Courses
The following courses satisfy the general education requirement for the BSGD: ART 102 (3), ART 126 (3), COM 150 (3), ENG 110 (3), ENG 120 (3), MAT 140 (4), MAT 150 or MAT 180 (4), MAT 200 (4), MAT 258 (3), PHY 200 (3), and PSY 101 (3). One course (three credits) must be selected from any Humanities/Social Sciences (SOS, PHL, PSY, HIS, COM, or other) course offered at DigiPen. These general education courses total 39 credits.

Recommended Course Sequence
Listed on the following page is the recommended course sequence for the BSGD. Please note the following:

- Students must receive a “C-” or higher in the core courses to earn credit toward this degree.
- Students must receive special permission (*) from their academic advisor to take more than 19 credits their first semester and 17 credits their second semester.
## Recommended Course Sequence Chart (BSGD)

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Course Title</th>
<th>Core</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Semester 1</strong></td>
<td>CS 101</td>
<td>Computer Environment I</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CS 120</td>
<td>High-Level Programming I - The C Programming Language</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 120L</td>
<td>High-Level Programming I Lab</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ENG 110</td>
<td>Composition</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GAT 110</td>
<td>Game History</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MAT 140</td>
<td>Linear Algebra and Geometry</td>
<td>X</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PSY 101</td>
<td>Introduction to Psychology</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Semester Total</strong></td>
<td></td>
<td>21*</td>
</tr>
<tr>
<td><strong>Semester 2</strong></td>
<td>CS 170</td>
<td>High-Level Programming II - The C ++ Language</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 170L</td>
<td>High-Level Programming II Lab</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CS 230</td>
<td>Game Implementation Techniques</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENG 120</td>
<td>Advanced Composition</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GAM 150</td>
<td>Project I for Game Design</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GAT 210</td>
<td>Game Mechanics I</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MAT 150 or MAT 180</td>
<td>Calculus and Analytic Geometry II or Vector Calculus</td>
<td>X</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Semester Total</strong></td>
<td></td>
<td>20*</td>
</tr>
<tr>
<td><strong>Semester 3</strong></td>
<td>CS 225</td>
<td>Advanced C/C++</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 180</td>
<td>Operating System I, Man-Machine Interface</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MAT 200 or MAT 230</td>
<td>Calculus and Analytic Geometry II or Vector Calculus II</td>
<td>X</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHY 200</td>
<td>Motion Dynamics</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GAT 211</td>
<td>Game Mechanics II</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GAM 200</td>
<td>Project II</td>
<td>X</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Semester Total</strong></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td><strong>Semester 4</strong></td>
<td>CS 280</td>
<td>Data Structures</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>COM 150</td>
<td>Interpersonal and Work Communication</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ART 102</td>
<td>Fundamentals of Visual Expression</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GAT 212</td>
<td>Game Mechanics III</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GAT 245</td>
<td>Structure and Use of Advanced Game Technology</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GAM 250</td>
<td>Project II</td>
<td>X</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Semester Total</strong></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td><strong>Semester 5</strong></td>
<td>CS 380</td>
<td>AI for Games</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 251</td>
<td>Introduction to Computer Graphics</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ART 126</td>
<td>Composition and Design Principles</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ART 280</td>
<td>Graphic Design, User Experience, and Input</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GAT 250</td>
<td>Two-Dimensional Level Design - Introductions</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GAM 302</td>
<td>Project for Game Designers</td>
<td>X</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Semester Total</strong></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td><strong>Semester 6</strong></td>
<td>ART 310</td>
<td>Architectural Spaces, Design, and Lighting I</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CG 125</td>
<td>Introduction to 3D Production for Designers</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CG 102</td>
<td>2D Raster and Vector Graphics for Designers</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GAT 251</td>
<td>Two-Dimensional Level Design - Documentation</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GAM 352</td>
<td>Project for Game Designers II</td>
<td>X</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>MAT 258</td>
<td>Discrete Mathematics</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Semester Total</strong></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td><strong>Semester 7</strong></td>
<td>CS 330</td>
<td>Algorithm Analysis</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GAT 315</td>
<td>Three-Dimensional Game Design I</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>An elective of the student's choice from any department at DigiPen</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 311</td>
<td>Introduction to Databases</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MAT 364</td>
<td>Combinatorial Game Theory</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GAM 400</td>
<td>Project IV</td>
<td>X</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Semester Total</strong></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td><strong>Semester 8</strong></td>
<td>GAT 316</td>
<td>Three-Dimensional Game Design II</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>An elective of the student's choice from any department at DigiPen</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HSS Elective</td>
<td>Any three-credit course from the Department of Humanities and Social Sciences offered at DigiPen.</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GAM 450</td>
<td>Project IV</td>
<td>X</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Semester Total</strong></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Degree Total</strong></td>
<td></td>
<td>154 minimum</td>
</tr>
</tbody>
</table>

Note: Please see the previous page for an explanation of core courses and the [*].
Bachelor of Arts in Game Design

Program Overview
This degree program prepares graduates to design electronic and digital entertainment. Students in the program may select an emphasis in visual design, where they will extend their foundational skills in observational drawing, composition and visualization drawing into the creation of 2D and 3D art assets for games. Alternatively, students may select an emphasis in writing and storytelling, where they will extend their written and communication skills.

Graduates will be well versed in game design theory, level design, artificial intelligence design, and general art skills. This interdisciplinary degree provides them with a solid grounding in the humanities and social sciences, including art history, world history, psychology, and economics. Graduates with this degree will be able to design games and game levels for 2D and 3D video games. They will have strong foundational skills in level creation, gameplay, mechanics, game flow and user experience.

Graduates of this degree program will also know basic programming logic and be capable of designing artificial intelligence, triggers, and behaviors. Additionally, they will be able to use existing scripting languages and, more importantly, will be able to learn new scripting languages quickly. To complement these skills, students will learn techniques of interactive storytelling and design documentation.

Graduates of this degree program will be prepared to work as entry-level level designers, intermediate-level level designers, and beginning game designers. Some of the job titles that graduates of this program can expect to attain are level designer, game designer, design director, and creative director.
BAGD Degree Requirements

Number of Credits & GPA
The Bachelor of Arts in Game Design (BAGD) requires completion of at least 147 semester credits with a cumulative GPA of 2.0 or better. The program usually spans eight semesters of fifteen weeks each, or four academic years.

Humanities and Social Science Requirement
The following courses are required: COM 150, ENG 110, ENG 120, HIS 100, HIS 150, MGT 451, and PSY 101. One course (three credits) must be selected from any Humanities/Social Science (SOS, HIS, PHL, PSY, or other) course offered at DigiPen. (Total: 24 credits)

Art Requirement
The following courses are required: ART 102 or ART 101, ART 125 or ART 126, ART 260, ART 310, CG 102, CG 125, FLM 151, and FLM 275. One additional art elective (three credits), selected from any courses offered by the Department of Fine Arts and Animation is required. (Total: 24 credits)

Projects Requirement
The following courses are required: GAM 100, GAM 152, GAM 202, GAM 251, GAM 302, GAM 352, GAM 400, GAM 450, GAT 110, GAT 210, GAT 211, GAT 212, GAT 240, GAT 250, GAT 251, GAT 315, GAT 316, GAT 330, and GAT 405. (Total: 61 credits)

Mathematics Requirement
Students must take MAT 100. (Total: 4 credits)

Science Requirement
Students must take PHY 115 or PHY 200. An additional three credits must be selected from courses labeled BIO or PHY. (Total: 6 credits)

Computer Science Requirement
The following courses are required: CS 116, CS 175, and CS 176. (Total: 10 credits)

Electives
Students are required to take 15 credits (5 courses) from the following list of “Specialized Electives”: CG 175, CG 301, CG 320, CG 340, ART 151, ART 201, ART 225, ART 230, ART 243, ART 251, ART 300, ART 350, ART 402, ENG 116, ENG 150, ENG 241, ENG 242, ENG 243, ENG 245, ENG 315, ENG 410, ENG 420, ENG 440, ENG 450, or any philosophy, psychology, sociology, or history course offered at DigiPen. Students must also complete an additional three credits to be chosen from any department at DigiPen. (Total: 18 credits)

Grade Requirements and Core Courses
Students must receive a grade of “C-” or higher in all core courses for the BAGD major. (In a non-core course, a grade of “D” is considered passing.) The core courses are defined as follows: all courses taken to fulfill the Projects and Art requirements (GAM, GAT, ART, and CG courses), ENG 110 and ENG 120, as well as courses taken to fulfill the 15 “Specialized Elective” credits.

General Education Courses
The following courses satisfy the general education requirement for the BAGD: ART 102 (3), COM 150 (3), ENG 110 (3), ENG 120 (3), BIO 100 (3), HIS 100 (3), HIS 150 (3), MAT 100 (4), PHY 115 (3), and PSY 101 (3). One course (three credits) must be selected from any Social Sciences (SOS) course offered at DigiPen. (Total: 38 credits)

Recommended Course Sequence
Please note that students must receive a “C-” or higher in the core courses to earn credit toward this degree. Also, students must receive special permission (*) from their academic advisor to take more than 17 credits their first semester and 19 credits their second semester.
### Recommended Course Sequence Chart (BAGD)

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Course Title</th>
<th>Core</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Semester 1</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENG 110</td>
<td>English Composition</td>
<td>X</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CS 116</td>
<td>Introduction to Computer Technology and Programming</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAM 100</td>
<td>Project Introduction</td>
<td>X</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GAT 110</td>
<td>Game History</td>
<td>X</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSY 101</td>
<td>Introduction to Psychology</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAT 100</td>
<td>Pre-Calculus with Linear Algebra and Geometry</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Semester Total</strong></td>
<td></td>
<td></td>
<td></td>
<td><strong>20</strong>*</td>
</tr>
<tr>
<td><strong>Semester 2</strong></td>
<td>ART 102</td>
<td>Fundamentals of Visual Expression</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td>ART 120</td>
<td>Research, Reasoning, and Writing</td>
<td>X</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GAT 210</td>
<td>Game Mechanics I</td>
<td>X</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GAM 152</td>
<td>Project I for Game Design</td>
<td>X</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COM 175</td>
<td>Scripting Languages</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHY 115</td>
<td>Introduction to Applied Math and Physics</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Semester Total</strong></td>
<td></td>
<td></td>
<td></td>
<td><strong>18</strong>*</td>
</tr>
<tr>
<td><strong>Semester 3</strong></td>
<td>GAM 202</td>
<td>Game Usability and Analysis</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>FLM 151</td>
<td>Visual Language and Film Analysis</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 176</td>
<td>Advanced Scripting</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAT 211</td>
<td>Game Mechanics II</td>
<td>X</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GAM 250</td>
<td>Two-Dimensional Level Design - Introduction</td>
<td>X</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ART 126</td>
<td>Principles of Composition and Design</td>
<td>X</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BID 100</td>
<td>Visual Perception</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Semester Total</strong></td>
<td></td>
<td></td>
<td></td>
<td><strong>19</strong></td>
</tr>
<tr>
<td><strong>Semester 4</strong></td>
<td>GAT 251</td>
<td>Two-Dimensional Level Design - Documentation</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td>GAM 251</td>
<td>Advanced Usability and Process</td>
<td>X</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ART 310</td>
<td>Architectural Spaces, Design, and Lighting I</td>
<td>X</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COM 150</td>
<td>Interpersonal and Work Communication</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAT 212</td>
<td>Game Mechanics III</td>
<td>X</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CG 102</td>
<td>2D Raster Graphics and Animation for Designers</td>
<td>X</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CG 125</td>
<td>Introduction to 3D Production for Designers</td>
<td>X</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td><strong>Semester Total</strong></td>
<td></td>
<td></td>
<td></td>
<td><strong>19</strong></td>
</tr>
<tr>
<td><strong>Semester 5</strong></td>
<td>GAT 315</td>
<td>Three-Dimensional Game Design I</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td>Specialized Elective</td>
<td>From the specialized coursework list, ART, CG, ENG, PHL, PSY, HIS, SOS.</td>
<td>X</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>FLM 275</td>
<td>Fundamentals of Music and Sound Design</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specialized Elective</td>
<td>From the specialized coursework list, ART, CG, ENG, PHL, PSY, HIS, SOS.</td>
<td>X</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ART 260</td>
<td>Graphic Design, User Experience, and Input</td>
<td>X</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GAM 302</td>
<td>Project for Game Designers</td>
<td>X</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td><strong>Semester Total</strong></td>
<td></td>
<td></td>
<td></td>
<td><strong>20</strong></td>
</tr>
<tr>
<td><strong>Semester 6</strong></td>
<td>Specialized Elective</td>
<td>From the specialized coursework list, ART, CG, ENG, PHL, PSY, HIS, SOS.</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td>Specialized Elective</td>
<td>From the specialized coursework list, ART, CG, ENG, PHL, PSY, HIS, SOS.</td>
<td>X</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GAT 316</td>
<td>Three-dimensional Game Design II</td>
<td>X</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GAT 240</td>
<td>Technology for Designers</td>
<td>X</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Specialized Elective</td>
<td>From the specialized coursework list, ART, CG, ENG, PHL, PSY, HIS, SOS.</td>
<td>X</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GAM 352</td>
<td>Project for Game Designers II</td>
<td>X</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td><strong>Semester Total</strong></td>
<td></td>
<td></td>
<td></td>
<td><strong>17</strong></td>
</tr>
<tr>
<td><strong>Semester 7</strong></td>
<td>HIS 100</td>
<td>Introduction to World History</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GAT 330</td>
<td>Interactive Narrative and Character Creation for Games</td>
<td>X</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GAT 405</td>
<td>Advanced Game Design</td>
<td>X</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Specialized Elective</td>
<td>From the specialized coursework list, ART, CG, ENG, PHL, PSY, HIS, SOS.</td>
<td>X</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GAM 400</td>
<td>Project IV</td>
<td>X</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td><strong>Semester Total</strong></td>
<td></td>
<td></td>
<td></td>
<td><strong>17</strong></td>
</tr>
<tr>
<td><strong>Semester 8</strong></td>
<td>HIS 150</td>
<td>Introduction to World History II</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>HSS Elective</td>
<td>Any three-credit SOS, HIS, or other course from the Department of Humanities and Social Sciences at DigiPen</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>An elective from any department at DigiPen</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MGT 451</td>
<td>Project Management</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAM 450</td>
<td>Project IV</td>
<td>X</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td><strong>Semester Total</strong></td>
<td></td>
<td></td>
<td></td>
<td><strong>17</strong></td>
</tr>
</tbody>
</table>

**Degree Total** 147 minimum

Note: Please see the previous page for an explanation of core courses and the [*].
Minors

To obtain a minor at DigiPen, undergraduates must satisfy criteria set out by the department awarding the minor. The following minors are available:

- Minor in Art
- Minor in Electrical and Computer Engineering
- Minor in English
- Minor in Game Design
- Minor in Mathematics
- Minor in Physics
- Art Minor

To earn an art minor at DigiPen, students must complete a block of 18 credits satisfying the following:

- ART 101 and ART 125.
- Choice of two of the following courses: ART 151, ART 201, CG 201, or ART 225.
- Choice of ART 300 or ART 310.
- ART 401 or other 400-level ART course.

Electrical and Computer Engineering Minor

Digital games are limited by the hardware that contains them. Understanding and creating hardware and software at the base infrastructure level enables game designers and programmers to interact with the player in a fundamentally different manner. Students that complete a minor in computer engineering have a working knowledge of systems and circuits and have worked on both hardware and software projects.
Students must pass all of the following courses with a “C-” or better to earn a minor in computer engineering: CS 100, CS 100L, CS 120, CS 120L, CS 180, CS 280, CS 315, CS 365, ECE 210, MAT 150 or MAT 180, MAT 200 or MAT 230, PHY 200, and 9 credits of CE electives. CE electives must be selected from the following list: ECE 200, ECE 220L, ECE 260, ECE 270L, ECE 300, ECE 310L, and PHY 270.

**Mathematics Minor**

To earn a math minor at DigiPen, a student must complete a block of 27 credits satisfying the following:

- The courses are taken from MAT 140 or higher (any MAT course excluding MAT 100).
- PHY 300 may substitute for one of the MAT courses.
- Six credits must be numbered 300 or higher.
- At least nine credits in this subject area must be taken at DigiPen.
- All credits must be earned with a grade of “C-” or better.

**Physics Minor**

Creating realistic simulations requires knowledge of the underlying physical laws of the universe. In modern simulations, for example, physics is the cornerstone around which the engine is built. Translating a set of natural laws into rules for the computer requires not only the ability to understand these laws, but also the ability to synthesize these laws given the restrictions of modern computing. All students with an R.T.I.S. or C.E. degree will understand the basic physical rules of simulations, but the students with a minor in physics will have a proven ability to recreate those rules.

Students that minor in physics will also have a wider exposure to the place of physics in the modern world, from electromagnetism to quantum mechanics. They will be introduced to many of the quandaries facing the modern physical sciences.

Students must complete 18 credits in PHY courses numbered 200 and above with a “C-” or better to earn a physics minor. Additionally, students must achieve a grade “C-” or better in MAT 100 or MAT 140, MAT 150 or MAT 180, MAT 200 or MAT 230, and MAT 225 or MAT 250.
Master of Science in Computer Science

Program Overview
Driven by thriving technology and innovations, the interactive real-time simulation software and video game industry is exciting and dynamic. Currently topping 21 billion dollars in the U.S.A. and 40 billion dollars worldwide, the industry is an active research field that is still young and offers tremendous opportunities to talented people. The number of people involved in different game production activities (game console, personal computer, hand-held, on-line, wireless devices, etc.) has been rising. The trend is conservatively estimated to be growing at the rate of 15% per year. Three-dimensional computer graphics, artificial intelligence (AI), networking, and distributed computing technology continue to drive innovations in both hardware and software. Real-time animation and realistic rendering techniques have also demonstrated many application potentials in motion picture, television commercial, scientific visualization, medical study, military training, and other industries and fields.

Gaming companies increasingly demand leading programmers or engineers with an in-depth comprehension of and a solid background in mathematics, physics, real-time rendering, AI, graphics programming, and networking. On the other hand, many developers currently working in the field have been seeking postgraduate education to update their knowledge, to sharpen their professional skills, or to advance in the industry. However, the curriculum taught in many colleges and universities lacks a focus on implementation of these exclusive objectives. Consequently, both companies and individuals feel that a general, four-year computer science degree program is inadequate and limits them from advancing professionally in careers related to the theory and technology involved in real-time simulations. More directed, extensive education at a postgraduate level is needed.
DigiPen Institute of Technology has awarded the Bachelor of Science in RTIS since 2000. This degree provides both academic and practical training for programming computer games. It has been highly successful, and DigiPen has received much recognition for this achievement. Building on this success, the Institute offers a Master of Science in Computer Science to meet this postgraduate education need.

While many developers currently working in the field have been seeking postgraduate education to update their knowledge, to sharpen their professional skills, or to advance in the industry, they have the difficult challenge of balancing busy production schedules and professional growth. Additionally, for many of them, leaving a full-time job to pursue full-time graduate studies is simply not an option.

For these reasons, DigiPen also offers the Part-Time Master of Science in Computer Science (PT MS in CS) degree program. This program provides an opportunity for those who currently work in a video game company or have a full-time job in another industry and want to expand their knowledge of academic fundamentals in an advanced study of Computer Science and applications in real-time interactive simulation.

On June 6, 2006, the ACCSC granted the Institute accreditation for the Master of Science in Computer Science degree program. This program specializes in real-time interactive simulation and is designed (along with the PT-MSCS program) to attract talented students who have recently graduated with a bachelor’s degree in one of the following disciplines:

- Computer Science
- Computer Engineering or related studies
- A general field, along with some computer science studies or some game-industry experience

The MS in CS degree program offers extended education in areas of 3D computer graphics, animation and modeling techniques, AI algorithms, image processing, and real-time rendering. It combines this with related training in computer science, mathematics, and physics.

This graduate program at DigiPen provides an opportunity for students to expand their knowledge of academic fundamentals in 3D computer graphics. Students who successfully complete this master's degree program will possess and/or improve the following professional skills:

- In-depth foundation in mathematics and physics, such as implicit curves and surfaces, theory and applications of quaternions, differential geometry, computational geometry, graph theory, advanced numerical analysis, fuzzy logic and sets, number theory and cryptography, and finite elements.

- Advanced knowledge in computer science, including advanced animation and modeling algorithms (interpolation, rigid body, deformable object, inverse kinematics, natural phenomena simulation, facial expression, motion blending and capture, etc.), advanced rendering techniques (shader programming, lighting techniques, HDR, shading and shadows, anti-aliasing, etc.), artificial intelligence (reinforcement learning, neural network, advanced search algorithms, uncertainty handling, etc.), game engine design (levels of detail, implicit surfaces, pipeline optimization, advanced intersection and collision detection, etc.), physically-based modeling algorithms, ray tracing, and radiosity.

- Solid hands-on experience on game projects, including advanced game (single- or multi-player) design, documentation, project management, marketing, networking, distributed systems, streaming media testing, and working with external contractors.

- Strong capability of academic research in the area of 3D computer graphics and AI, including virtual reality, illumination and shading algorithms, anima-
tion techniques, surface representation and rendering, volume visualization and morphing algorithms, geometry, modeling, path finding, and searching and planning algorithms.

Computer technology pervades modern society. Those who thoroughly understand it have a wide range of rewarding career options. This graduate degree program prepares students specifically for advanced career choices and job opportunities in existing and emerging industries where skills in computer graphics, AI, and networking are in great demand. These include the computer game, aerospace, and medical industries. Graduates of this program may attain occupations as software engineers, engine and tools programmers, game graphics programmers, and solution architects.

Computer Science Degree Requirements

**Number of Credits & GPA**
The Master of Science in CS requires completion of at least 37 semester credits with a cumulative GPA of 3.0 or better. The full-time program typically spans four semesters of fifteen weeks each, or two academic years. The part-time program typically spans six semesters of fifteen weeks each, or three academic years, but DigiPen also offers a four year option for those needing to spread the required course load over a longer time frame. For candidates with bachelor's degrees in computer science but a lack of experience in computer graphics or mathematics, some articulation classes may be required.

**Computer Science Requirement**
CS 525, CS 529, CS 541, CS 560 (or CS 581), CS 562 (or CS 582), and CS 598 are required. (Total: 16 credits)

**Mathematics Requirement**
At least one MAT course numbered 500 or above is required. (Total: 3 credits)

**Projects Requirement**
GAM 541, GAM 550, and GAM 551 are required. (Total: 9 credits)

**Elective Requirement**
Nine credits from the following courses must be completed, and at least six credits of the chosen courses must be CS courses if the student selects to take Thesis Option C (extra course work): CS 500, CS 530, CS 560, CS 561, CS 562, CS 570, CS 580, CS 581, CS 582, CS 590, CS 599, CS 601, CS 602, PHY 500, PHY 550, MAT 500, MAT 550, MAT 551, MAT 552, MAT 553, MAT 554, MAT 555, MAT 556, MAT 557, MAT 559, MAT 561, MAT 562, and MAT 599. (Total: 9 credits)

**Thesis or Extra Course Requirement**
Six credits of either thesis or extra courses must be completed. For research and project theses, CS 601 and CS 602 are required. For extra course work, two additional electives (six credits) not used in satisfying the Elective Requirement and a comprehensive exam must be completed. (Total: 6 credits)

**Waived Required Courses**
Required courses can be waived on a case-by-case basis for qualified students. The academic advisor will decide on whether or not to approve these requests.

**Length Restrictions**
Full-time students in the MS in CS degree program must complete the requirements for the degree in 32 months. Students in the PT MS in CS degree program must complete the requirements for the degree in 68 months. All students must remain in continuous matriculation throughout the duration of their degree program.

**Program Transfer**
When a matriculated full-time MS in CS student is employed full time, or when he or she cannot maintain the full-time student status for two consecutive semesters (summer semesters are not included), he or she should transfer from the full-time program to the part-time program.
All graduate-level credits earned in the full-time MS in CS program can be transferred to the part-time program. The student must fill out a Program Transfer Request Form, obtain approval from his or her academic advisor, and submit the completed form to the Office of Admissions in order to transfer from the full-time to the part-time program. Once granted, he or she will be automatically withdrawn from the full-time program.

Graduation Requirements
Graduation from the MS in CS degree program requires:

- A cumulative grade point average of 3.0 or better.
- Satisfactory achievement of all required coursework.

For students with the thesis option:

- Successful defense of one’s master’s thesis.
- Submission of two original paper copies and one electronic copy of the thesis with all the required signatures. Submission directions are available in the “Thesis Style Guide” (available in the library).

For students with the extra course option:

- Six credits of elective courses.
- Passing score on the comprehensive exams.

Additionally, the MS in CS program requires that its graduate students complete a “capstone experience.” This is designed to bring reflection and focus to a student’s area of concentration and to enhance the skills, methodology, and knowledge learned throughout the degree program. Examples of possible capstone experiences include (but may not be limited to) successful completion of at least one of the following:

- Game project classes GAM 550 and GAM 551.
- Project thesis CS 601 and CS 602.
- Two semesters of externship at a game company.

- Comprehensive exams.

Thesis Options
Students in the Master of Science in Computer Science program must select to focus their studies through the completion of one of three different tracks of study: research thesis, project thesis, or extra coursework. The research thesis option is designed for those students who wish to develop analytic research skills and to make an original contribution to the field. The project thesis option allows students to advance their professional careers through a hands-on experience or practical application of their study. The extra coursework option is intended for those preferring extended knowledge and broader skills in computer science or a related discipline.

All MS in CS students are required to complete four required courses (12 credits) and four electives (12 credits) at the graduate level, in addition to one of the following options:

1. Research Thesis Track (CS 601 and CS 602)
   Students choosing this track must identify an area of interest within the discipline of computer science, computer engineering, mathematics, physics, or game production. They shall conduct a literature survey on existing techniques and algorithms in the field, propose an innovative approach to the field, develop the theory and prototypes, and write and defend the thesis.

2. Project Thesis Track (CS 601 and CS 602)
   This option is similar to the research thesis track. However, instead of an original contribution to the field, the project thesis emphasizes the practical aspect of a specific problem. After surveying the literature in a narrowly focused area of study, students choosing this track shall select existing algorithm(s) to implement. They must also analyze and compare different approaches. This option also requires that students write a technical report and demonstrate the implementation of the algorithm(s) to the thesis committee.
3. Extra Coursework Track with Comprehensive Exams
   This option allows a student to take two additional electives offered at the graduate level to replace CS 601 and CS 602, along with the satisfactory completion of a comprehensive exam.

   The comprehensive examination tests a student's knowledge of basic computer science material and material covered by the chosen concentration area. The exam is based on graduate courses and suitable undergraduate material. The examination will be offered during the final week of every spring semester, but it may be offered during the fall semester upon a student's request. To schedule an examination, the student shall complete the Comprehensive Examination Request Form no later than six weeks prior to the end of the semester. The student and his or her academic advisor need to sign the form.

   The comprehensive examination consists of two parts - general and subject. The general part of the examination covers core computer science topics and includes all four of the following:

   - Algorithms
   - Operating Systems
   - Data Structures
   - Linear Algebra

   The general part also includes one of the following (subject to the concentration area of the student's study and his/her advisor's approval):

   - Advanced Physically-Based Modeling
   - Curves and Surfaces
   - Image Processing

   The subject part of the examination covers a student's chosen concentration area:

   - Artificial Intelligence
   - Artificial Intelligence for Video Games
   - Introduction to Artificial Intelligence
   - Graphics
   - Advanced Computer Graphics
   - Advanced Animation Algorithms
   - Physically-based Simulation
   - Advanced Physically-based Modeling
   - Physics Simulation

   The comprehensive exam will be given over the period of a single day. Each of the two parts of the examination will be given in a separate three-hour period. The student's final grade will be given based on individual performance in each of the two exams. Instructors will provide a syllabus of the material covered by the exam.

   The outcome of the comprehensive examination will be one of the following:

   - Pass - Student earns a grade of 75% or higher in each of the two parts of the examination.
   - Conditional Pass - given in rare borderline cases where a student may need to fulfill additional requirements, such as retaking one part of the examination.
   - Fail - Student is required to retake both parts of the examination.

Full-Time Status
Full-time enrollment for graduate students consists of nine credits per semester.

Part-Time Status
Part-time enrollment for graduate students consists of nine to twelve credits per academic year.
Graduate Student Grading System

The following system applies to graduate students. If you are an undergraduate student, please refer to “Standards of Progress - Grading System.”

A Excellent = 4.0 quality points

A - Excellent = 3.7 quality points

B+ Good = 3.3 quality points

B Good = 3.0 quality points

B- Good = 2.7 quality points

C+ Fair = 2.3 quality points

C Fair = 2.0 quality points.*

C- Fair = 1.7 quality points

D Poor = 1.0 = quality points

F Failure = 0 quality points

AU Audit

M Missing grade

I Incomplete

W Withdrawal

S Satisfactory

U Unsatisfactory

P Pass

* A grade of 2.0 or better is required to earn credit for graduate-level classes.

S - Satisfactory

The “S” grade is given only in non-credit courses.

U - Unsatisfactory

The “U” grade is given only in non-credit courses.

For complete descriptions of the other special grades, please refer to the “Standards of Progress - Grading System.”

Grade Reports

Reports of the final grade in each subject will be made available to the student soon after the close of each semester. However, grade reports are withheld from students who have delinquent accounts with the Administration Office, Billing Office, Security, or Library.

Satisfactory Progress

Minimum GPA Requirements

Graduate students are required to maintain a cumulative GPA of 3.0 or better. If a student’s cumulative GPA falls below 3.0, then he or she will be placed on academic probation. Probationary students must earn a 3.0 GPA in their graduate-level classes in subsequent semesters, until the cumulative GPA is 3.0 or better. Students who fail to attain a 3.0 in graduate-level classes during a probationary semester will be academically terminated. Terminated students may apply for re-admission after a 12-month suspension.

Failing to Complete Program within the Maximum Time Frame

Students who fail to complete their program within 55 attempted credits will be placed on academic probation. Probationary students will work with their graduate advisor to develop a completion plan that outlines the quickest path to completion. Failure to meet the terms of this plan will result in academic termination.
Transfer Credits
Graduate students are eligible to transfer up to six credits from other colleges and other DigiPen programs. All credits earned through DigiPen’s full-time MS in CS program are transferable to the part-time MS program. Please refer to the section on waiver credit for complete guidelines on DigiPen’s transfer policy.

### MS in CS Program Curriculum

Listed below are all of the graduate-level courses currently offered at DigiPen Institute of Technology. Courses designated with an “R” are required courses, and courses designated with an “E” are electives. Courses with both notations may be used as a required course or as an elective.

<table>
<thead>
<tr>
<th>Course</th>
<th>Course Title</th>
<th>Credits</th>
<th>R/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 500</td>
<td>Ray Tracing</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>CS 525</td>
<td>Object-Oriented Design and Programming</td>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td>CS 529</td>
<td>Fundamentals of Game Development</td>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td>CS 530</td>
<td>Advanced Game Engine Design</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>CS 541</td>
<td>Advanced Computer Graphics</td>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td>CS 560</td>
<td>Advanced Animation and Modeling I</td>
<td>3</td>
<td>R/E</td>
</tr>
<tr>
<td>CS 561</td>
<td>Advanced Animation and Modeling II</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>CS 562</td>
<td>Advanced Real-Time Rendering Techniques</td>
<td>3</td>
<td>R/E</td>
</tr>
<tr>
<td>CS 570</td>
<td>Computer Imaging</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>CS 580</td>
<td>Artificial Intelligence in Games</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>CS 581</td>
<td>Introduction to Artificial Intelligence</td>
<td>3</td>
<td>R/E</td>
</tr>
<tr>
<td>CS 582</td>
<td>Reasoning under Uncertainty</td>
<td>3</td>
<td>R/E</td>
</tr>
<tr>
<td>CS 590</td>
<td>Introduction to Computation Theory</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>CS 598</td>
<td>Computer Science Seminar</td>
<td>1</td>
<td>R</td>
</tr>
<tr>
<td>CS 599</td>
<td>Special Topics in Computer Science</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>CS 601</td>
<td>Master’s Thesis I</td>
<td>3</td>
<td>R/E</td>
</tr>
<tr>
<td>CS 602</td>
<td>Master’s Thesis II</td>
<td>3</td>
<td>R/E</td>
</tr>
<tr>
<td>MCM 600</td>
<td>Master’s Continuous Matriculation</td>
<td>1</td>
<td>E</td>
</tr>
<tr>
<td>GAM 541</td>
<td>Master’s Game Project I</td>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td>GAM 550</td>
<td>Master’s Game Project II</td>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td>GAM 551</td>
<td>Master’s Game Project III</td>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td>MAT 500</td>
<td>Curves and Surfaces</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>MAT 550</td>
<td>Advanced Curves and Surfaces</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>MAT 551</td>
<td>Quaternions, Interpolations, and Animation</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>MAT 552</td>
<td>Wavelets</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>MAT 553</td>
<td>Differential Geometry</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>MAT 554</td>
<td>Discrete and Computational Geometry</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>MAT 555</td>
<td>Graph Theory</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>MAT 556</td>
<td>Advanced Differential Equations</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>MAT 557</td>
<td>Numerical Analysis</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>MAT 559</td>
<td>Computational Algebraic Geometry</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>MAT 561</td>
<td>Introduction to Number Theory and Cryptography</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>MAT 562</td>
<td>Fuzzy Sets and Logic</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>MAT 599</td>
<td>Special Topics in Mathematics</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>PHY 500</td>
<td>Advanced Physically-Based Modeling</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>PHY 550</td>
<td>Physics Simulation</td>
<td>3</td>
<td>E</td>
</tr>
</tbody>
</table>
## Recommended Course Sequence Chart for Full-Time MS CS

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Course Title</th>
<th>R/E</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Semester 1</strong></td>
<td>CS 525</td>
<td>Object-Oriented Design and Programming</td>
<td>R</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 529</td>
<td>Fundamentals of Game Design</td>
<td>R</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>CS, MAT, or PHY elective***</td>
<td>E</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td><strong>Semester Total</strong></td>
<td></td>
<td></td>
<td><strong>9</strong></td>
</tr>
<tr>
<td><strong>Semester 2</strong></td>
<td>GAM 541</td>
<td>Master's Game Project I</td>
<td>R</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 541</td>
<td>Advanced Computer Graphics</td>
<td>R</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>CS, MAT, or PHY elective***</td>
<td>E</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td><strong>Semester Total</strong></td>
<td></td>
<td></td>
<td><strong>9</strong></td>
</tr>
<tr>
<td><strong>Semester 3</strong></td>
<td>CS 560 or CS 581</td>
<td>Advanced Animation and Modeling I or Introduction to Artificial Intelligence</td>
<td>R</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GAM 550</td>
<td>Master’s Game Project II</td>
<td>R</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 601 or Elective</td>
<td>Master’s Thesis I or CS, MAT, or PHY elective***</td>
<td>R/E</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td><strong>Semester Total</strong></td>
<td></td>
<td></td>
<td><strong>9</strong></td>
</tr>
<tr>
<td><strong>Semester 4</strong></td>
<td>CS 562 or CS 582</td>
<td>Advanced Real-Time Rendering Techniques or Reasoning under Uncertainty</td>
<td>R</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GAM 551</td>
<td>Master’s Game Project III</td>
<td>R</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 602 or Elective</td>
<td>Master’s Thesis II or CS, MAT, or PHY elective***</td>
<td>R/E</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td><strong>Semester Total</strong></td>
<td></td>
<td></td>
<td><strong>9</strong></td>
</tr>
<tr>
<td>Any</td>
<td>CS 598</td>
<td>Computer Science Seminar</td>
<td>R</td>
<td>1*</td>
</tr>
<tr>
<td></td>
<td><strong>Degree Total</strong></td>
<td></td>
<td></td>
<td><strong>37</strong></td>
</tr>
</tbody>
</table>

Please note the following:

*** At least one math elective must be selected.

** Required courses can be waived on a case-by-case basis, but the total number of credits must be greater than or equal to 37.

* CS 598 - Computer Science Seminar (1 credit) is required and can be taken during any semester.

## Recommended Course Sequence Chart for Part-Time MS in CS (3-year plan)

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Course Title</th>
<th>R/E</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Fall First Year</strong></td>
<td>CS 525</td>
<td>Object-Oriented Design and Programming</td>
<td>R</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 529</td>
<td>Fundamentals of Game Design</td>
<td>R</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td><strong>Semester Total</strong></td>
<td></td>
<td></td>
<td><strong>6</strong></td>
</tr>
<tr>
<td><strong>Spring First Year</strong></td>
<td>GAM 541</td>
<td>Master’s Game Project I</td>
<td>R</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 541</td>
<td>Advanced Computer Graphics</td>
<td>R</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td><strong>Semester Total</strong></td>
<td></td>
<td></td>
<td><strong>6</strong></td>
</tr>
<tr>
<td><strong>Fall Second Year</strong></td>
<td>CS 560 or CS 581</td>
<td>Advanced Animation and Modeling I or Introduction to Artificial Intelligence</td>
<td>R</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GAM 550</td>
<td>Master’s Game Project II</td>
<td>R</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td><strong>Semester Total</strong></td>
<td></td>
<td></td>
<td><strong>6</strong></td>
</tr>
<tr>
<td><strong>Spring Second Year</strong></td>
<td>CS 562 or CS 582</td>
<td>Advanced Real-Time Rendering Techniques or Reasoning under Uncertainty</td>
<td>R</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GAM 551</td>
<td>Master’s Game Project III</td>
<td>R</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td><strong>Semester Total</strong></td>
<td></td>
<td></td>
<td><strong>6</strong></td>
</tr>
<tr>
<td><strong>Fall Third Year</strong></td>
<td>Elective</td>
<td>CS, MAT, or PHY elective***</td>
<td>E</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 601 or Elective</td>
<td>Master’s Thesis I or CS, MAT, or PHY elective***</td>
<td>R/E</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td><strong>Semester Total</strong></td>
<td></td>
<td></td>
<td><strong>6</strong></td>
</tr>
<tr>
<td><strong>Spring Third Year</strong></td>
<td>Elective</td>
<td>CS, MAT, or PHY elective***</td>
<td>E</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS Elective or CS 602</td>
<td>CS Elective or Master’s Thesis II***</td>
<td>E/R</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td><strong>Semester Total</strong></td>
<td></td>
<td></td>
<td><strong>6</strong></td>
</tr>
<tr>
<td>Any</td>
<td>CS 598</td>
<td>Computer Science Seminar</td>
<td>R</td>
<td>1*</td>
</tr>
<tr>
<td></td>
<td><strong>Degree Total</strong></td>
<td></td>
<td></td>
<td><strong>37</strong></td>
</tr>
</tbody>
</table>

Please note the following:

*** At least one math elective must be selected.

** Required courses can be waived on a case-by-case basis, but the total number of credits must be greater than or equal to 37.

* CS 598 - Computer Science Seminar (1 credit) is required and can be taken during any semester.
Recommended Course Sequence Chart for Part-Time MS in CS (4-year plan)

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Course Title</th>
<th>R/E</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall First Year</td>
<td>CS 525</td>
<td>Object-Oriented Design and Programming</td>
<td>R</td>
<td>3</td>
</tr>
<tr>
<td>Spring First Year</td>
<td>CS 541</td>
<td>Advanced Computer Graphics</td>
<td>R</td>
<td>3</td>
</tr>
<tr>
<td>Summer First Year</td>
<td>Elective</td>
<td>CS, MAT, or PHY elective***</td>
<td>E</td>
<td>3</td>
</tr>
<tr>
<td>Fall Second Year</td>
<td>CS 529</td>
<td>Fundamentals of Game Design</td>
<td>R</td>
<td>3</td>
</tr>
<tr>
<td>Spring Second Year</td>
<td>GAM 541</td>
<td>Master's Game Project I</td>
<td>R</td>
<td>3</td>
</tr>
<tr>
<td>Summer Second Year</td>
<td>Elective</td>
<td>CS, MAT, or PHY elective***</td>
<td>E</td>
<td>3</td>
</tr>
<tr>
<td>Fall Third Year</td>
<td>CS 560 or CS 561</td>
<td>Advanced Animation Algorithms or Introduction to Artificial Intelligence</td>
<td>R</td>
<td>3</td>
</tr>
<tr>
<td>Spring Third Year</td>
<td>CS 562 or CS 562</td>
<td>Advanced Real-Time Rendering Techniques or Reasoning under Uncertainty</td>
<td>R</td>
<td>3</td>
</tr>
<tr>
<td>Summer Third Year</td>
<td>CS Elective or CS 601</td>
<td>CS Elective or Master's Thesis I</td>
<td>R</td>
<td>3</td>
</tr>
<tr>
<td>Fall Fourth Year</td>
<td>GAM 550</td>
<td>Master's Game Project II</td>
<td>R</td>
<td>3</td>
</tr>
<tr>
<td>Spring Fourth Year</td>
<td>GAM 551</td>
<td>Master's Game Project III</td>
<td>R</td>
<td>3</td>
</tr>
<tr>
<td>Summer Fourth Year</td>
<td>CS Elective or CS 602</td>
<td>CS Elective or Master's Thesis II</td>
<td>R</td>
<td>3</td>
</tr>
<tr>
<td>Any</td>
<td>CS 598</td>
<td>Computer Science Seminar</td>
<td>R</td>
<td>1*</td>
</tr>
</tbody>
</table>

Degree Total 37**

Please note the following:

*** At least one math elective must be selected.

** Required courses can be waived on a case-by-case basis, but the total number of credits must be greater than or equal to 37.

* CS 598 - Computer Science Seminar (1 credit) is required and can be taken during any semester.
COURSE DESCRIPTIONS FOR THE ACADEMIC YEAR

2011-2012
## Course Description Table of Contents

Listed below are the page numbers for the following departments and course titles.

<table>
<thead>
<tr>
<th>Department of Computer Science</th>
<th>95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Science</td>
<td>95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department of Computer Science</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical and Computer Engineering</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department of Fine Arts and Animation</th>
<th>102</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animation</td>
<td>102</td>
</tr>
<tr>
<td>Art</td>
<td>103</td>
</tr>
<tr>
<td>Computer Graphics</td>
<td>105</td>
</tr>
<tr>
<td>Film</td>
<td>107</td>
</tr>
<tr>
<td>Projects</td>
<td>107</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department of Game Software Design and Production</th>
<th>109</th>
</tr>
</thead>
<tbody>
<tr>
<td>Game Software Design and Production</td>
<td>109</td>
</tr>
<tr>
<td>Game Application Techniques</td>
<td>111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department of Humanities and Social Sciences</th>
<th>113</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communications</td>
<td>113</td>
</tr>
<tr>
<td>Economics</td>
<td>113</td>
</tr>
<tr>
<td>English</td>
<td>113</td>
</tr>
<tr>
<td>History</td>
<td>115</td>
</tr>
<tr>
<td>Japanese</td>
<td>116</td>
</tr>
<tr>
<td>Law</td>
<td>116</td>
</tr>
<tr>
<td>Management</td>
<td>116</td>
</tr>
<tr>
<td>Philosophy</td>
<td>116</td>
</tr>
<tr>
<td>Psychology</td>
<td>116</td>
</tr>
<tr>
<td>Social Sciences</td>
<td>116</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department of Life Sciences</th>
<th>117</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td>117</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department of Mathematics</th>
<th>117</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math</td>
<td>117</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department of Physics</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics</td>
<td>120</td>
</tr>
</tbody>
</table>
CS 100 Computer Environment I (3 Cr.)
Prerequisite(s): None
Concurrent Course(s): CS 100L
This course provides students with a solid understanding of the fundamental elements on which computers are based. Topics covered include number systems, operations in and conversions between number systems, representation of numbers in computation, basic electricity, electric circuits, digital systems, logic circuits, Boolean algebra, data representations, digital memory, microcontrollers, embedded systems, and an overview of operating systems. The theoretical lectures are followed up by labs, during which students will work together in small teams to design, build, and test autonomous robotic car projects. This understanding of hardware will enable students to expand the limits of their future games with unique interface devices. While the practical experience of low-level programming will provide students with the skills essential for code optimization. This class meets weekly for three hours of lecture and two additional hours of supervised labs.

CS 100L - Computer Environment Lab (1 Cr.)
Concurrent Course(s): CS 100
CS 100L is the lab component of the introductory Computer Environment course. Students will meet weekly to explore the topics presented in CS 100, from building basic analog and digital circuits to programming a microcontroller to managing autonomous robot navigation.

CS 101 - Introduction to Computer Environment (1 Cr.)
Prerequisite(s): None
This course provides students with an introductory overview of the fundamental elements on which computers are based. Topics covered by the curriculum include basic computer hardware systems, operations, and structures. An introduction to basic programming logic is also included. This knowledge will provide students with a well-rounded overview of how computers operate.

CS 105 - Computer Environment II (3 Cr.)
Prerequisite(s): CS 100 & CS 120
CS 105 students learn the function and implementation of digital memory, microprocessors, microcontrollers, and embedded systems. Students work together in small teams to design, build, and test autonomous robotic car projects. This practical exercise builds upon the theoretical lectures on electronics, low-level programming, and algorithm design. This understanding of hardware enables students to expand the limits of their future games with unique interface devices, while the practical experience of low-level programming will provide students with the skills essential for code optimization. This class meets weekly for two hours of lecture and two additional hours of supervised labs.

CS 105L - Computer Environment II Lab (1 Cr.)
Concurrent Course(s): CS 105
CS 105L is the lab component of the introductory High-Level Programming I course. Students will meet weekly to apply the concepts presented in CS 120 in a controlled environment.

CS 116 - Introduction to Computer Technology and Programming (4 Cr.)
Prerequisite(s): None
This class introduces programming environments to students who are not experienced programmers. This course will cover simple logic, programming flow, and the use of variables. It will introduce students to the history of programming and the basic vocabulary of the programming industry. The course culminates in a series of hands-on exercises using this knowledge to solve problems. At his or her discretion, the instructor may cover special topics in programming or scripting. Credit may be received for CS 115 or for CS 120, but not for both.

CS 120 - High-Level Programming I (CS 120L). It covers the concepts and implementation strategies for using high-level scripting languages in game development. Students will focus on object-oriented programming, high-level English-like structure, speed of development, and ease of use. The course includes a survey of commercial languages, as well as proprietary scripting languages from industry applications. Students will

CS 120L - High-Level Programming I Lab (1 Cr.)
Concurrent Course(s): CS 120
CS 120L is the lab component of the introductory High-Level Programming I course. Students will meet for two hours weekly to apply the concepts presented in CS 120 in a controlled environment.

CS 170 - High-Level Programming II - The C Programming Language (3 Cr.)
Prerequisite(s): CS 120
Concurrent Course(s): CS 170L
This course is a continuation of High Level Programming I (CS 120). It introduces the C++ language with a focus on object-oriented features. Topics covered include stylistic and usage differences between C and C++, namespaces, function and operator overload- ing, classes, inheritance, class and function templates, STL lists, and vectors. Concurrent enrollment in CS 170L is required.

CS 170L - High-Level Programming II Lab (1 Cr.)
Concurrent Course(s): CS 170
CS 170L is the lab component of the High-Level Programming II course. Students will meet weekly to work on topics presented in the CS 170 lectures in a lab environment.

CS 175 - Scripting Languages (3 Cr.)
Prerequisite(s): CS 116 or CS 120
This course covers the concepts and implementation strategies for using high-level scripting languages in game development. Students will focus on object-oriented programming, high-level English-like structure, speed of development, and ease of use. The course includes a survey of commercial languages, as well as proprietary scripting languages from industry applications. Students will
examine the process of conceptualizing a scripting language and examine how such a language is compiled and interpreted by a game engine. Using the syntax they have created, they will create a number of scripts that could be used in a game. Additionally, the class will cover such relevant topics as data-driven technology, modular coding, function calls, and procedures.

**CS 176 - Advanced Scripting (3 Cr.)**

**Prerequisite(s):** CS 170 or CS 175

This course presents game implementation techniques and game architecture in a scripting language environment. Students will investigate concepts of game architecture such as game-system component separation and game flow, while learning about essential elements such as the game state manager, input/output handler, and frame rate controller. Students will learn how to create several different types of classic games in a variety of the scripting languages most commonly used for professional games, learning the specific syntax and approaches of each language in the process. As part of their implementation, students will learn how to use the specific graphics, audio, interface, physics, and math APIs found in the scripting environments used. Students will survey concepts in space partitioning, particle systems, map editors, and other elements so that they are capable of creating working prototypes of 2D games.

**CS 180 - Operating System I, Man-Machine Interface (3 Cr.)**

**Prerequisite(s):** CS 100 or CS 101 & CS 120

This course presents an overview of modern operating systems, in particular Windows and Linux/Unix as implemented on modern PCs. After an overview of what an operating system is and does, we cover the following: organization and design (the kernel and various subsystems), process management (creation and management of processes and threads, including an introduction to multi-threaded programming), networks (the TCP/IP stack and the organization of the Internet), inter-process communication, process synchronization (locks, semaphores, and methods to avoid deadlocks), memory management (hardware and process views of memory layout and demand-paged virtual memory), file systems, and security and protection (viruses, worms, and Trojan horses).

**CS 200 - Computer Graphics I (3 Cr.)**

**Prerequisite(s):** CS 170 & MAT 140

CS 200 presents fundamental mathematical elements, data structures, and algorithms useful for animating and viewing two-dimensional primitives. The course aims to fulfill two objectives. The first objective is to provide students with a sufficient mathematical and algorithmic background to design and implement 2D graphics applications. The second objective is to prepare students with the knowledge required for writing three-dimensional graphics applications. The first half of the course deals with scan-conversion algorithms for rasterizing 2D primitives such as lines, circles, ellipses, triangles, and arbitrary polygons. The second half of the course is concerned with the viewing and animation of these 2D primitives. The course covers topics such as interpolation techniques, transformations, culling, clipping, animation techniques, and the 2D viewing pipeline.

**CS 220 - Advanced C (3 Cr.)**

**Prerequisite(s):** CS 170

This course focuses on advanced topics of the C programming language. Such topics include advanced pointer manipulation techniques, pointer applications, and using standard library functions more efficiently. The course also presents students with many methods designed to avoid common C programming errors and pitfalls. Mastering the various topics presented in this course will enable students to become more productive programmers.

**CS 225 - Advanced C/C++ (3 Cr.)**

**Prerequisite(s):** CS 170

This course builds on the foundation created in the first two high-level programming courses (CS 120/170). It presents advanced topics of the C/C++ programming language in greater detail. Such topics include advanced pointer manipulation, utilizing multi-dimensional arrays, complex declarations, and standard library functions. Advanced C++ topics include class and function templates, operator overloading, multiple inheritance, runtime type information, the standard template library, and performance issues.

**CS 230 - Game Implementation Techniques (3 Cr.)**

**Prerequisite(s):** CS 120

**Concurrent Course(s):** CS 170

This course presents game implementation techniques and engine architecture. Students will investigate foundational concepts of game architecture, such as game-system component separation and game flow, while learning about essential elements such as the game state manager, input/output handler, and frame rate controller. CS 230 introduces Windows programming, state machines, and collision detection algorithms, which students will integrate into their own remakes of classic games. As part of their implementation, students will create and expand their own collision, vector, and matrix libraries, enabling them to incorporate basic physics engines. Students will survey concepts in space partitioning, particle systems, map editors, and other elements as a bridge to more advanced concepts in implementation techniques and engine architecture.

**CS 241 - Fundamental Computer Graphics (3 Cr.)**

**Prerequisite(s):** MAT 140, & MAT 200 or MAT 230

This course covers the contents of CS 200 and CS 250 in a single semester. It examines the algorithms and mathematical elements needed to generate and render 2D and 3D scenes. Topics include the graphics pipeline 2D and 3D coordinate systems and their transformations, homogeneous coordinates and perspective calculations, scan-conversion algorithms, color models, collision detection techniques, and basic culling, clipping, and intersection.

**CS 245 - Introduction to Interactive Sound Synthesis (3 Cr.)**

**Prerequisite(s):** CS 170, CS 180, MAT 140, & PHY 200

This course explores dynamic sound synthesis, 3D-directional auditory effects, and sonic ambience to real-time simulation and video games. The subjects include mixing audio and modulating dry recorded sounds using wave table synthesis. Students will learn how to create collision sounds using additive synthesis, wind effects using subtractive synthesis, natural sounds using granular synthesis and physical modeling, ambiences using layering and spectral filtering, 3D spatialized surround sound panning, inter-aural time difference, inter-aural intensity difference, and Head Related Transforms (HRTFs). Students will also study algorithms and techniques for real-time multi-threaded programming and synthesized sound integration for the game engine.
CS 250 - Computer Graphics II (3 Cr.)
Prerequisite(s): CS 200

CS 250 examines the mathematical elements and algorithms used in the design and development of real-time three dimensional computer graphics applications such as games, cockpit simulators, and architectural walkthroughs. 3D computer graphics involve drawing pictures of 3D objects, usually on a 2D screen. This process of generating a 2D image of a 3D graphics application can be described as a series of distinct operations performed on a set of input data. Each operation generates results for the successive one. This process is called the graphics rendering pipeline, and it is the core of real-time computer graphics. The graphics pipeline can be conceptualized as consisting of three stages: application, transformation, and rasterization. The course begins by introducing the 3D graphics pipeline. The application stage is examined from the viewpoint of the representation, modeling, and animation of 3D objects. Topics considered include user interaction, camera animation techniques, simulation of dynamic objects, and collision detection techniques. Next, the course examines the process of mapping 3D graphic objects from model-space to viewport coordinates. The transformation stage implements this process. Finally, the conversion of a geometric primitive in viewport coordinates into a 2D image is studied. The rasterization stage implements this final process.

CS 251 - Introduction to Computer Graphics (3 Cr.)
Prerequisite(s): CS 170

This course provides a high-level overview of three-dimensional computer graphics. It is intended for game designers and artists to enable them to understand the fundamental components of graphics engine and their applications in real-time simulation and video game software. Course topics include graphics pipeline architecture, 3D transformation operations, viewing and projection, lighting and shading models, surface detail techniques, shadow algorithms, hidden object culling and removal techniques, 3D object modeling, and animation and physically-based motion control. The popular graphics programming languages (GDI plus, OpenGL, DirectX) and shader programming are also discussed in the course.

CS 260 - Computer Networks I, Interprocess Communication (3 Cr.)
Prerequisite(s): CS 170

This course introduces the hierarchical network communication in a distributed computing environment. Course topics cover network technologies, architecture, and protocols. The curriculum will give specific emphasis to the TCP/IP stack and in making students familiar with writing portable socket based software. It prepares students for programming multi-player games in later semesters.

CS 261 - Computer Networks II (3 Cr.)
Prerequisite(s): CS 260

This course extends the TCP/IP protocols studied in CS 260 to wireless devices. This course goes further in depth into some topics covered in the introductory networks course as well as additional subjects of interest. Topics include TCP/IP related protocols such as NAT, WAP, and DNS; physical media access such as Aloha, OFDM, and WIDEBAND; wireless standards and protocols; and network security. The curriculum will cover additional topics based on the state of the industry.

CS 270 - Advanced C++, Designing Classes (3 Cr.)
Prerequisite(s): CS 220

This course presents the object-oriented methodologies used in the development of large software projects. Combined with the knowledge acquired in the C++ programming language courses (CS 120/170/220), students will be able to better manage their game software design and production and produce reusable code and libraries. Among the advanced C++ topics are class and function templates, function and operator overloading, multiple inheritance, runtime type information, the standard template library, and performance issues.

CS 280 - Data Structures (3 Cr.)
Prerequisite(s): CS 220 or CS 225

This course introduces the classical abstract data types (ADT) in computer science. ADTs provide the hierarchical views of data organization used in programming. Among the topics covered are the algorithms and primitives of the data structures for arrays, linked lists, stacks, queues, trees, hash tables, and graphs. In addition, the course provides an introduction to algorithm complexity and notation.

CS 290 - Advanced Computer Graphics I (3 Cr.)
Prerequisite(s): CS 250

This course introduces students to algorithms that are essential to creating photorealistic images in interactive simulations. Topics covered include an overview of modern GPU (graphics processor unit) architecture and the common graphics APIs used, including OpenGL and DirectX. Rendering techniques covered include texturing, illumination models, transparency, shading algorithms, mapping techniques (bump mapping, environment/reflection mapping, etc.), and shadows. Students will learn how to implement all algorithms by using vertex and pixel shaders.

CS 311 - Introduction to Databases (3 Cr.)
Prerequisite(s): CS 170

This course provides students with a broad overview of database systems. It presents the fundamentals, practices, and applications of computer databases. Topics include database architectures, data modeling, design schemes, relational algebra, query languages, transaction processing, and database implementation. Students will explore massively multiplayer online games (MMOG) to examine a case study of database design and implementation.

CS 315 - Low-Level Programming (3 Cr.)
Prerequisite(s): CS 100, CS 100L, CS 120, CS 120L, & CS 180

This course introduces students to microprocessor architecture as well as the knowledge required to directly address and program the microprocessor and the various hardware devices connected to it. Since the resulting code is usually faster than similar code written in a high-level language such as C or C++, low-level programming has great importance in improving the response speed of real-time interactive programs. In this course, students program a microprocessor used to control a hand-held gaming device. The processor used is typically an 8-bit machine, which is easier to understand than 32 or 64-bit machines, but uses the same principles. Topics include registers, instruction set, addressing modes, the stack, I/O ports, interrupts, graphics, animation, collision detection, scrolling, and windowing. There is also a brief introduction to the instruction sets used on larger machines.
CS 330 - Algorithm Analysis (3 Cr.)
Prerequisite(s): CS 225 or CS 270, CS 280, & MAT 200 or MAT 230

This course provides students with an introduction to the analysis of algorithms, specifically proving their correctness and making a statement about their efficiency. Topics for discussion may include loop invariants, strong mathematical induction and recursion, recurrence relations, and generating functions. Students will examine examples of algorithm analysis from searching and sorting algorithms.

CS 350 - Advanced Computer Graphics II (3 Cr.)
Prerequisite(s): CS 300

This course deals with the efficient representation and processing of complex 3D scenes in order to avoid bottlenecks in the use of the CPU and the GPU. Specific topics include a variety of spatial data structures (binary space-partitioning trees, octrees, kd-trees, and grid data structures), several object-culling methods (occlusion, viewportal, and portal), and finally the construction and uses of bounding volumes and their hierarchies for collision detection and related geometric operations.

CS 365 - Software Engineering (3 Cr.)
Prerequisite(s): CS 225 or CS 270

This course covers a wide range of topics in software engineering from the practical standpoint. It encompasses project management issues as well as technical development principles and methods. Topics include system architecture, security, methodologies and notation, UML, object oriented analysis and design, requirements analysis, implementation, verification, validation, maintenance, and software engineering standards. Risk management and iterative design receive special emphasis. Student teams will apply acquired knowledge to a substantial project.

CS 370 - Computer Imaging (3 Cr.)
Prerequisite(s): CS 280

The course will be taught at the upper division/graduate level and will bring image analysis and image processing into a unified framework that provides a useful paradigm for both computer vision and image processing applications. Course material covers methods students can apply in creating special effects with digital images and preparing graphic information for either human or computer interpretation. Course content covers both image processing, which transforms an image, and computer vision, which extracts a measurement or description.

CS 380 - Artificial Intelligence for Games (3 Cr.)
Prerequisite(s): CS 225 & CS 280

This course will introduce students to a wide range of concepts and practical algorithms that are commonly used to solve game AI problems. Case studies from real games will be used to illustrate the concepts. Students will have a chance to work with and implement core game AI algorithms. Topics covered will include the game AI programmer mindset, AI architecture (state machines, rule-based systems, goal-based systems, trigger systems, smart terrain, scripting, message passing, and debugging AI), movement, pathfinding, emergent behavior, agent awareness, agent cooperation, terrain analysis, planning, and learning/adaptation.

CS 381 - Machine Learning (3 Cr.)
Prerequisite(s): CS 280

This course deals with constructing computer programs that automatically improve with experience. Observed events are used to inductively construct decision trees, which can be used by computer-controlled game characters to change behavior. Students will explore concept learning, partial ordering, reinforcement learning, conditional probability, Bayesian learning, the evaluation of hypotheses and instance-based learning. Types of neural networks examined include perceptrons, backpropagation, radial basis functions, and adaptive resonance theory. We demonstrate the effectiveness of genetic algorithms and show the power of a neuro-genetic approach. The class concludes by looking at inductive analytical learning.

CS 391 - Code Analysis and Optimization (3 Cr.)
Prerequisite(s): CS 280 & CS 315

This course focuses on understanding the details of the computer, compiler, and language, specifically how to apply these toward the practical problem of solving crashes and performance issues. The emphasis is not only on knowing what and why, but also on taking that knowledge and creating useful tools and techniques for solving these problems.

CS 399 - Special Topics in Computer Science (3 Cr.)
Prerequisite(s): Permission of instructor

The content of this course will change each time it is offered. It is for the purpose of offering a new or specialized course of interest to the faculty and students that is not covered by the courses in the current catalog.

CS 420 - Graphics File Format and Data Compression Techniques (3 Cr.)
Prerequisite(s): CS 250 & CS 280

This course covers data compression techniques for still images and multimedia. Students will learn the theory behind data compression and how it is used in specific formats. Methods covered include run-length encoding, Huffman coding, dictionary compression, transforms, and wavelet methods. Students will learn these techniques by examining various popular graphic file formats, such as BMP, JPEG, DXTn, and MPEG.

CS 460 - Advanced Animation and Modeling I (3 Cr.)
Prerequisite(s): CS 300, GAT 300, & MAT 300

3D animation and modeling play significant roles in computer simulation and video game software. Game developers need to have a comprehensive understanding of these techniques. This course introduces algorithms for specifying and generating motion for graphical objects. It addresses practical issues, surveys accessible techniques, and provides straightforward implementations for controlling 3D moving entities with different characteristics. The class covers two broad categories. Students will first learn an interpolation-based technique, which allows programmers to fill in the details of the motion or shape once the animator specifies certain basic information, such as key frames, paths, coordinate grids, or destination geometry. Then they will learn a behavior-based technique, which generates motion that satisfies a set of rules, such as kinematics, physics, or other constraints.

CS 500 - Ray Tracing (3 Cr.)
Prerequisite(s): Entrance into the Master of Science in Computer Science program

In this class, students will be introduced to the basic techniques used in ray tracing, including intersections calculations, illumination models, and anti-aliasing. The underlying physical and mathematical underpinnings will also be discussed, as well as the practical aspects of how to implement a ray tracer.
CS 525 - Object-Oriented Design and Programming (3 Cr.)
Prerequisite(s): None

This course focuses on object-oriented design and programming using the C++ programming language. It is targeted at the graduate student that is already fluent in one or more programming languages. Among the language-specific topics included are pointers, pointer arithmetic, dynamic memory management, namespaces, scope, operator overloading, generic programming (templates), the Standard Template Library, and standard compliance. Object-oriented topics will cover analysis and design considerations. Students considering this course need to have programming fluency in another imperative language, preferably with some basic knowledge of C++. After successfully completing this course, students should have a much deeper understanding of the subtleties and complexities of using object-oriented facilities of the C++ programming language, the standard programming language used in the game industry today.

CS 529 - Fundamentals of Game Development (3 Cr.)
Prerequisite(s): BS in Computer Science or related field of study or Permission of instructor

This course presents techniques in real-time interactive simulation and video game implementations. It introduces the 2D and 3D game engine architecture, including game and system components separation, game flow, game state manager, handling input/output, and the frame rate controller. The class introduces students to the game development environment, such as Windows programming SDK and graphics library DirectX API. It also covers commonly practiced techniques such as space partitioning, AI techniques, particle systems, and collision algorithms. Several physics techniques will be discussed and implemented (such as jump and reflection) in addition to behavior algorithms (such as state machines). Different game genres will be explained, including Asteroids (2D), Platform (2D), Brix (2D), and Pong (3D). Students will learn how to implement and expend collision, matrix, and vector libraries, according to the specific requirements for different games.

CS 530 - Advanced Game Engine Design (3 Cr.)
Prerequisite(s): CS 529 & CS 541

A game engine is a complex framework or library that provides vital functionalities to any video game independent of the game content or genre. A well-designed game engine must at least provide the following functionalities: data management, rendering, networking, dynamics, input controllers, audio, editing tools, modeling tools, and a high-level application programming interface (API) for the entire framework that hides the low-level details of graphics, networking, and audio programming. Thus, a game engine is a complex library consisting of various components that must all be efficiently integrated into a single framework using the principles of object-oriented design. In this course, students will study the computer graphics, mathematics, data structures, and algorithms required to design and architect a game engine that can handle complex graphics applications that handle three-dimensional data such as games and computer-aided design.

CS 541 - Advanced Computer Graphics (3 Cr.)
Prerequisite(s): CS 241 & MAT 250

In this course, students will study algorithms and techniques that are designed to improve efficiency and increase the realism of 3D graphics. Two main subjects will be discussed: techniques that add details on object surfaces, including lighting and shading models, texture mapping, bump mapping, environmental mapping and shadow algorithms; and algorithms that eliminate invisible polygons/objects from being further processed by the graphics pipeline, including BSPTree, occlusion, portal, and others.

CS 560 - Advanced Animation Algorithms I (3 Cr.)
Prerequisite(s): CS 529, CS 541, & MAT 500

3D animation and modeling play significant roles in computer simulation and video game software. Game developers need to have a comprehensive understanding of these techniques. This course introduces algorithms for specifying and generating motion for graphical objects. It addresses practical issues, surveys accessible techniques, and provides straightforward implementations for controlling 3D moving entities with different characteristics. The class covers two broad categories. Students will first learn an interpolation-based technique, which allows programmers to fill in the details of the motion or shape once the animator specifies certain basic information, such as key frames, paths, coordinate grids, or destination geometry. Then they will learn a behavior-based technique, which generates motion that satisfies a set of rules, such as kinematics, physics, or other constraints.

CS 561 - Advanced Animation and Modeling II (3 Cr.)
Prerequisite(s): CS 460 or CS 560

This course is the continuation of CS 460/560. It introduces students to advanced animation and modeling algorithms and techniques in some special areas to increase the physical realism of dynamic objects in 3D graphical environments. The topics include group object (particles, fish, and birds) control, natural phenomena (water, snow, soil, smoke, and fire) simulation, plant (trees and grass) modeling, facial animation (expression and speech synchronization), and deformable object modeling.

CS 562 - Advanced Real-Time Rendering Techniques (3 Cr.)
Prerequisite(s): CS 300 or CS 541

This course introduces students to data structures, algorithms, and techniques concerned with rendering images more accurately and efficiently in interactive computer simulations and video game software. Topics will include patch and surface algorithms, terrain rendering techniques, anti-aliasing theory and practice, advance lighting techniques, hard and soft shadow map methods, multi-pass rendering techniques, high-dynamic range (HDR) rendering, advanced shading and mapping, and real-time vertex/pixel shader programming essentials. Additionally, students will practice these subjects by working with the supporting OpenGL or DirectX libraries.

CS 570 - Computer Imaging (3 Cr.)
Prerequisite(s): Senior or graduate-level standing in Computer Science

The course introduces students to computer imaging where image analysis and image processing are unified to provide a useful paradigm for both computer vision and image processing applications. Students will use C# to implement different algorithms introduced in the course. Upon completion of this course, students are expected to have gained a general understanding of the fundamentals of digital image processing and computer vision. They will also have achieved a familiarity with the current analytical tools that are used in computer imaging applications and the ability to design and develop basic algorithms to solve computer-imaging problems.
CS 580 - Artificial Intelligence in Games (3 Cr.)

Prerequisite(s): CS 280

This course introduces students to a wide range of concepts and practical algorithms that are commonly used to solve video game AI problems. Case studies from real games will be used to illustrate the concepts. Students will have a chance to work with and implement core game AI algorithms. Topics covered include the game AI programmer mindset, AI architecture (state machines, rule-based systems, goal-based systems, trigger systems, smart terrain, scripting, message passing, and debugging AI), movement, pathfinding, emergent behavior, agent awareness, agent cooperation, terrain analysis, planning, and learning/adaptation.

CS 581 - Introduction to Artificial Intelligence (3 Cr.)

Prerequisite(s): CS 280

This course covers important AI areas, including search algorithms, knowledge representation, production systems, game playing, uncertainty handling, learning, and planning. Students are required to have basic knowledge of data structures, probability theory, and mathematical logic. Upon successful completion of this course, students will have gained an understanding of and skills relevant to modern AI techniques, practices, and design solutions.

CS 582 - Reasoning under Uncertainty (3 Cr.)

Prerequisite(s): CS 580 & CS 581

This course covers important AI topics, including hidden Markov models and advanced search algorithms (D* lite and cooperative pathfinding). Students will also examine uncertainty handling (Dempster-Shafer theory), learning (kernel machines), and advanced topics in planning (conditional and adversarial planning).

CS 590 - Computational Complexity (3 Cr.)

Prerequisite(s): CS 280, CS 330, or Equivalent

The study of computational complexity is at the core of theoretical computer science. The key issue to understand in complexity theory is the nature of efficient computation. Hence, it is a natural extension of computability theory, which studies the nature of computation without regard for resource bounds. This course addresses questions such as: What is an algorithm? What problems can or cannot be solved by an algorithm? What problems can or cannot be solved efficiently by an algorithm? How can we classify and compare problems according to their intrinsic computational complexity? Exploring this last question will constitute the bulk of the course. Students will be introduced to ways to compare computational problems, even when we do not know how to solve them efficiently. They will also study the complexity classes (e.g., P, NP, PSPACE, L, NL, BPP, etc.) into which they fall. As the course progresses, students will be led to examine more questions, such as: Is it easier (more efficient) to compile approximate solutions? Can flipping coins help in designing efficient algorithms? Can biology and/or physics lend a hand?

CS 598 - Computer Science Seminar (1 Cr.)

Prerequisite(s): Upon approval of academic advisor

Every semester, guest speakers, faculty members, and/or graduate students offer to DigiPen students a number of presentations that cover different research topics in computer science. Each speaker decides on the choice of topic, but they usually are within the general boundaries of students' courses of study. This seminar aims not to pursue any particular topic but rather to explore new research in more depth to allow students to develop their own skills in theoretical analysis. Each speaker's paper(s) will be available to students. They will be required to read these papers and to choose one to expand upon for a final paper and an oral presentation.

CS 599 - Special Topics in Computer Science (3 Cr.)

Prerequisite(s): Upon approval of academic advisor

This course is an upper-level graduate class. It is offered infrequently to explore various subjects that may be topical or of special interest. Subjects might include (but are not limited to) 3D graphics rendering algorithms, advanced animation and modeling techniques, artificial intelligence, numerical solutions, and the applications of mathematics and physics in real-time interactive simulations and video game software.

CS 600 - Master's Continuous Matriculation (1 Cr.)

Prerequisite(s): None

Maintaining continuous registration is a requirement for the M.S.C.S. degree. Students who have completed most course requirements but are finishing their thesis or are satisfying incomplete grades must register to maintain continuous matriculation. This course may be taken up to two semesters, at which time it is expected that all program requirements will have been met. This credit may not be applied toward degree-completion requirements.

CS 601 - Master's Thesis I (3 Cr.)

Prerequisite(s): Approval of thesis advisory committee and CS 580

This course is the second part of the master's program thesis. Students shall continue to work under the supervision of the thesis advisory committee to create the theory of the proposed research topic, to develop algorithms, and to possibly create a prototype to verify the theory and methods. Upon completion of the class, the student must submit his or her formal written thesis to the advisory committee to summarize the entire research and pass the oral exam to defend the thesis.

ECE 101L - Introduction to Engineering Projects (1 Cr.)

Prerequisite(s): None

This course provides an introduction to ECE projects by pairing up students with an engineering team in a monitored environment. Students will be assigned a project
ECE 200 - Electric Circuits (3 Cr.)
Prerequisite(s): CS 100 & CS 100L
Usually taken after ECE 210, this course is more theoretical than digital electronics. It emphasizes the basic principles on which digital electronics are based. Exploring these principles leads one to conclude that all electronics are really analog. Effects seen in digital circuits may be due to unanticipated capacitance or inductance. It is important to understand how these transient phenomena arise. It is also often useful to have an analog section in a primarily digital circuit. Topics in this course include passive components, series and parallel circuits, two-terminal networks, two-port networks, circuit reduction techniques, impedance analysis, measurement of waveforms, power, and filters. It also looks at operational amplifiers, step responses of various simple circuits, and the Laplace transform.

ECE 210 - Digital Electronics I (4 Cr.)
Prerequisite(s): CS 100 & CS 100L
The objective of this class and the following ECE 260 is to prepare students well enough at hardware design and troubleshooting so that he or she can determine whether a problem comes from hardware or software. The class uses TTL family integrated circuits to build digital devices. Part of the time is spent in the lab. Topics in this course include digital logic, programmable logic devices, FPGA, arithmetic circuits, multiplexers and demultiplexers, logic families, memory devices, and flip-flops.

ECE 220L - Introduction to Robotics (3 Cr.)
Prerequisite(s): ECE 210
Continuing the concepts learned in ECE 210, students will design and build a device that uses an embedded microprocessor. This device usually takes the form of a robot or electronic toy. The device must be interactive with either humans or the environment, and it must successfully demonstrate digital communication. Throughout the semester, students will document the design, production, and service of their device. This course introduces concepts of software engineering and process documentation, and it will emphasize system-level design so that students can build an initial prototype and then revise key components to be cost-competitive.

ECE 260 - Digital Electronics II (4 Cr.)
Prerequisite(s): ECE 210
In this course, students will enhance their abilities with digital logic and learn about the trade-offs in putting functionality in circuits or programming them. Students learn how to use the power of a logic analyzer to track down system anomalies. Topics include counter circuits, shift registers, timers, digital/analog conversion, microprocessor architecture, ports, and interrupt handling. This course also examines the use of language analyzers and in-circuit emulation (ICE) with particular emphasis on small-scale systems for embedded devices. Lab time will enhance concepts covered in the lectures.

ECE 270 - Real-Time Operating Systems (3 Cr.)
Prerequisite(s): CS 180 & CS 315
This course explores the theory behind modern, real-time operating systems (RTOS). ECE 270 covers multi-tasking, interrupt handling, threading, synchronization, preemption, resources, scheduling, and messaging, while dealing with fault tolerance and reliability. Students will then apply this knowledge by creating their own RTOS for an embedded microprocessor system.

ECE 300 - Embedded Microcontroller Systems (3 Cr.)
Prerequisite(s): CS 315 & ECE 260
This class covers the remaining concepts needed to build the hardware and software for a hand-held gaming device. By this point, students will have studied many pieces needed in electronic systems and have worked with microprocessors. This class aims to bring together additional concepts and expand the understanding of a microprocessor or microcontroller system. Topics include Harvard architecture, microprocessor systems, analog/digital conversions, timing control, serial ports, peripheral access, and digital signal processor (DSP) applications to real-time audio processing. Students will emerge with a better understanding of system architecture and how the key components interact.

ECE 310L - C.E. Project III: Gaming System (5 Cr.)
Prerequisite(s): CS 315, ECE 220L, ECE 260, & ECE 270
In this course, students will work in small teams to finish their gaming device that they started in ECE 310L. Students will design and create low-level software to communicate and provide a framework for games on the team gaming device. Students will showcase their final project with a small game.

ECE 350 - Control Systems (3 Cr.)
Prerequisite(s): CS 200, CS 201 & ECE 220L
This course will present mathematical methods of describing systems, with an emphasis on electromechanical systems. Topics covered include signals and systems, state-space description, convolution, frequency analysis of signals, feedback, Bode and Nyquist root locus analyses, stability, phase margin, observability, tracking errors, motor control, PID control, Kalman filters, Laplace transforms, and Fourier transforms.
ECE 399 - Special Topics in Electrical and Computer Engineering (3 Cr.)
Prerequisite(s): Permission of instructor

The content of this course will change each time it is offered. It is for the purpose of offering a new or specialized course of interest to the faculty and students that is not covered by the courses in the current catalog.

ECE 400 - Motors and Sensors (3 Cr.)
Prerequisite(s): PHY 270

An electronic system is useless unless it interacts with the outside world. Students have used sensors and actuators before, but in this course, they will examine them in more detail. They will develop their understanding of the capabilities and limitations of some popular sensors. Additionally, they will study the physical principles behind an electrical motor/generator. Topics in this course include three-phase circuits, transformers, power transmission, motors and generators, stepper motors and encoders, motor controllers, limit switches, and sensors (optical, acoustic, eddy current, and triangulation).

ECE 410L - C.E. Senior Project I (5 Cr.)
Prerequisite(s): ECE 350 & ECE 360L

In this course, students will work in small teams under the supervision of a professor to complete their senior-level C.E. project.

ECE 420 - Digital Signal Processing (3 Cr.)
Prerequisite(s): ECE 350 & MAT 256

In this course, students will be presented with discrete signal processing techniques, starting from understanding signals in the time domain. They will then learn the theory and application of signal transformation into frequency and Z-domain. Lectures will be reinforced with DSP implementation.

ECE 460L - C.E. Senior Project II (5 Cr.)
Prerequisite(s): ECE 410L

In this course, students will work in small teams under the supervision of a professor to design and implement their knowledge to work through a series of exercises. The ultimate goal of both this course and its sequel is to introduce methods by which students will "act" and bring characters to life through sequential images.

ANI 101 - Introduction to Animation - Theories and Techniques I (3 Cr.)
Prerequisite(s): None

This course introduces students to the principles of animation through classical animation techniques. Students will explore the art of creating convincing movement through effective timing, spacing, and drawing. Works of master animators will be screened and analyzed frame-by-frame to illustrate the principles covered in class, and students will put their knowledge to work through a series of exercises. The ultimate goal of both this course and its sequel is to introduce methods by which animators "act" and bring characters to life through sequential images.

ANI 125 - Acting for Animation (3 Cr.)
Prerequisite(s): None

An animator’s ability to express attitude, thought, and emotion through body language is a fundamental skill necessary for success. Therefore, in this course focuses on presenting tools and techniques for translating thoughts and feelings into specific gestures and actions. The course introduces students to the history of acting in the theater, animation, and film. Students will explore the basics of fundamental differences of acting for the stage, film, and animation. This course builds upon the earlier acting curriculum and introduces the traditions of puppetry and marionettes. It next explores stop-motion animation techniques. Finally, students will extrapolate their knowledge to 3D bipedal animation and to solving 2D character animation problems.

ANI 151 - Advanced Animation - Theories and Techniques II (3 Cr.)
Prerequisite(s): ANI 101

In ANI 151, students will continue to explore and experiment with the concepts and techniques of classical animation through a series of assignments. The exercises in this course will be considerably more demanding than those completed in ANI 101 as they will be longer and will require more refinement, subtlety, and creativity. There will also be a greater emphasis on character development - the expression of personality, mood, thought, and attitude through motion and posing.

ANI 300 - Acting through an Interface (3 Cr.)
Prerequisite(s): ANI 125, ANI 151, ART 225, & CG 275

An animator’s ability to express attitude, thought, and emotion through a surrogate is a fundamental skill of animation. This course builds upon the earlier acting curriculum and introduces the traditions of puppetry and marionettes. It next explores stop-motion animation techniques. Finally, students will extrapolate their knowledge to 3D bipedal animation and to solving 2D character animation problems.

ANI 350 - Voice Acting for Animation (3 Cr.)
Prerequisite(s): ANI 300

This course explores the nature of animation through movement of the human voice. The curriculum will explore narration, expressive reading, diction, and vocal refinement. It will introduce students to basic audio technology and recording equipment. The course also covers lip-synchronization techniques in animation and culminates in a series of practical exercises in both 2D and 3D animation.

ANI 400 - Cinematic Animation (3 Cr.)
Prerequisite(s): ANI 350, ART 401, & FLM 275

This course is a culmination of the student’s ability to use animation as a storytelling medium. It also provides an opportunity for the student to demonstrate his or her personal artistic growth. Each student will work to complete a short piece of cinematic animation. Working independently or in small groups with the instructor’s approval, students may use either 2D or 3D tools.
ANI 450 - Advanced Animation Portfolio (3 Cr.)
Prerequisite(s): ANI 350, CG 300, & PRJ 350
This class requires students to further extend their portfolio work, principally polishing and refining elements that will align them well for current industry needs. With a generous selection of assignment opportunities to be explored, students will gain advanced instruction on more focused ‘acting’, ‘physicality’, and ‘creature’ animation. This class will provide students with an ideal opportunity to improve an area of their portfolio work that will better represent animated ‘body mechanics’ and ‘acting’ skills.

ART

ART 101 - The Language of Drawing (3 Cr.)
Prerequisite(s): None
This course explores the nature of drawing as a language skill and the use of drawing by production artists and animators. Applied drawing goals and critical thinking skills will be given special consideration. Students will be introduced to basic professional habits in drawing practice, drill, and play. Design principles, basic research, and the design process will be introduced and applied to a series of practical problems. This course also explores basic drawing materials, drawing strategy, drawing sequence, linear drawing methodology, practice, and theory.

ART 102 - Fundamentals of Visual Communication (3 Cr.)
Prerequisite(s): Credit may be received for either ART 101 or ART 102, not both.
Students are introduced to simple drawing techniques, constructed linear perspective, visual design methodology, and drawing vocabulary through lectures, studio assignments, and simple projects.

ART 115 - Art and Technology (4 Cr.)
Prerequisite(s): None
This course provides an overview of art history from Paleolithic times until the modern day. It traces the technological advances of society and art and considers the interplay between art and technology. Classical art materials and methods will be examined, and students will explore how art has historically impacted society. This course has a worldwide scope and is not limited to just European and Western traditions.

ART 125 - Tone, Color, and Composition (3 Cr.)
Prerequisite(s): ART 101
This course continues to build upon students’ abilities to draw by exploring the nature and use of tone, color, and composition in drawing. It emphasizes methods of creating tone, ways to use luminance as an organizational element, and the importance of thinking critically. Additionally, the course will introduce students to a variety of classical tonal systems and tonal illusions, including atmospheric perspective, sculptural modeling, basic direct lighting, lighting position relative to viewpoint, light intensity, local value, and reflectivity. Students will then explore the artistic use of color. The course will cover systems and traditions of organizing hue and saturation, and it will examine methods of building from tonal preliminary studies. Students will also explore classical forms of compositional organization such as symmetry, asymmetry, golden mean, and figure-ground relationships.

ART 126 - Principles of Composition and Design (3 Cr.)
Prerequisite(s): ART 101 or ART 102
This course continues to build on students’ abilities to draw by exploring techniques for producing finished drawings, quick explanatory sketches, and rapid visualizations. Methods for use of tone and color to convey mood and atmosphere are covered. Basic graphic design and typography is taught with particular emphasis on interface design. Classical forms of compositional organization such as symmetry, asymmetry, golden mean and figure ground relationships are also explored.

ART 151 - Basic Life Drawing (3 Cr.)
Prerequisite(s): ART 101
This course introduces students to the challenges of drawing the human form for animation. Students will examine life drawing for animation in addition to methods for attaining these goals. The course will emphasize capturing skeletal structure, muscle form, emotion, and gesture. Using clothed and nude models of both genders, students will learn to apply lessons in anatomy to the figure, significantly expanding their understanding of human kinetics and structure. Additionally, students will practice extrapolating basic human life drawing strategies to other animals.

ART 201 - Advanced Life Drawing (3 Cr.)
Prerequisite(s): ART 125 & ART 151
This course builds upon the anatomy and drawing courses students have already taken. Students will continue to improve their ability to capture kinetics in humans and animals. By engaging in a series of exercises designed to enhance their visual memory, students will build the foundation for drawing accurate figures from their imagination. They will also explore putting the figure into an environment, figurative composition, and introductory sequential figurative composition.

ART 205 - Character and Environment Design (3 Cr.)
Prerequisite(s): ART 155
Students will apply their drawing and anatomy knowledge to the creation of animation characters. The course will introduce traditions of character design and the basic structural strategies for creating animation characters. Students will explore simplification gradients relative to human, animal, and inanimate object-based characters. The course will also cover issues of costume, personality, and story interaction. Additionally, students will learn to place these characters into appropriately designed environments. The curriculum will emphasize professional applications, techniques, and standards of quality.
ART 210 - Art Appreciation (2 Cr.)
Prerequisite(s): None
This introduction to art will provide students with a better understanding of the artistic influences upon our modern culture. Along with the history of art, students will study the meanings, purposes, styles, elements, and principles of art and the various media used to create works of art. In helping students gain basic awareness, knowledge, and enjoyment of the visual arts, the course will provide the groundwork for further personal study in the arts. In turn, this will influence the development of their creativity.

ART 225 - Three-Dimensional Design and Sculpture (3 Cr.)
Prerequisite(s): ART 201
This course introduces students to the principles of 3D design using both traditional and digital tools. Students will become acquainted with additive, subtractive, and cast sculpture. They will consider the basic concepts of architectural space, interior design, landscape design, surface interplay with light, lofted forms, and skinning systems. Students will use modern polymer clays and build an animation maquette.

ART 228 - Figurative Sculpture (3 Cr.)
Prerequisite(s): ART 101 & BIO 150
This course introduces students to the challenges of sculpting the human figure from life. Using traditional techniques to build an armature and complete a sculpture in clay, students will enhance their understanding of the human form in three-dimensional space. Emphasis will be placed on gesture, proportion, and anatomy as well as developing a strong sense of form and volume.

ART 230 - Painting (3 Cr.)
Prerequisite(s): ART 125
This course explores ideas and various techniques related to painting. The use of color and the representation of space will be emphasized. Students will explore masterworks, studio painting, and painting en plein air. Technical and social problems related to painting will be explored using portraiture, still life, and environment/landscape. A portable field easel and appropriate painting supplies will be required. The course will culminate in a group show of student projects.

ART 234 - Survey of Sequential Art (3 Cr.)
Prerequisite(s): ART 125 or ART 151
In this course, students will learn to explore and to exploit the power of sequential images as a medium to craft stories beyond storytelling, photography, and film. Through the formats of the graphic novel and related forms, students will tackle problems of character and events; their solutions will be limited only by their imaginations. The course will begin with an historical overview of sequential art and will then examine storytelling through pictures, focusing on clarity and emotional impact. Students will examine contemporary styles and conventions and will be required to draw from previous art experiences, while honing their skills in drawing, perspective, design, color, typogrophy, writing, editing, and acting. Demonstrations of multimedia techniques and computer technology relative to this field will also be introduced.

ART 251 - Character Design (3 Cr.)
Prerequisite(s): ART 201
Students will leverage their drawing and anatomy knowledge to the creation of animation characters. This course introduces student to the traditions of character design and the basic structural strategies for creating animation characters. Students will explore simplification techniques, characters. They will consider issues of costume, personality, and story interaction. The course will emphasize professional applications, techniques, and standards of quality. The work completed in this course will serve as pre-production design for PRJ 300, PRJ 350, or ANI 300.

ART 260 - Graphic Design, User Experience, and Input (3 Cr.)
Prerequisite(s): None
Students will explore elements of visual design and apply them to computer user interfaces. They will analyze various types of sensory interfaces and improve their skills in creating representations of information valuable to a system user. Additionally, emphasis will be placed on the overall enjoyment of the user experience, plus consideration towards relating the user experience to the theme of the game or system. Students will learn how to use various industry-standard languages related to prototype interfaces.

ART 299 - Special Topics in Art (2 Cr.)
Prerequisite(s): Permission of instructor
The content of this course will change each time it is offered. It is for the purpose of offering a new or specialized course of interest to the faculty or students that is not covered by the courses in the current catalog.

ART 300 - Perspective, Backgrounds, and Layouts (3 Cr.)
Prerequisite(s): None
This course explores the animation pre-production skills of background and layout art. Students will review classical depth cue and perspective systems and apply this knowledge to the creation of animation backgrounds and layouts. Additionally, students will explore means of using drawing to create camera lens illusions, architectural space, theatrical sets, level design, matte painting, and surface texture. The course will emphasize professional applications, techniques, and standards of quality. The work completed in this course will serve as pre-production design for PRJ 300, PRJ 350, or ANI 300.

ART 301 - Concept Art Resources (3 Cr.)
Prerequisite(s): ART 251, CG 201 & CG 275
This course will build upon all art disciplines, primarily 2D related skills, to prepare students for positions requiring the creation of concept art. Emphasis will be placed on the importance of balancing speed of content generation with quality, as this is one of the most pressing and relevant challenges in this field. With this mindset, students will be challenged to evaluate and understand new forms of character and environment generation. Both theory and technique will be heavily stressed during this course, with the final tangible outcome being multiple portfolio pieces that demonstrate the individual’s abilities and unique style/interests.

ART 310 - Architectural Spaces, Design, and Lighting I (3 Cr.)
Prerequisite(s): None
This course introduces students to the aesthetics and principles of 2D (floor plans and elevations) and 3D environment design. A survey of architectural styles from throughout the world will be blended with concepts such as emotion, mood, lighting, shadows, aesthetics, and more. The course will emphasize learning the architectural vocabulary as well as the aesthetics of environmental and game-level design. Texturing, spatial design, negative space, dramatic lighting, and other concepts
that affect not only the psychology of level design but also gameplay principles will be covered. Students will experience numerous field trips to local examples of architecture in order to gain an understanding of architectural spaces and the field's vocabulary.

ART 350 - Storyboards (3 Cr.)
Prerequisite(s): ART 201, ENG 116, & FLM 151
This course explores the animation pre-production skills of storyboard art. Students will leverage their knowledge of drawing, storytelling, and cinematography to create both production and presentation storyboards. They will also explore means of using drawing to create story flow, character development, mood, time, and place. The course will emphasize professional applications, techniques, and standards of quality. The work completed in this course will serve as pre-production design for PRJ 300, PRJ 350, or ANI 300.

ART 360 - Architectural Spaces, Design, and Lighting II - Period Styles (3 Cr.)
Prerequisite(s): ART 310, CG 301, & CG 320
This course builds on the foundational skills and knowledge from Architectural Spaces, Design, and Lighting I (ART 310), covering more period styles. Additionally, students will have opportunities to do more hands-on creation of art, models, and textures relative to various periods. Students will participate in a variety of field trips in order to research and analyze architectural styles and then to build them in the computer lab.

ART 400 - Drawing Fundamentals (2 Cr.)
Prerequisite(s): None
The development of strong drawing skills is of extreme importance since they are essential tools for expressing ideas, particularly during the pre-production stages of an animation project. Therefore, this course presents the basic elements of drawing and graphic design in order to improve the student's practical ability to draw with skill and imagination. It will cover methods of observing, describing, and organizing forms using various mediums such as pencil, charcoal, and color pencils.

ART 401 - Conceptual Illustration and Visual Development (3 Cr.)
Prerequisite(s): ART 300
This course explores the animation pre-production skills of conceptual illustration and visual development. Students will apply their knowledge of drawing, storytelling, and composition to create speculative drawings for animation. They will review compositional systems, design process, and illustration techniques. Additionally, students will explore means of using drawing to visually explore story and character ideas from both existing and original story materials. They will also consider adaptation, stylization, and visual variety. The course will emphasize professional applications, techniques, and standards of quality. The work completed in this course will serve as pre-production design for PRJ 300, PRJ 350, or ANI 300.

ART 410 - Mechanical Drawing (3 Cr.)
Prerequisite(s): None
Traditional and digital skills in drafting are key components of an engineering career. This course introduces students to the basic skills of mechanical drafting including layout and formatting conventions, typographic traditions, and classical drafting tool usage. Students will apply these skills to actual problems in traditional mechanical drafting. They will then be exposed to modern digital tools in mechanical drafting.

The course will explore subjects such as interface conventions, usage strategies, and output options. Students will work with a CAD program and complete a variety of exercises designed to establish foundational skills. The course will pay special attention to addressing how professionals use these skills in production and prototyping.

ART 450 - Portfolio (3 Cr.)
Prerequisite(s): PRJ 350
Students will use this course to compile the elements of their professional portfolio, which will serve as their B.F.A. thesis. Additionally, this course will introduce students to the marketing campaign needs of modern animation portfolios including visual continuity, business documents, traditional still art portfolios, process and practice samples, digital portfolios, web sites, demo reels, and promotional items. They will use this knowledge to assemble their own portfolios. The course will also cover related information regarding job interviews, trade shows, professional standards, and contract negotiation.

COMPUTER GRAPHICS

CG 102 - Two-Dimensional Raster and Vector Graphics for Designers (3 Cr.)
Prerequisite(s): ART 126
Concurrent Course(s): CG 125
This course introduces students to the industry-standard software and practices of raster and vector-based graphics and animation. The course begins with basic information such as interface organization strategies, equipment options, and production elements. Then it introduces techniques for texture mapping, modeling, rigging, lighting, cameras, and animation. Additionally, it looks at basic interface customization options and strategies in 3D graphics, culminating in a series of applied problems in 3D production techniques.

CG 105 - Introduction to 3D Graphics (3 Cr.)
Prerequisite(s): None
This course covers all of the general principles of computer graphics, introducing students to the primary 3D computer animation software used to create the various productions. In addition, students will learn how to use a 2D paint package for the creation of maps. Topics will include general subjects such as file management, traditions of interface structure, strategies for learning new software, and tactics for staying abreast of software evolution. Additionally, the course will introduce students to animation specific topics including modeling, materials, lighting, rigging, cameras, animation, and output.

CG 125 - Introduction to 3D Production for Designers (3 Cr.)
Prerequisite(s): ART 125 or ART 126
Concurrent Course(s): CG 102
This course introduces game design students to current software and production process of 3D animation, with a focus on implementing the art assets into a game engine. The course begins with basic information such as interface organization strategies, equipment options, and production elements. Then it introduces techniques for texture mapping, modeling, rigging, lighting, cameras, and animation. Additionally, it looks at basic interface customization options and strategies in 3D graphics, culminating in a series of applied problems in 3D production techniques.
CG 175 - Introduction to 3D Character Animation for Designers (3 Cr.)
Prerequisite(s): CG 102 & CG 125

This course introduces students to the basics of character design and animation. Students are introduced to the 3D character animation pipeline in progressively more complex sequences. Each iteration goes through the same basic principles of creating, editing, material/mapping, rigging, skinning, animating, camera/lighting setup, and implementation of the assets into a game engine.

CG 201 - Two-Dimensional Raster Graphics and Animation (3 Cr.)
Prerequisite(s): ANI 151, ART 101, & ART 125

This course introduces students to the industry-standard software and practices of raster graphics and animation. The course begins with basic information such as interface organization strategies, system components, bit depth, resolution, memory management, and output strategies. Then it explores techniques and critical thinking skills for digital painting, scanning, still compositeing, and texture creation. Additionally, it looks at basic interface customization options and strategies in 2D raster graphics.

CG 225 - Introduction to 3D Animation (3 Cr.)
Prerequisite(s): ANI 151, ART 101, & ART 125

This course introduces students to the industry-standard software and practices of 3D animation. The course begins with basic information such as interface organization strategies, equipment options, and production elements. Then it introduces techniques and critical thinking skills for texture mapping, modeling, rigging, lighting, cameras, and animation. Additionally, it looks at basic interface customization options and strategies in 3D animation techniques.

CG 251 - Two-Dimensional Vector Graphics and Animation (3 Cr.)
Prerequisite(s): CG 201

This course examines the principles and practices of 2D vector graphics and animation. It will introduce students to industry standard software, output options, and production strategies for using vector graphics in both graphic design and animation. The course will give special consideration to critical thinking and refinement strategies when modifying vector images. Students will examine methods of using vector-based tools for creating web and broadcast animation, and the course concludes with a series of applied problems in 2D vector animation.

CG 252 - Foundation Scripting for 2D Vector Animation (3 Cr.)
Prerequisite(s): CG 251

In this course, art students learn to script interactive 2D animations to produce simple games. While game authoring is the focus for this course, the skills to be gained have universal applications in interactive media design. Studies begin with foundation concepts and carry through to more complex work that uses up-to-date, object-oriented scripting. Students learn to translate basic game concepts into interactive, scripted terms suitable for deployment on the internet.

CG 275 - Three-Dimensional Character Animation (3 Cr.)
Prerequisite(s): CG 105 or CG 225

Students will continue to explore and exercise the concepts and techniques of 3D animation through a series of assignments applied to characters. Exercises in this course will be considerably more demanding than those completed in CG 125 as they will be longer and require more refinement, subtlety, and creativity. The course will emphasize character development - the expression of personality, mood, thought, and attitude through motion and posing. It will also give special consideration to proper model rigging.

CG 300 - Three-Dimensional Environment and Level Design (3 Cr.)
Prerequisite(s): CG 275

This course introduces students to the principles of 3D environment design. Theatrical sets, architectural simulations, and level design will all be considered. In order to provide students with a broader skill set, this course also presents the “mechanics” of how to use another 3D animation program, with an emphasis on the unique strengths of the package. Students will explore the comparative strengths of different software packages and the impact that this has on workflow. The course will emphasize critical thinking skills and strategies for tool selection.

CG 301 - 3D Environment Design for Games (3 Cr.)
Prerequisite(s): ART 310, CG 102, & CG 125

This course provides game design students with an understanding of the design and production processes of environments for 3D games. It introduces the principles of 3D environment creation and provides a fundamental working knowledge of modeling, texturing and lighting skills within the framework of a 3D modeling package to create believable and well-designed environments. Student work will be implemented into a game engine.

CG 305 - Digital Sculpture (3 Cr.)
Prerequisite(s): CG 275

This course introduces an array of digital modeling, sculpting, and painting techniques with a set of industry-standard 3D and 2D tools. After a series of exercises, students will learn the tools and workflow of digital sculpting and will enhance their knowledge of anatomy. As part of this class, students will create a highly finished 3D character that is fully designed, modeled, posed, sculpted and textured. They will also demonstrate knowledge of environmental sculpting.

CG 315 - Texturing for 3D (3 Cr.)
Prerequisite(s): CG 201 & CG 275

This course will focus on how to generate efficient and accurate texture maps. Students will explore techniques for generating landscape, architectural, objects, and character based textures. Topics will include: clamped textures, tileable textures, advanced methods for generating normal maps, z-depth, displacement, and emissive type textures. Students will explore UV mapping, unwrapping, multi-layered shaders, animated texturing methods, use of photo reference, manipulation, compositing and other techniques to create complex textures.

CG 320 - Materials and Textures (3 Cr.)
Prerequisite(s): CG 175

This course builds on foundational knowledge from CG 175 and CG 102, delving further into the art and science of painting textures for game characters and environments. Students will focus on generating multiple maps for materials to define complex shader properties. Emphasis will be placed on effective texture layout and detail for use in games and cinematic applications. Students will also be trained on the
use of a digital sculpting tools that combines 3D/2.5D modeling, texturing, and painting.

**CG 340 - Game Art Production Tools (3 Cr.)**
*Prerequisite(s): CG 320*
This course looks beyond 2D digital painting and 3D animation software to introduce students to specialized modeling, texturing, animation, and special effects tools.

**CG 350 - Graphics for Gaming (3 Cr.)**
*Prerequisite(s): CG 300*
This course examines the unique problems of creating graphics for games, and it teaches effective production techniques for addressing these issues.

**CG 400 - Advanced 3D Modeling Techniques (3 Cr.)**
*Prerequisite(s): CG 275*
This course will focus on the design and production of highly detailed models for use in feature and broadcast animation. Students will use a best-of-breed approach to define their tool set, with particular emphasis placed on organization and structure. Additional emphasis will be placed on generating layered digital intermediate files for use in a model-composite workflow in a desktop production environment. Lectures will also cover environment and character design research as relevant to detail modeling, presented in a framework of industry-standard geometries and methods. Students will also explore advanced material creation using a global illumination-capable rendering engine, incorporating advanced texture creation techniques.

**FILM**

**FLM 115 - History of Film and Animation (3 Cr.)**
*Prerequisite(s): None*
This course examines the more than 100-year history of film and animation. Beginning with the scientific and technical advances that made these media technologies possible, students will explore every major movement and genre as well as their impact on society. The course will give special consideration to examining all of the various professional outlets for this technology.

**FLM 151 - Visual Language and Film Analysis (3 Cr.)**
*Prerequisite(s): None*
Animation is ultimately “film making,” and animators should learn from the many classics on how to effectively bring various film production elements together. Students will review several films and study how the relationships between scripts, cameras, lighting, sets, production design, sound, acting, costumes, props, directing, and production lead to successful visual stories. They will also examine the fundamental theories underlying visual storytelling. Understanding the creative processes utilized by these influential filmmakers will provide insight into how students may improve their own animations.

**FLM 201 - Cinematography (3 Cr.)**
*Prerequisite(s): FLM 151*
Like a director of photography, computer animators must have a good understanding of appropriate camera composition and lighting techniques to enhance the visual impact of the story being told. Appropriate composition and camera movement help to reveal action, and lighting establishes focus, place, and mood. Students will analyze examples of effective cinematic techniques from a variety of different animations and films. Assignments in camera composition, movement, and lighting will help students solidify their understanding of the concepts presented.

**FLM 250 - Digital Post-Production (3 Cr.)**
*Prerequisite(s): FLM 151*
The last step of any animation project involves the assembly of various production elements ranging from rendered files to sound effects. This is also the stage where the visual effects artists add the effects seen in today’s movies. This course teaches the fundamental skills these artists use in post-production. Effective editing skills are the primary outcome of the course. Students will also cover the planning, execution, and addition of special effects to animation.

**FLM 275 - Fundamentals of Music and Sound Design (3 Cr.)**
*Prerequisite(s): None*
Every good animation relies on a well-designed soundtrack to enhance the production. While most animators do not produce the soundtrack themselves, they need to understand the effect of music, voice, and sound effects on an audience. Animators must be able to communicate their ideas to a musician and understand the technological possibilities of modern sound design. Initially students will survey a broad range of music from different cultures. Emphasis will be on developing basic listening skills in hearing rhythm, melody, harmony, color, texture, and form. Students will then learn how to apply this to the production needs of animation. The course will give special attention to the generation of sound, how to use sound to advance a story, and how it can create mood, a sense of place, and emphasis.

There may be course fees associated with this class. Please see the course registration packet for details.

**Projects Note 1:** If one hopes to be a successful professional, it is insufficient for an animator to only understand the theory of animation and art. He or she must also understand the rigors and demands of commercial animation production. The projects classes create academic production environments where students learn the principles, practices, and habits that will help them adapt readily to the demands of the commercial animation industry. Each projects class focuses upon a series of related production problems and culminates in the students generating professional-quality work on a rigid deadline. This work will serve as the foundation for their graduation portfolios. Weekly production meetings with an instructor ensure that the production stays on schedule and that students maintain professional-quality standards.

**Projects Note 2:** Generally, students decide the subject of the projects class animations, but the instructor must consider the undertaking within the scope of a student’s skill set, commercial marketability, academic soundness, and appropriateness in nature. DigiPen reserves the right to refuse any student production proposal that it deems inappropriate. Students are also expected to maintain an exceptional level of professionalism within these production environments, striving to produce quality work. Failure to meet this standard may result in academic discipline.

**PROJECTS**

**PRJ 105 - Introduction to 3D Production (4 Cr.)**
*Prerequisite(s): None*
PRJ 105 introduces students to the basic concepts of the production process utilizing small-scale applied
problems in 3D animation. Additionally, students will learn how to work within the professional animation production pipeline, which must be successfully navigate in order to achieve professional results and hone their professional critical thinking skills. The course culminates in students creating the pre-production work for their PRJ 155 project.

PRJ 155 - Personal 3D Production (5 Cr.)

Prerequisite(s): PRJ 105

PRJ 155 addresses two of the more serious emotional challenges facing commercial animators: professional focus and realistic expectations. Animation is a team sport, and it requires a significant commitment of time and resources to accomplish even the most mundane tasks. During this course, students will face a series of choices. Each student will use the pre-production work they created in PRJ 105 to generate a single piece of limited animation. They must limit themselves to a production scale that allows for extensive professional refinement and meets the stringent specification criteria established by the faculty. Students will be introduced to realities of commercial art direction and quality control in conjunction with production deadlines. They should be prepared to repetitively revisit the same material with a relentless attention to subtle detail.

PRJ 201 - Two-Dimensional Animation Production (5 Cr.)

Prerequisite(s): ANI 151 & ART 125

This is a traditional animation course within the context of a small-production pipeline. This project builds on the cumulative skill sets acquired in ANI 101 and ANI 151 but with a focus on team dynamics rather than individual projects. Students will be responsible for interpreting the initial animate, storyboards, and workbooks, breaking down sound and music onto exposure sheets, and completing rough and cleaned up animations for a final rough composite. This will require each cohort to learn choreography, continuity, and basic scene analysis, all while working within the confines of a team. New dynamics will come into play, particularly in terms of accountability to small and large groups, as well as increased responsibilities with man-hour projections and general scene management.

PRJ 205 - Team Projects (5 Cr.)

Prerequisite(s): PRJ 155

This course introduces students to the realities of team-based production environments. Each student will pitch a proposed team project to the faculty and the class for consideration. (Select RTIS program junior and senior level projects may also be presented by academic approval.) The animation faculty will then decide which team projects will be produced and will assign students to specific teams based upon their artistic strengths and career goals. Each team will be assigned a primary and secondary faculty advisor. Each student's individual effort will be assessed as well as the overall success of each team. All members will be evaluated for the overall teamwork and professional success of the group. Just like a professional work environment, student teams will not be allowed to jettison individual members due to production conflicts or performance. Only the faculty will possess the ability to remove a team member for failure to perform.

PRJ 251 - Two-Dimensional Vector Animation Production (5 Cr.)

Prerequisite(s): PRJ 201

Building on the working rough reel, students will use an industry-standard digital animation tool to convert the drawings to vector-based images. Students will then focus on character and effects clean-up work to complete the final, polished version of the project. The course will give special consideration to workflow projections, scheduling, time management, administrative documentation, and quality control. Additionally, it will emphasize appropriate work habits.

PRJ 255 - Final Projects (5 Cr.)

Prerequisite(s): PRJ 205

Students will use this course to complete an independent or team project. This project will help round out a student's portfolio and will demonstrate an appropriate level of professional challenge. These projects may focus on any aspect of 3D digital animation. Students will contract with the faculty about the content of their project. Completed projects will assist students in marketing their skills and knowledge to a specific animation industry segment upon graduation.

PRJ 300 - Limited-Scope 3D Production (5 Cr.)

Prerequisite(s): CG 275 & PRJ 251

PRJ 300 addresses two of the more serious affective learning challenges facing commercial animators: professional focus and realistic expectations. The goal of this course is to build on the experience gained in production pipeline procedures in PRJ 201/251 as well as the modeling and animation skills developed in CG 225 and CG 275. Students will apply skills learned concurrently in ART 300 and CG 300 to produce an animated short film of limited duration.

PRJ 350 - Three-Dimensional Animation Production (5 Cr.)

Prerequisite(s): ART 300, CG 300, & PRJ 300

PRJ 350 is a continuation of the production started in PRJ 300 where students have completed the pre-production phase of their projects. Students will now focus on completing the work on their projects through to final rendering and post-production. Students will address the realities of commercial art direction, quality control, and production deadlines, as well as technical challenges.

PRJ 400 - Capstone Project I (5 Cr.)

Prerequisite(s): ART 350, ENG 116, PRJ 350, & Senior class standing

Working effectively as producers, the Animation Faculty team will select from student submissions one or more team projects to be produced. They will then assign students to specific teams, based upon their artistic strengths and career goals. Wherever possible, individual students will be introduced to specialist advisers from outside the faculty. Each student's individual effort will be assessed as well as the overall teamwork and professional success of the team. As in a professional work environment, student teams will not be allowed to exclude individual members due to production conflicts or performance. The faculty alone will retain the right to remove a team member for failure to perform.

PRJ 450 - Capstone Project II (5 Cr.)

Prerequisite(s): ART 401, PRJ 400, & Senior class standing

Having completed the pre-production work for a team-based animated production in PRJ 400, students will complete final rendering and post-production. Students will face the challenges of commercial art direction, quality control, production deadlines, and team dynamics, as well as the many technical challenges.
PRJ 475 - Summer Animation Team Production (3 Cr.)

Prerequisite(s): Interview by permission of department chair, Portfolio evaluation, & Two full-time semesters

This advanced projects class will allow students to gain invaluable experience and knowledge on a short animated film (approximately one to two minutes) in a professional production setting. The instructor will direct and supervise the film, and students will carry out staff roles as designers, layout/lighting artists, animators, riggers, modelers, and texture artists. This is an opportunity for students to work in a professional setting, which fosters responsibility, teamwork, and artistic excellence.

Department of Game Software Design and Production

GAME SOFTWARE DESIGN AND PRODUCTION

GAM 100 - Project Introduction (3 Cr.)

Prerequisite(s): None

This class presents an overview of the way the game development industry works and a history of game development. It will expose students to the positions and job responsibilities that each member of a game development team has along with the industry requirements for the creation of a game design document (GDD) and a technical design document (TDD). Over the course of the semester, the instructor will organize students into teams responsible for designing and developing text-based games, complete with a functional GDD and TDD, schedule, and milestones. Additionally, each student will create individual games using the ProjectFUN game development environment created by DigiPen. Games created via ProjectFUN will be graphical in nature, serving to enhance the student’s retention of C/C++ coding techniques and math functions taught in the first semester CS and MAT classes.

GAM 150 - Project I (3 Cr.)

Prerequisite(s): CS 120 & GAM 100

Continuing with the teams to which they were assigned in GAM 100, each team will prepare a GDD and TDD for one team-based project. Teams will complete the approved game design according to the schedule they will establish in their technical design. They will present these completed games to the Institute during the final week of the semester. Additionally, each student will design and develop smaller projects using a variety of tools. These projects reinforce the game design and implementation curriculum.

GAM 152 - Project I for Game Designers (3 Cr.)

Prerequisite(s): CS 116 or CS 120 & GAM 100

Credit may be received for GAM 150 or GAM 152, but not for both.

This project-based class is a design-focused continuation of GAM 100. Students will work on teams to complete a project using an existing game engine, improving their skills with scripting. Topics include game design and balance in 2D, theme, resonance, levels, and progression. In addition, the course will cover finite state-machines, basic game-logic, and coding. The course will also cover topics related to the business of the game industry, such as scheduling and marketing.

GAM 200 - Project II (4 Cr.)

Prerequisite(s): CS 170, CS 230, GAM 150, & MAT 140

This project is divided into two semesters and focuses on the creation of a simple real-time game/simulation with 2D graphics for the PC platform. Students will work together on teams of three or four members and implement technical features such as audio effects, music playback, pattern movement, simple artificial intelligence, same-machine multiplayer (networking is not allowed), particle systems, scrolling, and simple physics. All projects must be written with a core of C/C++ code and cannot use middleware such as pre-existing physics engines, networking engines, etc. In addition, students will continue to learn about effective team communication, planning, documentation, play-testing, and iterative software development techniques.

GAM 202 - Game Usability and Analysis (1 Cr.)

Prerequisite(s): GAM 202

This course teaches how to deeply analyze and assess the usability of games actually in development, a critical skill for all game designers. Topics covered include usability, testing roles, bug reports and regression, player psychology and observation, and measuring subjective experiences. Students will run actual usability sessions as the basis to analyze and report on games in development from the game projects classes in order to deeply understand how the game development cycle works.

GAM 250 - Project II (4 Cr.)

Prerequisite(s): CS 225 & GAM 200

Continuation of GAM 200. This project is divided into two semesters and focuses on the creation of a simple real-time game/simulation with 2D graphics for the PC platform. Students will work together on teams of three to five members and implement technical features such as networking, artificial intelligence, and physics. All projects must be written with a core of C/C++ code and cannot use middleware such as pre-existing physics engines,
networking engines, etc. In addition, students will continue to learn about effective team communication, planning, documentation, play-testing, and iterative software development techniques.

**GAM 302 - Project for Game Designers (5 Cr.)**
Prerequisite(s): Enrollment in BAGD or BSGD, GAT 211, & GAT 251 or GAM 250
This year-long project - divided into two semesters, GAM 302 and 352 - will focus on the design and development of a simulation-type game, complete with artificial intelligence, networking, and physics. A large portion of this course focuses on AI-related research and the requirements for AI in games, from a simulation perspective. Students will be required to model physics in their projects. Additionally, students will learn about networking up to eight players on a LAN. Designers in this course will work with RTIS teams as the designer and level designer. Topics for the Game Design students include project management, team work, and the development cycle, as well as a high-level understanding of the technologies involved in making a complete game from concept to completion.

**GAM 350 - Project III (5 Cr.)**
Prerequisite(s): GAM 300
Concurrent Course(s): CS 250
Continuation of GAM 300. This project is divided into two semesters and focuses on the creation of an advanced real-time game/simulation with 3D hardware-accelerated graphics for the PC platform. RTIS students will work together on teams of three to five members and implement technical features such as networking, artificial intelligence, and physics. All projects must be written with a core of C/C++ code and cannot use middleware such as pre-existing physics engines, networking engines, etc. In addition, students will continue to learn about effective team communication, planning, documentation, play-testing, and iterative software development techniques.

**GAM 352 - Project for Game Designers (5 Cr.)**
Prerequisite(s): GAM 302
Continuation of GAM 302. This year-long project - divided into two semesters, GAM 302 and 352 - will focus on the design and development of a simulation-type game, complete with artificial intelligence, networking, and physics. A large portion of this course focuses on AI-related research and the requirements for AI in games, from a simulation perspective. Students will be required to model physics in their projects. Additionally, students will learn about networking up to eight players on a LAN. Designers in this course will work with RTIS teams as the designer and level designer. Topics for the Game Design students include project management, team work, and the development cycle, as well as a high-level understanding of the technologies involved in making a complete game from concept to completion.

**GAM 375 - Advanced Project (5 Cr.)**
Prerequisite(s): GAM 300
In this course, individual students will create an advanced, highly polished, professional level technology demo that will be a showcase piece for their portfolio. If desired, teams of students can instead continue their junior game project and polish it to a professional level in all areas (this option will only be allowed for advanced game projects that are already complete by student standards).

**GAM 390/490 - Internship I/II (5 Cr.)**
Prerequisite(s): GAM 200 & GAM 300
An internship is any carefully monitored work or service experience in which an individual has intentional learning goals and reflects actively on what she or he is learning throughout the experience. It is usually a professional activity under general supervision of an experienced professional and in a job situation, which places a high degree of responsibility on the student. Internships are well structured along the Internship Guidelines available in the Administration Office.

**GAM 399 - Special Topics in Game Software Design and Production (3 Cr.)**
Prerequisite(s): Permission of instructor
The content of this course will change each time it is offered. It is for the purpose of offering a new or specialized course of interest to the faculty or students that is not covered by the courses in the current catalog.

**GAM 400 - Project IV (5 Cr.)**
Prerequisite(s): CS 250 & GAM 300 or GAM 352 & GAT 251
This project is divided into two semesters and focuses on the creation of an innovative game, simulation, or demo. Students may use current software and hardware technologies with instructor approval, such as web technologies, gaming consoles, mobile devices, and commercial physics engines. These technologies can be used to implement technical features such as 3D animation, advanced lighting and rendering, full 3D physics, high-performance networking, and advanced AI algorithms. Innovation can also come from the design, visuals, and/or audio components of the project. Students will work independently or in teams, as appropriate to the scope of their project. In addition, students will learn about working in the industry, interviewing, resumes, personal networking, and career strategies.

**GAM 450 - Project IV (5 Cr.)**
Prerequisite(s): GAM 400
Continuation of GAM 400. This project is divided into two semesters and focuses on the creation of an innovative game, simulation, or demo. Students may use current software and hardware technologies with instructor approval, such as web technologies, gaming consoles, mobile devices, and commercial physics engines. These technologies can be used to implement technical features such as 3D animation, advanced lighting and rendering, full 3D physics, high-performance networking, and advanced AI algorithms. Innovation can also come from the design, visuals, and/or audio components of the project. Students will work independently or in teams, as appropriate to the scope of their project. In addition, students will learn about working in the industry, interviewing, resumes, personal networking, and career strategies.

**GAM 541 - Master’s Game Project I (3 Cr.)**
Prerequisite(s): CS 529
In this course, students will work in teams to create a first playable of a game/simulation, including marketing materials. Topics covered will include the business side of the game industry and the marketing of games. Teams will present their projects to focus groups and present analyses of their responses. Successful completion of the project will require a marketing plan and game packaging materials (box, manual, and sell sheet). At the completion of the project, the team will be required to generate a postmortem of the process.
GAM 550 - Master’s Game Project II (3 Cr.)

Prerequisite(s): GAM 541

This course challenges students to research the latest techniques in game design and technology and to apply their findings in a 3D game/simulation. Students will investigate issues in 3D techniques, artificial intelligence, and next-generation game console architecture, as well as such advanced game design issues as massively multi-player persistent worlds, input/GUI theory and design, and advanced simulation theory and applications. Students will report their results to the class and present a pitch paper for a product that incorporates their findings both to the class and a faculty review board. Students will then create a game design document and technical design document for the approved project. Depending on the scope of their projects, students will work individually or on teams. By the end of the semester, students should complete a prototype of their game/simulation.

GAM 551 - Master’s Game Project III (3 Cr.)

Prerequisite(s): GAM 550

At the completion of the GAM 551 project, students will have a fully functional game/simulation, complete with a manual and marketing material. Topics covered in this course will include advanced team leadership skills, short-term project budgeting, long-term financial planning, and legal issues related to the game industry. Teams will present their projects in pre-beta version to focus groups and analyze their responses. Successful completion of the project will require a multimedia presentation of the finished title and a marketing plan to a creative board. At the completion of the project, the team will generate a postmortem suitable for submission to an online game development site.

GAME APPLICATION TECHNIQUES

GAT 110 - Game History (3 Cr.)

Prerequisite(s): None

The earliest known games were mostly played by the aristocracy, who had leisure time available for such pastimes. As the middle class also gained more leisure time in the nineteenth century, mass-market board games became popular and led to the establishment of some of the best-known game companies, like Parker Brothers and Milton-Bradley. The invention of the computer in the mid-twentieth century allowed even more people the chance to play new and different kinds of games. Since then, games have become a major force in entertainment and challenged movies, television, and other arts for the leisure time of a vast audience. This course examines these developments in detail and offers students the chance to analyze why some games have been more successful than others.

GAT 210 - Game Mechanics I (3 Cr.)

Prerequisite(s): None

The simplest types of games are board and card games. In this course, students will examine the basic math and rules that make these simple games enjoyable. Additionally, students will use this theoretical knowledge to create simple yet practical games that show their comprehension of what is enjoyable in games. They will then present their concepts to the class and will hold focus groups to test their basic design assumptions. Once they have mastered the basics of physical game mechanics, they will expand their expertise by looking at various arcade-action games and other simple action games. They will then create prototypes of games and will hold focus groups to get feedback about their designs.

GAT 211 - Game Mechanics II (3 Cr.)

Prerequisite(s): GAT 210

In this course, students will determine how simulation games abstract the reality they portray in game form and focus on how a designer incorporates the most enjoyable yet challenging aspects into a design. Students will examine published games in these genres to learn what game mechanics are involved and how the extensive database is used to drive gameplay. In addition, students will analyze the structure of interactive stories and branching dialogue. They will learn how to incorporate various puzzles into interactive stories. During the semester, each student will present two in-class reports on commercial simulation and story-telling games, focusing particularly on the unique game mechanics of each product. Additionally, students will create prototypes for four games (racing/flight/sports game, war game, role-playing game, and adventure game).

GAT 212 - Advanced Game Mechanics: Multiplayer and Complex Systems (3 Cr.)

Prerequisite(s): GAT 211

Concurrent Course(s): GAT 251

In this course, students will learn how simulation games are abstractions from real world situations. Students will learn how to codify and abstract down to core elements and structural mechanics, and then focus on developing a process to select the most relevant aspects to be incorporated into a game. Particular focus will be on the underlying structural mechanics that operate these types of games. Students will analyze published games in these genres to learn what game mechanics are involved and what techniques are used to drive gameplay and user experience. They will learn the elements of statistical balance, statistical modeling, and economics that make these games so challenging to design. In addition, they will learn how to develop and maintain the complex interlocking databases that are fundamental to these very information-heavy games.

GAT 240 - Technology for Designers (3 Cr.)

Prerequisite(s): None

This course covers many of the technical issues required for game design. Students will learn basic concepts about how games are implemented from a technical viewpoint. After a brief review of computer components, students will learn about game-engine architecture and the importance of data-driven coding. Other topics that may be covered include 2D graphics concepts such as sprites, animation sequences, palettes, and file formats. This course also provides a deeper examination of the art pipeline for both 2D and 3D. A networking overview introduces such concepts as internet protocols, message types, database management, and client/server and peer-to-peer networking. Development of audio for games will be examined, including such topics as file formats, compression/decompression, streaming, interactive and 3D audio, and recording voices and music.

GAT 245 - Structure and Use of Advanced Game Technology (3 Cr.)

Prerequisite(s): CS 170 & PHY 200

This course introduces many of the advanced issues with which a technical game designer must be familiar. This course provides students with an overview of some of the technologies used by professionals that have a direct impact on game design and development. Topics covered include architecture, graphics, audio, physics, networking, and artificial intelligence. This survey course introduces how these systems are coded and provides designers with
a high-level understanding of the technical constraints and potential of these systems.

**GAT 250 - Two-Dimensional Level Design - Introduction (3 Cr.)**

**Prerequisite(s):** GAT 210

In this course, students will work individually, using an existing game engine(s) to build multiple levels first for a puzzle/arcade game and then for an action game. Students will go through an iterative process to individually create the levels and gain a sense of progress throughout the games. The course combines lectures, hands-on level creation, focus groups, and opportunities for feedback. Lecture topics include level design and overviews of 2D game engine technology, including game engines, architecture, game loop, clock, and modular coding. The course also covers an introduction to 2D art and architecture in games, the use of art and audio (SFX and music) in games, writing concept documents, pitching concepts, and writing scrum-like milestones.

**GAT 251 - Two-Dimensional Level Design - Documentation (3 Cr.)**

**Prerequisite(s):** GAT 250

Picking up where GAT 250 left off, students will work in teams, using an existing game engine(s) to build multiple levels first for an RPG and then for a genre of their choice. Students will go through an iterative process to individually create the levels and gain a sense of progress throughout the games. The course combines lectures, hands-on level creation, focus groups, and opportunities for feedback. Lecture topics include RPG level design, missions, and quests; radial, branching, and bottleneck level-design patterns; adventure and story game level design; dialog design; dialog trees; introduction to NPC design; vehicle simulation level-design issues; military mission design; and issues in sports level and mission designs.

**GAT 300 - 3D Computer Animation Production I (3 Cr.)**

**Prerequisite(s):** None

This course introduces students to the basic theories and techniques of 3D computer animation. The curriculum emphasizes standard 3D modeling techniques, including polygonal and spline modeling, texture map creation and application, keyframing, and animating through forward kinematics and inverse kinematics. Earlier catalogs listed this course as GEN 300.

**GAT 305 - Three-Dimensional Level Design I (3 Cr.)**

**Prerequisite(s):** None

This course is an introduction to the art and science of applied 3D game design. Students will learn how and why design decisions impact both players and gameplay. Students will then apply that understanding through the creation of fully functional levels for a professional real-time strategy game. Topics will include various issues in level design, such as aesthetics, resource balancing, and supporting game mechanics.

**GAT 310 - Three-Dimensional Level Design II (3 Cr.)**

**Prerequisite(s):** GAT 305

This course builds and expands upon the design theory and concepts taught in GAT 305. Using third-party tools, students will work to design and implement fun and balanced FPS levels. Topics covered will include aesthetics, resource placement in a 3D environment, and goal-oriented player guidance.

**GAT 315 - 3D Game Design I (3 Cr.)**

**Prerequisite(s):** ART 310 & GAT 251

This course will cover the methods and applications used in the design and construction of 3D games. Building off the knowledge of 2D game design and mechanics, this course explores the additional complexities of creating compelling 3D experiences. This course uses current industry technologies and 3D tools for developing first and third-person games. Topics covered include aesthetics, building 3D environments, lighting resource placement, and goal-oriented player guidance, along with tutorials on camera angles, texturing, physics, and scripting language implementation within level editors. Students will create several individual student projects of a fully functional level within a third-party game engine that demonstrate game design knowledge, and will also work in teams to create a series of cohesive levels that will form a complete game.

**GAT 316 - 3D Game Design II (3 Cr.)**

**Prerequisite(s):** GAT 315

This course will cover advanced methods and applications used in the design and construction of 3D games. Building off the knowledge gained in GAT 315, this course explores additional complexities of creating compelling 3D experiences in a wide range of genres. Topics include scripting, enemy design and placement, resource design and placement, and reward systems. Emphasis will be on improving scripting skills through the use of industry standard tools. Additional topics include advanced player guidance, mission and level design, user interface and feedback, materials construction and volumes, special effects and animation systems.

**GAT 330 - Interactive Narrative and Character Creation for Games (3 Cr.)**

**Prerequisite(s):** ENG 110 & GAM 250 or GAT 251

In this course, students will learn how to write stories that integrate with gameplay and mechanics. From creating characters to writing branching an interactive dialogue, students will work on storytelling in various genres by incorporating their stories and characters into and existing game engine. Topics include the design and structure of dialogue trees, creating mood parameters for dialogue choices, interactive narrative, autonomous behaviors and emergent gameplay. In addition, focus will be on adding emotional depth through the use of character archetypes, weaving theme and story into the game and methods to resonate with the player.

**GAT 350 - 3D Computer Animation Production II (3 Cr.)**

**Prerequisite(s):** GAT 300

This course builds on the fundamentals taught during GAT 300. Students will learn about key framing, special effects, final rendering, and recording.

**GAT 388 - Portable Game System Development -- Introduction to Portable Game System Programming (3 Cr.)**

**Prerequisite(s):** CS 250 & GAM 250

This course introduces students to portable game system programming, which is different from PC programming due to the embedded system of the machine. Students will learn to deal with a very limited amount of memory and CPU power, as well as programming for a limited graphics engine. Additionally, students will learn how to use the 3D graphics engine of a portable game system and how to merge both 2D and 3D objects into the same buffer. During the course, several topics specific
to portable game systems will be discussed, such as wireless capabilities and sound/character recognition functionality.

GAT 399 - Special Topics in Game Application Techniques (3 Cr.)
Prerequisite(s): Permission of instructor

The content of this course will change each time it is offered. It is for the purpose of offering a new or specialized course of interest to the faculty and students that is not covered by the courses in the current catalog.

GAT 39x - Serious Games (3 Cr.)
Prerequisite(s): GAM 200 & Other courses, as appropriate

This is an interdisciplinary course which varies from semester to semester. The focus will be on some aspect of serious games, for example: the study of serious games that have been implemented in specific industries or fields (medicine, military, education, etc.); or an actual design and implementation of a serious game project with content coming from another department (Math, Physics, etc.) The course will typically be co-taught by instructors from several departments.

GAT 400 - Multimedia Aspects of Game Making I (3 Cr.)
Prerequisite(s): None

This course introduces students to high-level tools for rapid prototyping of creative, interactive, multimedia experiences. Students will learn current technologies for web development or for small, portable games. Additionally, students will learn the design, development, and iterative processes commonly used for developing web-based game applications and other multimedia presentations.

GAT 405 - Advanced Game Design (3 Cr.)
Prerequisite(s): GAT 316

This course will cover advanced topics in game design. The emphasis will be on research into current innovations in game design, extending one or more aspects of innovation in gameplay such as technology, mechanics, visual art, audio interaction, or human-computer interaction. Projects and topics within the course will emphasize creativity of expression, encouraging experimentation while requiring the delivery of polished and complete work. The format of the course will include group discussions of papers, games or game-like experiences, with lectures by the instructor and by outside experts in game development and design. Students will work individually and in teams to create several small prototype projects, and then work to create a final project.

GAT 450 - Multimedia Aspects of Game Making II (3 Cr.)
Prerequisite(s): None

Students will study various languages, tools, and techniques to make a variety of multimedia and games ranging for casual online games, to making interactive game Web sites, to using databases to support online games. Tools include scripting languages, commercially available databases, and commercially available middleware. Students will create multiple projects, including the creation of a game, interactive portfolio, or Web site. Earlier catalogs listed this course as GEN 450.

GAT 488 - Console Programming -- Introduction to Console Development (3 Cr.)
Prerequisite(s): CS 350 & GAM 350

This course introduces students to the game development process on a gaming console platform. It covers both the technical features and design considerations of console development. Topics covered include an overview of game console hardware and comparison with the PC environment, memory management, asynchronous data loading, graphics API, reading optical and motion sensor data, optimization, and NAND data management. As students learn the material, they will work on a game project that takes advantage of the unique capabilities of gaming consoles.

Department of Humanities and Social Sciences

COMMUNICATIONS

COM 150 - Interpersonal and Work Communication (3 Cr.)
Prerequisite(s): ENG 110 or Equivalent

Students will explore how their culture, gender, economic status, age and other personal characteristics influence their work communications. The course will explore verbal and non-verbal communication skills in a global work environment. Students will learn written communication techniques most effective for use in the technology workplace. Additionally, students will explore and practice negotiation skills, both internally and externally to their workplace.

ENGLISH

ENG 110 - Composition (3 Cr.)
Prerequisite(s): None

George Leonard, a leading writer on education, wrote, “To learn is to change. Education is a process that changes the learner.” Writing is also a process that changes the writer. In this practical course in composition, students will spend time generating ideas for writing, sharing and critiquing their writing and ideas, revising their ideas, and learning more about themselves as a result. The course will emphasize using writing as a tool to explore and discover their thought processes, beliefs, and world concepts. Students will employ writing as a tool to develop critical thinking skills. In the process of organizing ideas and, subsequently, manifesting those ideas into various compositional styles and forms, students will become conscious of the concepts which have shaped and are continually shaping their personal realities.
ENG 116 - Storytelling (4 Cr.)
Prerequisite(s): None

Storytelling is one of the oldest art forms, yet narrative—the description of an event—is also one of the most complex human endeavors. The art of narrative is endless, and we have created an almost boundless number of forms for telling stories: gesture, speech, writing, painting, photography, cinema, television, comics, newspapers, music, theater, and video games. Contemporary narrative strategies and structures share much in common with the most archaic of storytelling traditions. This course begins by investigating the psychosocial drive to tell stories, and proceeds to examine how the principal elements of narrative assert themselves in a variety of narrative genres and across different media.

Students will explore the rhetoric of narrative in its many guises, and gain an appreciation for both classical and contemporary formulations of story structure. In particular, this course focuses on how narrative may be adapted across media and genres. A series of written assignments focuses on the demands of storytelling made by different genres. Such a study discloses the particular attributes of each genre, and exposes the inextricable bond between narrative form and narrative content. Additionally, we will consider several ways to interpret narrative, negotiate the temporal restrictions of commercial storytelling applications, and begin to think about the ethics of storytelling.

ENG 120 - Research, Reasoning, and Writing (3 Cr.)
Prerequisite(s): ENG 110

In this composition course, students will practice advanced argumentative essay writing with a focus on research, critical analysis of the research, thesis presentation, and defense. During the semester students will write several research essays on various topics using both traditional and new information technologies.

ENG 150 - Mythology for Game Designers (3 Cr.)
Prerequisite(s): ENG 110

The power of myth resides in its ability to touch the essence of our humanity and put meaning into our lives. Artists, filmmakers, game designers, and writers have appropriated elemental mythological premises and updated them to create modern myths accessible to contemporary audiences. Whether we are playing a role-playing game wherein the task is to rescue the princess and save the planet, reading the latest cyberpunk novel, or watching an animated Disney classic, the power of mythology touches our psyches. This course is an overview and analysis of cross-cultural mythology presented as poetry, prose, film, drama, and game. This class will provide an in-depth discussion of the idea that myths have influenced cultures of the past and continue to inform and influence our culture today. It also will examine the practical use of myth. Additionally, it will emphasize the mono-myth of the hero’s journey and how a game developer may redefine the archetypal figures and adventures therein and incorporate them in a game design. One central aim of this course is to identify the many characteristics of the hero and suggest reasons why the hero is such a common figure in disparate traditions.

ENG 242 - Multicultural Literature (3 Cr.)
Prerequisite(s): ENG 110 & ENG 150, or Equivalent

This course explores what modernity and post-modernity have or have not meant to American writers whose histories and cultures are not European in origin but whose writings are steeped in European-American literary traditions. The course explores the cultural hybridism of this literature as well the unique visions of the world they have created. These funny, humorous, bitterly satirical, and downright serious (post-) modern fantasies are quintessentially American, yet also unique and peculiar to these authors’ ethnic experiences. The selected works also offer an opportunity to read or re-read well established and newer American works of literature.

ENG 315 - Story through Dialogue (4 Cr.)
Prerequisite(s): ENG 116

Dialogue is more than just what people say; dialogue is a crucial element that animates contemporary narrative genres, including fiction, graphic novels, film and television, drama, and even video games. Through an intensive reading of fiction and critical texts, film screenings, written and oral exercises, and a series of workshops, this course aims to provide students with an introduction to the centrality of dialogue in a variety of narrative forms. One central aim of this course is to identify the characteristics of effective dialogue and the role dialogue plays in crafting action, characterization, and theme in different narrative modes. Students will also be coached to consider reading texts or viewing films as a dialogic exercise—a give and take between reader/viewer and text. Additionally, students will learn traditional dialogue and scripting formats and utilize them in their written work, with the eventual goal of producing a pre-production script proposal. This course offers students an opportunity to participate in a hybrid literature-writing class that provides the invaluable experience of reading closely, writing often, and reflecting upon their work in a supportive environment.

ENG 340 - Creative Writing across the Arts (3 Cr.)
Prerequisite(s): ENG 110 or ENG 116

This course focuses on the generation of creative writing in multiple genres and media, including poetry, fiction, creative non-fiction, and graphic novels. Students will study and practice writing in a workshop atmosphere and will engage in intensive reading of excellent writings, most of which employ interdis-
disciplinary, cross-genre approaches that encompass painting, photography, and other visual art. We will follow discussions of readings with writing experiments designed to spark original thinking, to develop facility with writing, and to enhance understanding of the creative process. Students will gain in-depth knowledge of the possibilities of creative writing and will apply this experience by writing short creative pieces and longer works.

**ENG 399 - Special Topics in English (3 Cr.)**

**Prerequisite(s):** Permission of instructor

The content of this course will change each time it is offered. It is for the purpose of offering a new or specialized course of interest to the faculty and students that is not covered by the courses in the current catalog.

**ENG 400 - Creative Writing for Game Design (3 Cr.)**

**Prerequisite(s):** ENG 110 or ENG 150

This course will focus on the narrative elements of creative writing. Exercises will generate thinking and hone students’ basic storytelling talents including characterization, exposition, plot, conflict, back-story, dialogue, and appropriate use of language. Students will learn how to use symbols to design a story and how to manipulate the symbols to create character, plot, message, and interactivity. Students will be encouraged to access their own genius, culture, and life experience in the development of their stories.

**ENG 410 - Interactive Storytelling (3 Cr.)**

**Prerequisite(s):** ENG 110

In this class, students will learn to design stories with symbolic language. Exercises will help students apply and understand character design and development, archetypes, conflict, plot patterns, back-story, dialogue, exposition, premise, and the psychological dynamics of human choice. Students will also learn how to manipulate symbols in images by drawing from a variety of theoretical models, such as Carl Jung’s dream analysis, personality profiling per Myers-Briggs, Gestalt psychology, and narrative architecture.

**ENG 420 - Cybertexts: Interactive Media and the Future of Narrative (3 Cr.)**

**Prerequisite(s):** ENG 110 or ENG 150, Equivalent, or Permission of instructor

Video games and other forms of interactive media are widely touted as the future of both popular entertainment and narrative storytelling. If video games and other interactive media are developing into art forms, then we can expect that these emerging narrative forms will be able to accommodate genres of storytelling that have existed since time immemorial, including romance, comedy, tragedy, epic, and romance. Yet the dynamics of nonlinear storytelling, the limits of current video game technology, and the constraints of the marketplace do not seem conducive to expanding the narrative elements of interactive media. This course traces the boundaries between narratives and games, and aims to identify areas of overlap that can lead to the development of new expressions of narrative in interactive media. One central goal of the course is to grapple with the problem(s) posed by interactive narrative.

Assigned readings examine the difference between traditional narrative texts and texts that require a higher degree of interactivity, collectively called cybertexts. The goal of the course is to identify what differences may exist, and to analyze the possibilities for adapting traditional narrative into interactive media. This class’s central innovation requires students to actively adapt an element of traditional narrative into a cyertext. By the end of the class, students will have reached a conclusion, based on their reading and course work, as to whether cybertexts can effectively encompass traditional narrative genres, and if not, whether this is due to limitations of the form, or the limitations of technology.

**ENG 440 - Advanced Fiction Writing (3 Cr.)**

**Prerequisite(s):** ENG 245, ENG 315, or ENG 340

This course builds upon the concepts and skills taught in previous writing courses. Advanced Fiction Writing offers students the opportunity to further develop their fiction-writing skills by engaging in intensive writing and regular critique of their peers’ creative work. The emphasis is on refining narrative writing skills and developing individual style and voice. Students will write three full-length short stories and read contemporary fiction by established authors not discussed in previous courses. Enrollment will be limited to a maximum of twelve students. The limited class size will afford the intensive production schedule and frequent discussion of writing.

**ENG 450 - Elements of Media and Game Development (2 Cr.)**

**Prerequisite(s):** None

Relative to modern technological media, the most important issue to consider is the nature of the interactive loop of influence between media and culture. Interactivity is one of the most powerful and important potentials of the game medium, but the term is often used with superficial understanding of its implications. This course emphasizes the nature of interactivity primarily from psychological and sociological perspectives. Students will review and define interactive media using examples drawn from academic research, film, television, and games. Students will have ample opportunity to contemplate and discuss how they can apply a more comprehensive understanding of interactivity in order to surpass the current limits of interactive media products.

**HISTORY**

**HIS 100 - Introduction to World History I (3 Cr.)**

**Prerequisite(s):** None

Covering a wide range of world history (Prehistoric to Middle Ages, Western and Asian Civilizations), this course provides an overview of events, civilizations, and cultures throughout time that form major historical shifts. Students will analyze a series of case studies with particular focus on governments, technology, religion, and culture, and how clashes between these (and other) themes created changes in culture, power, and civilizations. Three major themes connect several topics discussed in this course with those explored in HIS 150: issues of authority and inequality within civilizations; encounters and conflicts between civilizations; and cultural and technological exchanges within and between civilizations.

**HIS 150 - Introduction to World History II (3 Cr.)**

**Prerequisite(s):** HIS 100

This course continues the topics covered in HIS 100, covering from approximately 1850 A.D. until present day (Renaissance to present day, Western and Asian Civilizations). Students will analyze a series of case studies with particular focus on governments, technology, religion, and culture, and how clashes between these (and other) themes created changes in culture, power, and civilizations. Three major themes connect several topics discussed in this course with those explored in HIS 100: issues of...
authority and inequality within civilizations; encounters and conflicts between civilizations; and cultural and technological exchanges within and between civilizations.

**JAPANESE**

**JPN 101 - Introduction to Japanese I (3 Cr.)**

Prerequisite(s): None

This course is designed for students with little or no background in Japanese. The course presents the basics of pronunciation, orthography, speaking, listening comprehension, reading, writing, and the sociolinguistics of modern Japanese. This course emphasizes acquiring the ability to communicate and function accurately and appropriately in both speaking and writing Japanese.

**JPN 102 - Japanese II (3 Cr.)**

Prerequisite(s): Equivalent or JPN 101

This course is designed for students who have taken JPN 101 or an equivalent course. The pace of JPN 102 is slightly faster than JPN 101. JPN 102 emphasizes acquiring the ability to communicate and function in Japanese accurately and appropriately, both in speech and in writing. By the end of the course, students will be able to speak, understand, read, and write Japanese on a limited variety of topics.

**LAW**

**LAW 115 - Introduction to Intellectual Property and Contracts (3 Cr.)**

Prerequisite(s): None

The animation and computer software industries are founded upon the principle of intellectual property. This course introduces students to the social concepts and traditions that led to the idea of intellectual property. It surveys the various international legal systems governing intellectual property, giving special consideration to Title 17 and the local statutes that govern copyrights, trademarks, and patents in the United States. Students will grapple with fundamental issues surrounding this field such as fair use, international relations, and economics. The course will also introduce students to a basic overview of contracts including structure, traditions, and vocabulary.

**PHILOSOPHY**

**PHL 150 - Introduction to Philosophy (3 Cr.)**

Prerequisite(s): ENG 110

This course will introduce some of the basic philosophical issues and questions related to everyday life. Topics include human nature (self, mind, consciousness, and freedom), values (ethics, morality, and aesthetics), knowledge (reasoning, rationality, and truth), philosophy of science (universe and origins of life), philosophical positions (naturalism, idealism, realism, pragmatism, and existentialism), and philosophy of religion (god(s) and religion). Students will apply these concepts to the philosophical issues related to games and video games, specifically definitional issues, philosophical themes in games, and art in games, among others.

**SOCIAL SCIENCES**

**SOS 115 - Media and Ethics: A Social Science Perspective (3 Cr.)**

Prerequisite(s): None

This course guides students in the ethical assessment of both the processes and outcomes of social decision-making. After an introduction to basic ethical theories, students will acquire an understanding of the structure of social institutions and the process through which one makes social choices. Central to the analysis is a study of ethics as a criterion for assessment of social decision-making with emphasis on the study of particular issues of social choice. The course also provides a theoretical framework within which to spot and analyze ethical issues in the media.

**SOS 150 - Society and Technology (3 Cr.)**

Prerequisite(s): None

This course draws on techniques and perspectives from the social sciences, humanities, and cultural studies to explore technology and change in the modern era. In particular, students will examine how technology influences and is influenced by values and cultures in America and abroad. The course will help students recognize the range of consequences that technology in general, and information and communication technology (ICT) in particular, have when shaped and used by individuals, organizations, and society. Through readings, discussion, lectures, and written assignments, students will become acquainted with current controversies related to the socio-cultural dimensions of technology in the “digital era.”
While the course examines the impact of technologies—including video gaming and robotics—on the contemporary world, it will also use an historical approach to address some of the technological innovations that have most affected U.S. society in the past. The course will consider how technologies are developed and sustained, and how they interact with and affect our urban culture. Specific themes likely to be addressed include technology’s impact on the private and public spheres; the body and the self in cyberspace; and the criteria we use to determine a technology’s success, failure, and danger.

**SOS 180 - Race and Gender in Twenty-First Century America (3 Cr.)**

*Prerequisite(s): ENG 110*

This course takes a close look at current debates on race, gender, and ethnicity in American society. We will begin with an overview of definitions of race, gender, and ethnicity, exploring what they have meant in the past and what they mean now. We will then examine the intersections between race, gender, and ethnicity, asking the following questions: How do race and ethnicity differ, and how are they related? What difference does race make? How are race and gender related? where does sexual orientation fit into the discourse on gender, and how does it fit into discussions on race and ethnicity?

Current debates on race, gender, and ethnicity were highlighted by the 2008 election of the first African-ethnicity were featured by the election of the first African-American president and the ever-growing prominence of women in the highest levels of American politics. Does this mean that we have entered a post-racial era? Where exactly do we stand on women and gender-related issues? What about race and ethnicity differ, and how are they related? We will consider what changes have occurred and what they mean. We will then examine the intersections between race, gender, and ethnicity, asking the following questions: How do race and ethnicity differ, and how are they related? What difference does race make? How are race and gender related? where does sexual orientation fit into the discourse on gender, and how does it fit into discussions on race and ethnicity?

The content of this course will change each time it is offered. It is for the purpose of offering a new or specialized course of interest to the faculty and students that is not covered by the courses in the current catalog.

**Department of Life Sciences**

**BIOLOGY**

**BIO 100 - Visual Perception (3 Cr.)**

*Prerequisite(s): None*

This course explores the nature of human visual perception. Beginning with the physics of light and the anatomy of the human eye, the course examines how human beings process light information and use this data to survive. Additionally, students will examine neurophysiology, perceptual psychology, and artistic traditions. The course will give special consideration to the modern technological and professional uses of this knowledge.

**BIO 150 - Human Muscular, Skeletal, and Kinetic Anatomy (3 Cr.)**

*Prerequisite(s): None*

This course explores the skeletal and muscular structures of the human body. Students will learn to identify skeletal and muscular forms from both live models and anatomical references. Additionally, students will consider terminology, structural arrangement, and kinetic function. The course will give special emphasis to adapting this knowledge to the needs of artists and animators.

**BIO 200 - Animal Muscular, Skeletal, and Kinetic Anatomy (3 Cr.)**

*Prerequisite(s): BIO 150*

This course introduces the major skeletal and muscular structures of animals. Students will extrapolate their knowledge of the human form to the structure and form of a variety of animal types, specifically focusing on the impact of locomotion and feeding strategies upon form. Additionally, students will consider terminology, structural arrangement, and kinetic function. The course also considers standard locomotion cycles and the relationship between humans and various animals. It will give special emphasis to adapting this knowledge to the needs of artists and animators.

**BIO 225 - Animal Motion: Sequential Limb Movement (3 Cr.)**

*Prerequisite(s): None*

This course introduces the major locomotion cycles with the associated skeletal and muscular structures of animals in motion. Students will compare the moving bipedal, human-like form to the structure and form of a variety of animal types. Special emphasis will be placed on the impact of locomotion on form. Vocabulary, structural arrangement, and kinetic function will all be considered. The course also considers standard locomotion cycles of humans and various animals. Special emphasis will be given to adapting this knowledge to the needs of artists and animators.

**BIO 399 - Special Topics in Biology (3 Cr.)**

*Prerequisite(s): Permission of instructor*

The content of this course will change each time it is offered. It is for the purpose of offering a new or specialized course of interest to the faculty and students that is not covered by the courses in the current catalog.

**Department of Mathematics**

**MATH**

**MAT 100 - Pre-Calculus with Linear Algebra and Geometry (4 Cr.)**

*Prerequisite(s): None*

This course presents a review of college algebra and trigonometry. The most basic part covers a review of functions and their graphs. This course emphasizes polynomial, rational, trigonometric, exponential and logarithmic functions as well as their inverses. Topics in trigonometry include analytic trigonometry and identities, the unit circle, and trigonometric functions of a real variable. Other topics include systems of equations and conic sections. Students may only earn credit for one of MAT 100 or MAT 140.

**MAT 140 - Linear Algebra and Geometry (4 Cr.)**

*Prerequisite(s): None*

The two main themes throughout the course are vector geometry and linear transformations. Topics from vector geometry include vector arithmetic, dot product, cross product, and representations of lines and planes in three-space. Linear transformations covered include rotations, reflections, shears and projections. Students will study the matrix representations of linear transformations along with their derivations. The curriculum also presents Affine geometry and affine transformations along with connections to computer graphics. This course also includes a review of relevant algebra and trigonometry.
MAT 150 - Calculus and Analytic Geometry I (4 Cr.)
Prerequisite(s): MAT 100 or MAT 140
This course introduces the calculus of functions of a single real variable. The main topics include limits, differentiation, and integration. Limits include the graphical and intuitive computation of limits, algebraic properties of limits, and continuity of functions. Differentiation topics include techniques of differentiation, optimization, and applications to graphing. Integration includes Riemann sums, the definite integral, anti-derivatives, and the Fundamental Theorem of Calculus.

MAT 180 - Vector Calculus I (4 Cr.)
Prerequisite(s): MAT 140 & Prior calculus experience
In this course, we extend the standard calculus of one-variable functions to multi-variable vector-valued functions. Vector calculus is used in many branches of physics, engineering, and science, with applications that include dynamics, fluid mechanics, electromagnetism, and the study of curves and surfaces. Topics covered include limits, continuity, and differentiability of functions of several variables, partial derivatives, extrema of multi-variable functions, vector fields, gradient, divergence, curl, Laplacian, and applications.

Credit may be received for this course or for MAT 150 but not for both.

MAT 200 - Calculus and Analytic Geometry II (4 Cr.)
Prerequisite(s): MAT 150 or MAT 180
This course builds on the introduction to calculus in MAT 150. Topics in integration include applications of the integral in physics and geometry and techniques of integration. The course also covers sequences and series of real numbers, power series and Taylor series, and calculus of transcendental functions. Further topics may include a basic introduction to concepts in multivariable and vector calculus.

MAT 225 - Calculus and Analytic Geometry III (3 Cr.)
Prerequisite(s): MAT 200 or MAT 230
This course extends the basic ideas of calculus to the context of functions of several variables and vector-valued functions. Topics include partial derivatives, tangent planes, and Lagrange multipliers. The study of curves in two- and three-space will focus on curvature, torsion, and the TNB-frame. Topics in vector analysis include multiple integrals, vector fields, Green’s Theorem, the Divergence Theorem and Stokes’ Theorem. Additionally, the course may cover the basics of differential equations.

MAT 230 - Vector Calculus II (4 Cr.)
Prerequisite(s): MAT 180
Credit may be received for this course or for MAT 200 but not both.
This course is a continuation of MAT 180. Topics covered include differential operators on vector fields, multiple integrals, line integrals, general change of variable formulas, Jacobian matrix, surface integrals, and various applications. This course will also cover the theorems of Green, Gauss, and Stokes.

MAT 250 - Linear Algebra (3 Cr.)
Prerequisite(s): MAT 200 or MAT 230
This course presents the mathematical foundations of linear algebra, which includes a review of basic matrix algebra and linear systems of equations as well as basics of linear transformations in Euclidean spaces, determinants, and the Gauss-Jordan Algorithm. The more substantial part of the course begins with abstract vector spaces and the study of linear independence and bases. Further topics may include orthogonality, change of basis, general theory of linear transformations, and eigenvalues and eigenvectors. Other topics may include applications to least-squares approximations and Fourier transforms, differential equations, and computer graphics.

MAT 256 - Introduction to Differential Equations (3 Cr.)
Prerequisite(s): MAT 200 or MAT 230
This course introduces the basic theory and applications of first and second-order linear differential equations. The class will emphasize specific techniques such as the solutions to exact and separable equations, power series solutions, special functions and the Laplace transform. Applications include RLC circuits and elementary dynamical systems, and the physics of the second order harmonic oscillator equation.

MAT 258 - Discrete Mathematics (3 Cr.)
Prerequisite(s): MAT 200 or MAT 230
This course gives an introduction to several mathematical topics of foundational importance in the mathematical and computer sciences. This course is an introduction to propositional and first order logic, the course considers applications to methods of mathematical proof and reasoning. Further topics include basic set theory, number theory, enumeration, recurrence relations, mathematical induction, generating functions, and basic probability. Other topics may include graph theory, asymptotic analysis, and finite automata.

MAT 290 - Linear Algebra and Geometry of Curves (3 Cr.)
Prerequisite(s): MAT 200 or MAT 230
This course combines material from MAT 250 and MAT 300 into a single course. Topics from linear algebra include vector spaces, linear transformations, change of basis, function spaces, and piecewise polynomials. Topics from geometry include Bezier curves, splines, interpolation, and constructive curves and surfaces. Students may not earn credit for MAT 290 if they also earned credit for either MAT 250 or MAT 300.

MAT 300/500 - Curves and Surfaces (3 Cr.)
Prerequisite(s): MAT 250 & MAT 258
This course is an introduction to parametrized polynomial curves and surfaces with a view toward applications in computer graphics. It will discuss both the algebraic and constructive aspects of these topics. Algebraic aspects include vector spaces of functions, special polynomial and piecewise polynomial bases, polynomial interpolation, and polar forms. Constructive aspects include the de Casteljau algorithm and the de Boor algorithm. Other topics may include an introduction to parametric surfaces and multivariate splines.

MAT 340 - Probability and Statistics (3 Cr.)
Prerequisite(s): MAT 200 or MAT 230, & MAT 258
This course is an introduction to basic probability and statistics with an eye toward computer science and artificial intelligence. Basic topics from probability theory include sample spaces, random variables, continuous and discrete probability density functions, mean and variance, expectation, and conditional probability. Basic topics from
statistics include binomial, Poisson, chi-square, and normal distributions; confidence intervals; and the Central Limit Theorem. Further topics may include fuzzy sets and fuzzy logic.

MAT 350/550 - Advanced Curves and Surfaces (3 Cr.)
Prerequisite(s): MAT 300/500
This course is a continuation of MAT 300 with topics taken from the theory and applications of curves and surfaces. The class will treat some of the material from MAT 300 in more detail, like the mathematical foundations for non-uniform rational B-spline (NURBS) curves and surfaces, knot insertion, and subdivision. Other topics may include basic differential geometry of curves and surfaces, tensor product surfaces, and multivariate splines.

MAT 351/551 - Quaternions, Interpolation, and Animation (3 Cr.)
Prerequisite(s): MAT 300/500
This course gives an introduction to several mathematical topics of foundational importance to abstract algebra, and in particular the algebra of quaternions. Topics covered may include: operations, groups, rings, fields, vector spaces, algebras, complex numbers, quaternions, curves over the quaternionic space, interpolation techniques, splines, ocktonics, and Clifford algebras.

MAT 352/552 - Wavelets (3 Cr.)
Prerequisite(s): MAT 250 & MAT 258
This course presents the foundations of wavelets as a method of representing and approximating functions. It will discuss background material in complex linear algebra and Fourier analysis. Basic material on the discrete and continuous wavelet transforms forms the core subject matter. This includes the Haar transform, and multi-resolution analysis. Other topics may include subdivision curves and surfaces, and B-spline wavelets. Applications to computer graphics may include image editing, compression, surface reconstruction from contours, and fast methods of solving 3D simulation problems.

MAT 353/553 - Differential Geometry (3 Cr.)
Prerequisite(s): MAT 300/500
This course presents an introduction to differential geometry, with emphasis on curves and surfaces in three-space. It will include background material on the differentiability of multivariable functions. Topics covered include parametrized curves and surfaces in three-space and their associated first and second fundamental forms, Gaussian curvature, the Gauss map, and an introduction to the intrinsic geometry of surfaces. Other topics may include an introduction to differentiable manifolds, Riemannian geometry, and the curvature tensor.

MAT 354/554 - Discrete and Computational Geometry (3 Cr.)
Prerequisite(s): MAT 250 & MAT 258
Topics covered in this course include convex hulls, triangulations, Art Gallery theorems, Voronoi diagrams, Delaunay graphs, Minkowski sums, path finding, arrangements, duality, and possibly randomized algorithms, time permitting. Throughout the course, students will explore various data structures and algorithms. We will discuss the analysis of these algorithms, focusing specifically on the mathematics that arises in their development and analysis. CS 330 is recommended background.

MAT 355/555 - Graph Theory (3 Cr.)
Prerequisite(s): MAT 250 & MAT 258
This course provides an introduction to the basic theorems and algorithms of graph theory. Topics include graph isomorphism, connectedness, Euler tours, Hamiltonian cycles, and matrix representation. Further topics may include spanning trees, coloring algorithms, planarity algorithms, and search algorithms. Applications may include network flows, graphical enumeration, and embedding of graphs in surfaces.

MAT 356/556 - Advanced Differential Equations (3 Cr.)
Prerequisite(s): MAT 250 & MAT 256
This course covers the advanced theory and applications of ordinary differential equations. The first course in differential equations focused on basic prototypes such as exact and separable equations and the second-degree harmonic oscillator equation. This course builds upon these ideas with a greater degree of generality and theory. Topics include qualitative theory, dynamical systems, calculus of variations, and applications to classical mechanics. Further topics may include chaotic systems and cellular automata. With this overview, students will be prepared to study the specific applications of differential equations to the modeling of problems in physics, engineering, and computer science.

MAT 357/557 - Numerical Analysis (3 Cr.)
Prerequisite(s): MAT 250 & MAT 258
This course covers the numerical techniques arising in many areas of computer science and applied mathematics. Such techniques provide essential tools for obtaining approximate solutions to non-linear equations arising from the construction of mathematical models of real-world phenomena. Topics of study include root finding, interpolation, approximation of functions, cubic splines, integration, and differential equations. Further topics may include stability, iterative methods for solving systems of equations, eigenvalue approximation, and the fast Fourier transform.

MAT 359/559 - Computational Algebraic Geometry (3 Cr.)
Prerequisite(s): MAT 300/500
This course introduces computational algebra as a tool to study the geometry of curves and surfaces in affine and projective space. The central objects of study are affine varieties and polynomial ideals, and the algebra-geometry dictionary captures relations between these two objects. The precise methods of studying polynomial ideals make use of monomial orderings, Groebner bases, and the Buchberger algorithm. Students will have opportunities to program parts of these algorithms and to use software packages to illustrate key concepts. Further topics may include resultants, Zariski closure of algebraic sets, intersections of curves and surfaces, and multivariate polynomial splines.

MAT 361/561 - Introduction to Number Theory and Cryptography (3 Cr.)
Prerequisite(s): MAT 250 & MAT 258
This course is an introduction to elementary number theory and cryptography. Among the essential tools of number theory that will be covered are divisibility and congruence, Euler’s function, Fermat’s little theorem, Euler’s formula, the Chinese remainder theorem, powers modulo m, kth roots modulo m, primitive roots and indices, and quadratic reciprocity. These tools will then be used in cryptography, where we will discuss e.g. encryption schemes, the role of prime numbers, security and factorization, the DES algorithm, public key encryption, and various other topics, as time allows.
MAT 362/562 - Fuzzy Sets and Logic (3 Cr.)
Prerequisite(s): MAT 250 & MAT 258
This course introduces the basic theory of fuzzy sets and fuzzy logic and explores some of their applications. Topics covered include classical sets and their operations, fuzzy sets and their operations, membership functions, fuzzy relations, fuzzification/defuzzification, classical logic, multi-valued logic, fuzzy logic, fuzzy reasoning, fuzzy arithmetic, classical groups, and fuzzy groups. Students will also explore a number of applications, including approximate reasoning, fuzzy control, fuzzy behavior, and interaction in computer games.

MAT 364/564 - Combinatorial Game Theory (3 Cr.)
Prerequisite(s): MAT 258
Combinatorial Game Theory studies finite, two-player games in which there are no ties. Techniques from logic, combinatorics, and set theory are used to prove various properties of such games. Typical games include Domineering, Hackenbush, and Nim. The analysis of such games can also be used to study other more complex games like Dots and Boxes, and even Go. Topics covered in this course include Conway’s theory of numbers as games, impartial and partisan games, winning strategies, outcome classes, and algebra of games.

MAT 365/565 - Introduction to Topology (3 Cr.)
Prerequisite(s): MAT 250 & MAT 258
This course introduces topology and its applications. Topics covered include topological spaces, quotient and product spaces, metric and normed spaces, connectedness, compactness, and separation axioms. Further topics may include basic algebraic topology, fixed point theorems, theory of knots, and applications to kinematics, game theory, and computer graphics.

MAT 399/599 - Special Topics in Mathematics (3 Cr.)
Prerequisite(s): Permission of instructor
The content of this course will change each time it is offered. It is for the purpose of offering a new or specialized course of interest to the faculty and students that is not covered by the courses in the current catalog.

MAT 400 - Introductory Analysis I (3 Cr.)
Prerequisite(s): MAT 250
This course will introduce the foundations of real analysis by means of a rigorous reexamination of the topics covered in elementary calculus. The course starts with the topology of the real line and proceeds to a formal examination of limits, continuity, and differentiability. The course will also cover the convergence of sequences and series of real numbers and the uniform convergence of sequences of real valued functions.

MAT 410 - Introductory Analysis II (3 Cr.)
Prerequisite(s): MAT 400
A continuation of MAT 400, this course emphasizes the formal treatment of the theory of integration of functions of a real variable. It reexamines the Riemann integral and the Fundamental theorem of calculus as well as the theory of the Stieljes and Lebesgue integral and their applications in probability and Fourier analysis. The course concludes with a discussion of the topology of \( \mathbb{R}^n \), and the differentiability and integrability of functions of several variables, including the theorems of Green and Stokes and the divergence theorem.

MAT 450 - Abstract Algebra I (3 Cr.)
Prerequisite(s): MAT 250 & MAT 258
This course provides an introduction to the foundations of abstract algebra. The fundamental objects of study are groups, rings, and fields. The student will build on previous courses in algebra, particularly linear algebra, with an even greater emphasis here on proofs. The study of groups is an ideal starting point, with few axioms but a rich landscape of examples and theorems, including matrix groups, homomorphism theorems, group actions, symmetry, and quotient groups. This course will extend these ideas to the study of rings and fields. Topics in ring theory include polynomial rings and ideals in rings. The course will also cover fields, their construction from rings, finite fields, basic theory of equations, and Galois theory.

MAT 460 - Abstract Algebra II (3 Cr.)
Prerequisite(s): MAT 400
This course builds on the foundations established in MAT 450. It will extend the fundamental objects of groups, rings, and fields to include modules over rings and algebras. The course will give the basic ideas of linear algebra a more rigorous treatment and extend scalars to elements in a commutative ring. In this context, students will study the general theory of vector spaces and similarity of transformations. The curriculum will also discuss non-commutative algebras and rings, emphasizing examples such as quaternion algebras. Further topics may include non-associative rings and algebras, Galois theory, exact sequences, and homology.

Department of Physics

PHYSICS

PHY 115 - Introduction to Applied Math and Physics (3 Cr.)
Prerequisite(s): None
We live in a world governed by physical laws. As a result we have become accustomed to objects’ motions being in accordance with these laws. This course examines the basic physics and mathematics governing natural phenomena such as light, weight, inertia, friction, momentum, and thrust as a practical introduction to applied math and physics. Students will explore geometry, trigonometry for cyclical motions, and physical equations of motion for bodies moving under the influence of forces. With these tools, students will develop a broader understanding of the impact of mathematics and physics on their daily lives.

PHY 200 - Motion Dynamics (3 Cr.)
Concurrent Course(s): MAT 200 or MAT 230
This calculus-based course presents the fundamental principles of mechanics for simulation and engineering majors. Students will learn the laws that govern the mechanical world and how to use these laws to form a simulated world. They will examine the concepts involved with kinematics, Newtonian dynamics, work and energy, momentum, rotational motion, and statics.

PHY 200L - Motion Dynamics Laboratory (1 Cr.)
Concurrent Course(s): PHY 200
This course presents the concepts of PHY 200 in the laboratory. The
experiments allow the student to experience the laws of basic physics involving linear motion, force, gravitation, conservation of energy, conservation of momentum, collisions, rotational motion, and springs. Error analysis and data reduction techniques are taught and required in experimental reports.

**PHY 250 - Waves, Optics, and Aerodynamics (3 Cr.)**

Prerequisite(s): PHY 200

This calculus-based course provides a fundamental understanding of fluid dynamics, oscillations and waves, optics, and thermodynamics. By understanding the physical laws governing these phenomena, students will be able to implement ray casting and ray tracing algorithms, as well as create realistic flight simulators, lens effects, and many-body simulations.

**PHY 250L - Waves, Optics, and Thermodynamics Laboratory (1 Cr.)**

Concurrent Course(s): PHY 250

This course presents the concepts of PHY 250 in the laboratory. The experiments allow the student to experience the physical laws involving electric fields, electric potential, electric current, electric charge, capacitance, current, resistance, inductance, circuits, and magnetism. Error analysis and statistics are taught and required in experimental reports.

**PHY 270 - Electricity and Magnetism (3 Cr.)**

This calculus-based course studies the basic concepts underlying electrical and magnetic phenomena. It considers the following topics: atoms and free electrons; Coulomb’s law; the electric field, Gauss’s Law, and potential; capacitance, properties of dielectrics, current, resistance, and EMF; DC circuits and instruments, and Kirchhoff’s rules; the magnetic field and magnetic forces on current-carrying conductors; magnetic field of a current; electromagnetic induction and magnetic properties of matter; alternating current; Maxwell’s equations; electromagnetic waves; semiconductors and the PN junction; and photoelectric effect.

**PHY 270L - Electricity and Magnetism Laboratory (1 Cr.)**

Concurrent Course(s): PHY 270

This course presents the concepts of PHY 270 in the laboratory. The experiments allow the student to experience the physical laws involving electric fields, electric potential, electric current, electric charge, capacitance, current, resistance, inductance, circuits, and magnetism. Error analysis and statistics are taught and required in experimental reports.

**PHY 290 - Modern Physics (3 Cr.)**

Prerequisite(s): MAT 200 or MAT 230, PHY 200, & PHY 250 or PHY 270

The wake of modern physics has given rise to massive technological advancements that have changed our daily lives. This course covers many of the modern issues within the field and emphasizes the problem-solving nature of physics. The class is a calculus based scientific examination of topics from general relativity and quantum mechanics through nuclear physics, high-energy physics, and astrophysics.

**PHY 290L - Modern Physics Laboratory (1 Cr.)**

Concurrent Course(s): PHY 290

This course presents the concepts of PHY 290 in the laboratory. The experiments allow the student to experience the discoveries of the last 100 years. The Michelson-Morley interferometer, the photoelectric effect, the electron’s charge to mass ratio, the Franck-Hertz experiments, electron diffraction and the thermal band-gap. Error analysis and statistics are taught and required in experimental reports.

**PHY 300 - Advanced Mechanics (3 Cr.)**

Prerequisite(s): CS 200, CS 250, MAT 150 or MAT 180, MAT 200 or MAT 230, PHY 250, & PHY 250

This course covers the physics behind more complex mechanical interactions as well as the numerical techniques required to approximate the systems for simulations. A thorough analysis of mechanical systems through energy analysis will provide the basis for the understanding of linear and rotational systems. The combination of theoretical physics and numerical methods will provide students with the background for simulating physical systems with limited computational power. Topics covered include Lagrangian Dynamics, Hamilton’s Equations, dynamics of rigid bodies, motion in non-inertial reference frames, the use of the inertia tensor, collision resolution, and numerical techniques including methods of approximation.

**PHY 350 - Physics Simulation (3 Cr.)**

Prerequisite(s): MAT 300/500 & PHY 300

In this course, students will gather into teams of two to three and create a physics engine with minimal interface and graphics. Weekly lectures will go over the implementation of concepts covered in PHY 300 as well as collision resolution, objects on surfaces, holonomic and non-holonomic constraints, numerical approximations, and special topics that address project-specific physics.

**PHY 399 - Special Topics in Physics (3 Cr.)**

Prerequisite(s): Permission of instructor

The content of this course will change each time it is offered. It is for the purpose of offering a new or specialized course of interest to the faculty and students that is not covered by the courses in the current catalog.

**PHY 500 - Advanced Physically-Based Modeling (3 Cr.)**

Prerequisite(s): Entrance into the Master of Science in Computer Science program

This class covers the topics in dynamics modeling techniques, including methods in the calculus of variations, Hamilton’s principle, Lagrangian dynamics, Hamiltonian dynamics, motion in a non-inertial reference frame, dynamics of rigid bodies (moments of inertia, inertia tensor, and stability), collision resolution (impact parameters, scattering, and restitution), and physics of continuous bodies (elasticity, deformation, stress, and strain).

**PHY 550 - Physics Simulation (3 Cr.)**

Prerequisite(s): Entrance into the Master of Science in Computer Science program

Students will gather into teams of two to three and create a physics engine with minimal interface and graphics. Weekly lectures will detail the implementation of concepts covered in PHY 300, as well as collision resolution, objects on surfaces, holonomic and non-holonomic constraints, and numerical approximations. Additionally, students will study special topics that address project-specific physics.
## Faculty

### Academic Leadership

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Faculty &amp; Academic Affairs</td>
<td>Xin Li</td>
</tr>
<tr>
<td>Associate Dean</td>
<td>Charles Duba</td>
</tr>
<tr>
<td>Associate Dean</td>
<td>Jen Sward</td>
</tr>
<tr>
<td>Registrar</td>
<td>Meighan Shoesmith</td>
</tr>
<tr>
<td>Program Director - Bachelor of Arts in Game Design</td>
<td>Jen Sward</td>
</tr>
<tr>
<td>Program Director (Acting) - Bachelor of Fine Arts in Digital Art and Animation</td>
<td>Raymond Yan</td>
</tr>
<tr>
<td>Program Director - Bachelor of Science in Computer Engineering</td>
<td>Charles Duba</td>
</tr>
<tr>
<td>Program Director - Bachelor of Science in Game Design</td>
<td>Jen Sward</td>
</tr>
<tr>
<td>Program Director - Bachelor of Science in Real-Time Interactive Simulation</td>
<td>Samir Abou Samra</td>
</tr>
<tr>
<td>Program Director - Master of Science in Computer Science</td>
<td>Xin Li</td>
</tr>
<tr>
<td>Internship Coordinator - BSCE</td>
<td>Charles Duba</td>
</tr>
<tr>
<td>Internship Coordinator - RTIS/BSGD/BAGD</td>
<td>Jen Sward</td>
</tr>
<tr>
<td>Internship Coordinator - BADAA</td>
<td>Raymond Yan</td>
</tr>
<tr>
<td>Internship Coordinator - MSCS</td>
<td>Xin Li</td>
</tr>
</tbody>
</table>

### Department of Computer Science

<table>
<thead>
<tr>
<th>Name</th>
<th>Degrees and Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samir Abou Samra*</td>
<td>B.S. Computer Science, M.S. Computer Science, Lebanese American University, Lebanese American University</td>
</tr>
<tr>
<td>Antoine Abi Chakra</td>
<td>B.S. Computer Science, M.S. Computer Science, DigiPen Institute of Technology, Lebanon, DigiPen Institute of Technology</td>
</tr>
<tr>
<td>Claude Comair</td>
<td>Le diplôme d’Ingénieur Archit., M. Engineering Environmental Engineering, L’Université du Saint Esprit (Lebanon), Osaka University (Japan)</td>
</tr>
<tr>
<td>Sun Tjen Fam</td>
<td>B.S. Computer Science, Diploma, University of British Columbia (Canada), DigiPen Applied Computer Graphics, Vancouver (Canada)</td>
</tr>
<tr>
<td>Jason Hanson</td>
<td>B.S. Mathematics, B.S. Physics, M.S. Physics, M.A. Mathematics, Ph.D. Mathematics, University of Massachusetts, University of Massachusetts, University of Virginia, Columbia University, University of Hawaii</td>
</tr>
<tr>
<td>Gary Herron</td>
<td>B.A. Mathematics, Ph.D. Mathematics, Northern Michigan University, University of Utah</td>
</tr>
<tr>
<td>Steven Lee</td>
<td>B.S. Computer Science, University of British Columbia</td>
</tr>
<tr>
<td>Xin Li</td>
<td>B.S. Computer Science, M.S. Computer Science, Ph.D. Computer Science, Northwest University (P.R. of China), Academic Sinica (P.R. of China), University of Central Florida</td>
</tr>
<tr>
<td>Name</td>
<td>Degree(s)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Pshpack Kernick</td>
<td>Ph.D. Computer Science and Engineering, B.E. Computer Engineering</td>
</tr>
<tr>
<td>Matthew Mead</td>
<td>B.S. Computer Science, M.S. Computer Science</td>
</tr>
<tr>
<td>Ken Meerdink</td>
<td>B.S. Mathematics and Computer Science, M.S. Mathematics, Ph.D. Mathematics, M.S. Software Engineering</td>
</tr>
<tr>
<td>Patrick Moghames</td>
<td>B.S. Computer Science, M.S. Computer Science</td>
</tr>
<tr>
<td>Cody Pritchard</td>
<td>B.S. Real-Time Interactive Simulation</td>
</tr>
<tr>
<td>Steve Rabin</td>
<td>B.S. Computer Engineering, M.S. Computer Science</td>
</tr>
<tr>
<td>Jeff Tucker</td>
<td>B.S. Computing and Software Systems</td>
</tr>
<tr>
<td>Dmitri Volper</td>
<td>B.S. Mathematical and Computer Science, M.S. Mathematics, M.S. Computer and Information Science, Ph.D. Mathematical Sciences</td>
</tr>
</tbody>
</table>

**Department of Electrical and Computer Engineering**

<table>
<thead>
<tr>
<th>Name</th>
<th>Degree(s)</th>
<th>Institution(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charles Duba*</td>
<td>B.S. Physics, M.S. Physics, Ph.D. Physics</td>
<td>University of California, San Diego, University of Washington, University of Washington</td>
</tr>
<tr>
<td>Christopher Theriault</td>
<td>B.S. Computer Engineering</td>
<td>DigiPen Institute of Technology</td>
</tr>
<tr>
<td>Jeremy Thomas</td>
<td>Ph.D. Earth and Space Sciences, M.S. Physics, B.A. Physics</td>
<td>University of Washington, University of Washington, Bard College</td>
</tr>
<tr>
<td>Francis Wang</td>
<td>Ph.D. Electrical Engineering, M.S. Electrical Engineering</td>
<td>University of Minnesota, Washington State University</td>
</tr>
<tr>
<td>Hao Wu</td>
<td>M.S. Electrical Engineering, B.S. Electrical Engineering</td>
<td>University of Washington, Tsinghua University (China)</td>
</tr>
</tbody>
</table>

**Department of Fine Arts and Animation**

<table>
<thead>
<tr>
<th>Name</th>
<th>Degree(s)</th>
<th>Institution(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert Kmiec*</td>
<td>B.F.A. Illustration, M.F.A. Illustration</td>
<td>Massachusetts College of Art, Syracuse University</td>
</tr>
<tr>
<td>Donald “BJ” Becker</td>
<td>B.A. 3D Design, M.A. Illustration</td>
<td>West Surrey College of Arts and Design (England), Syracuse University</td>
</tr>
<tr>
<td>Dan Daly</td>
<td>B.A. English</td>
<td>Whitman College</td>
</tr>
<tr>
<td>Antony DeFato</td>
<td>B.F.A. Studio Art, B.S.H.E. Housing Design</td>
<td>University of Missouri</td>
</tr>
<tr>
<td>Jim Johnson</td>
<td>B.A. Theater Arts, M.A. Cinematography</td>
<td>Humboldt State University, Humboldt State University</td>
</tr>
<tr>
<td>Name</td>
<td>Major(s)</td>
<td>University/Institution</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------------------------------------------------------------------</td>
<td>----------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Suzanne Kaufman</td>
<td>B.A. Computer Animation and Photography</td>
<td>University of Wisconsin, Madison</td>
</tr>
<tr>
<td>Geraldine Kovats</td>
<td>B.F.A. Illustration</td>
<td>Academy of Art, San Francisco</td>
</tr>
<tr>
<td>Chun Lu</td>
<td>B.S. Interior Architecture</td>
<td>University of Missouri, Columbia</td>
</tr>
<tr>
<td></td>
<td>M.A. Design Communication</td>
<td>University of Missouri, Columbia</td>
</tr>
<tr>
<td>Michelle Lu</td>
<td>B.S. Horticulture</td>
<td>National Chung-Hsing University (Taiwan)</td>
</tr>
<tr>
<td>Peter Moehrle</td>
<td>Associate of the Ontario College of Art</td>
<td>Ontario College of Art (Canada)</td>
</tr>
<tr>
<td>Alecia Rossano</td>
<td>B.A. Studio Art</td>
<td>Scripps College</td>
</tr>
<tr>
<td></td>
<td>M.F.A. Sculpture</td>
<td>New York Academy of Art</td>
</tr>
<tr>
<td>Alain Schneuwley</td>
<td>Diploma, Computer Analyst and Programming</td>
<td>IEPIGE (Switzerland)</td>
</tr>
<tr>
<td></td>
<td>Federal Diploma of Commerce</td>
<td>Superior Commercial School (Switzerland)</td>
</tr>
<tr>
<td>Tony White</td>
<td>Graphic Design, Typography, &amp; Illustration</td>
<td>East Ham Technical College (England)</td>
</tr>
<tr>
<td>Charles Wood</td>
<td>B.A. Biology</td>
<td>Kalamazoo College</td>
</tr>
<tr>
<td></td>
<td>B.S. Medical Illustration Science</td>
<td>The Medical College of Georgia</td>
</tr>
<tr>
<td></td>
<td>M.S. Medical Illustration</td>
<td>University of Washington</td>
</tr>
<tr>
<td></td>
<td>Ph.D. Physical Anthropology</td>
<td></td>
</tr>
<tr>
<td>Kevin Burgess</td>
<td>M.F.A. in 3D Modeling &amp; Animation</td>
<td>Academy of Art University (San Francisco, CA)</td>
</tr>
<tr>
<td></td>
<td>BS in Interactive Computer Graphics</td>
<td>Arizona State University</td>
</tr>
<tr>
<td>Mark Peasley</td>
<td>B.F.A. Graphic Design &amp; Illustration</td>
<td>Oregon State University</td>
</tr>
<tr>
<td>Bill Jarco</td>
<td>B.F.A. Visual Design in Media Arts</td>
<td>Emerson College</td>
</tr>
<tr>
<td>Mark Kang O'Higgins</td>
<td>M.F.A. Painting and Sculpture</td>
<td>New York Academy of Art</td>
</tr>
<tr>
<td></td>
<td>M.A. Sociology and Political Science</td>
<td>University College Galway (Ireland)</td>
</tr>
<tr>
<td></td>
<td>B.A. Sociology and Politicial Science</td>
<td>University College Galway (Ireland)</td>
</tr>
<tr>
<td></td>
<td>Fine Art Certificate, BFA Program</td>
<td>Edinburgh College of Art (Scotland)</td>
</tr>
<tr>
<td></td>
<td>Fine Art Certificate, Fine Art</td>
<td>Leith School of Art (Scotland)</td>
</tr>
<tr>
<td>Eric Swangstu</td>
<td>M.P.S. Arts and Cultural Management</td>
<td>Pratt Institute (NYC)</td>
</tr>
<tr>
<td></td>
<td>B.F.A. Painting/Printmaking</td>
<td>Kansas City Art Institute (KC)</td>
</tr>
<tr>
<td>Debra Baxter</td>
<td>M.F.A. Sculpture</td>
<td>The Milton Avery Graduate School of the Arts, Bard College</td>
</tr>
<tr>
<td></td>
<td>B.F.A. Sculpture and Video</td>
<td>Minneapolis College of Art and Design</td>
</tr>
<tr>
<td>David Kern</td>
<td>B.A. Humanities</td>
<td>Washington State University</td>
</tr>
<tr>
<td>Phillip Miner</td>
<td>M.F.A.</td>
<td>The Milton Avery Graduate School of the Arts, Bard College</td>
</tr>
<tr>
<td></td>
<td>B.A.</td>
<td>Whitman College</td>
</tr>
<tr>
<td>John Thacker</td>
<td>B.F.A. Production Animation</td>
<td>DigiPen Institute of Technology</td>
</tr>
<tr>
<td>Pamela Mathues</td>
<td>B.F.A. Illustration and Fine Art</td>
<td>Columbus College of Art and Design</td>
</tr>
<tr>
<td>Ron Austin</td>
<td>M.Ed.</td>
<td>University of Washington</td>
</tr>
<tr>
<td></td>
<td>B.A. Media Studies</td>
<td>The Evergreen State College</td>
</tr>
<tr>
<td>Monte Michaelis</td>
<td>A.A.A. Computer Animation</td>
<td>Art Institute of Seattle</td>
</tr>
<tr>
<td></td>
<td>B.S. Graphic Design</td>
<td>Art Institute of Pittsburgh</td>
</tr>
<tr>
<td>Name</td>
<td>Degree</td>
<td>University</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------------</td>
<td>-------------------------------------------------</td>
</tr>
<tr>
<td>Rick Sullivan</td>
<td>B.A. Journalism</td>
<td>University of Washington</td>
</tr>
<tr>
<td>Tito Pagan</td>
<td>B.D. Architecture and Interior Design, A.A. Arts</td>
<td>University of Florida Miami-Dade Community College</td>
</tr>
<tr>
<td>Lawrence Schwedler</td>
<td>M.F.A. Music Performance, B.A. in Music</td>
<td>University of California at Los Angeles University of California at Los Angeles</td>
</tr>
<tr>
<td>Kamal Siegal</td>
<td>A.A.A. Computer Animation</td>
<td>The Art Institute of Seattle</td>
</tr>
</tbody>
</table>

**Department of Game Software Design and Production**

<table>
<thead>
<tr>
<th>Name</th>
<th>Degree</th>
<th>University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benjamin Ellinger *</td>
<td>B.S. Kinesiology</td>
<td>University of Texas</td>
</tr>
<tr>
<td>Chris Peters</td>
<td>B.S. Real-Time Interactive Simulation</td>
<td>DigiPen Institute of Technology</td>
</tr>
<tr>
<td>Mike Pondsmith</td>
<td>B.A. Design, B.S. Psychology</td>
<td>University of California, Davis</td>
</tr>
<tr>
<td>Rachel Rutherford</td>
<td>B.A. Rhetoric</td>
<td>University of California, Berkeley</td>
</tr>
<tr>
<td>Douglas Schilling</td>
<td>B.S. Computer Science</td>
<td>Pacific Lutheran University</td>
</tr>
<tr>
<td>Jen Sward</td>
<td>B.S. Electrical &amp; Computer Engineering</td>
<td>University of California, Davis</td>
</tr>
<tr>
<td>Jay Gale</td>
<td>B.A. Broadcast Communications</td>
<td>University of Colorado</td>
</tr>
<tr>
<td>John Feil</td>
<td>B.A.</td>
<td>University of Nevada, Reno</td>
</tr>
<tr>
<td>James Portnow</td>
<td>M.E.T. Entertainment Technology Center B.C.</td>
<td>Carnegie Mellon University St. John’s College of Santa Fe</td>
</tr>
<tr>
<td>Bill Morrison</td>
<td>Diploma in Computer Programming</td>
<td>Chubb Institute (Parsippany, NJ)</td>
</tr>
<tr>
<td>Derick Daynaga</td>
<td>B.A. in Economics</td>
<td>San Francisco State University</td>
</tr>
</tbody>
</table>

**Department of Humanities and Social Sciences**

<table>
<thead>
<tr>
<th>Name</th>
<th>Degree</th>
<th>University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Claire Joly*</td>
<td>B.A. English Language &amp; Literature, M.A. American Studies, M.A. Theatre &amp; African American Studies, Ph.D. Comparative Cultures</td>
<td>Sorbonne (France) Sorbonne (France) Smith College University of California, Irvine</td>
</tr>
<tr>
<td>Stephen Schafer</td>
<td>B.A. Psychology, M.A. English</td>
<td>University of Denver University of Denver</td>
</tr>
<tr>
<td>Sonia Michaels</td>
<td>M.A. in English, B.A. in English</td>
<td>University of Washington University of Washington</td>
</tr>
<tr>
<td>Fara Nizamani</td>
<td>Ph.D. English Literature, M.A. English Literature, B.S. in Education, Secondary English Education</td>
<td>City University Los Angeles Barry University</td>
</tr>
<tr>
<td>Ray Etheridge</td>
<td>M.A. in History, M.S. in Astrophysics, M.A. in Astronomy</td>
<td>Old Dominion University Idaho State University Western Washington University</td>
</tr>
<tr>
<td>Name</td>
<td>Degree(s)</td>
<td>Institution(s)</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------------------------</td>
<td>-------------------------------------------------</td>
</tr>
<tr>
<td>Neils Clark</td>
<td>M.A. Communication&lt;br&gt;B.A. Communication</td>
<td>University of Hawaii at Manoa&lt;br&gt;University of Washington</td>
</tr>
<tr>
<td>Branden Abud</td>
<td>M.F.A. in English&lt;br&gt;B.A. in English</td>
<td>University of Washington&lt;br&gt;Miami University</td>
</tr>
</tbody>
</table>

**Department of Life Sciences**

<table>
<thead>
<tr>
<th>Name</th>
<th>Degree(s)</th>
<th>Institution(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charles Wood*</td>
<td>B.A. Biology&lt;br&gt;B.S. Medical Illustration Science&lt;br&gt;M.S. Medical Illustration&lt;br&gt;Ph.D. Physical Anthropology</td>
<td>Kalamazoo College&lt;br&gt;The Medical College of Georgia&lt;br&gt;The Medical College of Georgia&lt;br&gt;University of Washington</td>
</tr>
</tbody>
</table>

**Department of Mathematics**

<table>
<thead>
<tr>
<th>Name</th>
<th>Degree(s)</th>
<th>Institution(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matthew Klassen*</td>
<td>B.S. Mathematics&lt;br&gt;Ph.D. Mathematics</td>
<td>University of Arizona&lt;br&gt;University of Arizona</td>
</tr>
<tr>
<td>Ton Boerkoel</td>
<td>B.S. Mathematics&lt;br&gt;M.S. Mathematics&lt;br&gt;Ph.D. Mathematics</td>
<td>University of Leiden (Netherlands)&lt;br&gt;University of Leiden (Netherlands)&lt;br&gt;University of Texas</td>
</tr>
<tr>
<td>Andy Demetre</td>
<td>B.S. Mathematics&lt;br&gt;M.S. Mathematics</td>
<td>Reed College&lt;br&gt;University of Washington</td>
</tr>
<tr>
<td>Martin Weinless</td>
<td>B.S. Physics&lt;br&gt;Ph.D. Mathematics</td>
<td>City College of New York&lt;br&gt;Polytechnic University</td>
</tr>
</tbody>
</table>

**Department of Physics**

<table>
<thead>
<tr>
<th>Name</th>
<th>Degree(s)</th>
<th>Institution(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erik Mohrmann *</td>
<td>B.S. Physics&lt;br&gt;M.S. Physics&lt;br&gt;Ph.D. Physics</td>
<td>Rensselaer Polytechnic Institute&lt;br&gt;University of Washington&lt;br&gt;University of Washington</td>
</tr>
<tr>
<td>Charles Duba</td>
<td>B.S. Physics&lt;br&gt;M.S. Physics&lt;br&gt;Ph.D. Physics</td>
<td>University of California, San Diego&lt;br&gt;University of Washington&lt;br&gt;University of Washington</td>
</tr>
<tr>
<td>Natalia Solorzana</td>
<td>Ph.D. Physics&lt;br&gt;M.S. Physics&lt;br&gt;B.S. Physics</td>
<td>National Institute for Space Research (Brazil)&lt;br&gt;National Institute for Space Research (Brazil)&lt;br&gt;Federal University of the State of Minas Gerais (Brazil)</td>
</tr>
</tbody>
</table>

**Learning Resource Center**

<table>
<thead>
<tr>
<th>Name</th>
<th>Degree(s)</th>
<th>Institution(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karen Wheeler</td>
<td>Master of Library Science&lt;br&gt;B.A. in History</td>
<td>Kent State University&lt;br&gt;Washington State University</td>
</tr>
</tbody>
</table>

* Department Chair
# Staff

## Management

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>President and Chief Executive Officer</td>
<td>Claude Comair</td>
</tr>
<tr>
<td>Chief Operating Officer, International</td>
<td>Jason Chu</td>
</tr>
<tr>
<td>Chief Financial Officer</td>
<td>John Bauer</td>
</tr>
<tr>
<td>Chief Operating Officer, U.S.A.</td>
<td>Raymond Yan</td>
</tr>
<tr>
<td>Chief Technology Officer</td>
<td>Samir Abou Samra</td>
</tr>
<tr>
<td>Executive Vice President of Asia-Pacific</td>
<td>Prasanna Ghalie</td>
</tr>
</tbody>
</table>

## Accounting

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller</td>
<td>Mayu Davis</td>
</tr>
<tr>
<td>Director of Administration/Bursar</td>
<td>Yuki Taber</td>
</tr>
<tr>
<td>Accounting Assistant</td>
<td>Hiroko Honda</td>
</tr>
<tr>
<td>Accounting Assistant</td>
<td>Carol Jacobs</td>
</tr>
</tbody>
</table>

## Administration

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Vice President of Administration / Registrar</td>
<td>Meighan Shoesmith</td>
</tr>
<tr>
<td>Assistant Registrar</td>
<td>Asuka Miyahara</td>
</tr>
<tr>
<td>Administration Coordinator</td>
<td>Bridget Scott</td>
</tr>
<tr>
<td>Executive Assistant</td>
<td>Myrna Meneem</td>
</tr>
<tr>
<td>Front Desk</td>
<td>Su Ring</td>
</tr>
</tbody>
</table>

## Admissions

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director of Admissions</td>
<td>Angela Kugler</td>
</tr>
<tr>
<td>Associate Director of Admissions Outreach</td>
<td>Sean Harris</td>
</tr>
<tr>
<td>Admissions Outreach Coordinator</td>
<td>Steph Caron</td>
</tr>
<tr>
<td>Admissions Coordinator</td>
<td>Amy Vasquez</td>
</tr>
<tr>
<td>Admissions Coordinator</td>
<td>Danial Powers</td>
</tr>
</tbody>
</table>

## Compliance

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Vice President of Institutional Compliance</td>
<td>Melvin Gonsalvez</td>
</tr>
<tr>
<td>Compliance Officer</td>
<td>Mandy Wong</td>
</tr>
</tbody>
</table>
### Facilities

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director of Facilities and Security</td>
<td>Joel Smith</td>
</tr>
<tr>
<td>Facilities Support</td>
<td>Rosa Ocampo</td>
</tr>
</tbody>
</table>

### Financial Aid

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director of Financial Aid</td>
<td>Kim King</td>
</tr>
<tr>
<td>Assistant Director of Financial Aid</td>
<td>Marti Jackson</td>
</tr>
<tr>
<td>Financial Aid Administrator</td>
<td>Cindy Cho</td>
</tr>
</tbody>
</table>

### I.T.

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director of I.T.</td>
<td>Atom Powers</td>
</tr>
<tr>
<td>I.T. Support</td>
<td>Ryan Fulcher</td>
</tr>
<tr>
<td>Client Services Administrator</td>
<td>David Kuehn</td>
</tr>
<tr>
<td>Web Applications Developer</td>
<td>Jason R. Alexander</td>
</tr>
</tbody>
</table>

### Production

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director of Production</td>
<td>Raymond Yan</td>
</tr>
<tr>
<td>Producer</td>
<td>Linnéa Mobrand</td>
</tr>
<tr>
<td>Creative Manager</td>
<td>Katrina Chu</td>
</tr>
<tr>
<td>Communications Manager</td>
<td>Tarsi Hall</td>
</tr>
</tbody>
</table>

### ProjectFUN Outreach Programs

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director of K12 Curriculum and Teacher Training</td>
<td>Martin Culbert</td>
</tr>
<tr>
<td>Director of K12 Programs Marketing and Administration</td>
<td>Heidi Munoz</td>
</tr>
<tr>
<td>Director of Continuing Education</td>
<td>John Aultman</td>
</tr>
<tr>
<td>Director of Educational Partnerships</td>
<td></td>
</tr>
<tr>
<td>K12 Outreach Coordinator</td>
<td>Emma Trifari</td>
</tr>
</tbody>
</table>

### Student Affairs

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director of Student Affairs</td>
<td>Gordon Dutrisac</td>
</tr>
<tr>
<td>Assistant Director of Student Affairs</td>
<td>Marshall Traverse</td>
</tr>
<tr>
<td>Student Affairs Coordinator</td>
<td>Heather Sitt</td>
</tr>
<tr>
<td>Career and Alumni Services Coordinator</td>
<td>Teresa Lin</td>
</tr>
<tr>
<td>Director of Counseling Services and Disability Support Services Coordinator</td>
<td>Kay Widmer</td>
</tr>
</tbody>
</table>
